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1 Introduction 
 

As discussed in the previous chapter, the idea of Standardizing DEVS model representation is to 

allow a platform-independent DEVS model representation to be executed by a DEVS-based 

simulator. In this case, a DEVS model is executed in a single processor or parallel/distributed 

simulation environment. This allows model reusability without the need for performing long-

distance distributed simulation. Typically, models are stored in repositories and retrieved as 

needed. This type of interoperability is very important to achieve, because often modelers 

already have or can easily install a DEVS simulator on their machine. However, it is much more 

difficult for them to retrieve and reuse already existing models that were intended to run on a 

specific DEVS environment. Therefore, we need some way to provide access and share these 

numerous models. Having a platform independent DEVS model representation format allows us 

to go a step further in automatic model transformations and generate entire local copies of 

distant models.  

 

Using transformations based on code parsing, we can generate the XML description of existing 

models written for a specific framework. These files can be stored in model repositories, 

accessible through Internet, so that anyone (with the proper authorizations) can access them [1]. 

When facing a problem to which Modeling & Simulation (M&S) will be applied, the modeler 

starts by searching for an existing model that could fulfill the requirements. If there is none, the 

modeler can write their own but still take advantage of existing models by reusing them in their 

coupled models. To do so, the users download a model description from a repository in their 

framework, and then they use generic transformations to generate the code for the model. After 

this, they simulate their models and those of other users on their own simulation platform. 

 

Compared to distributed simulation interoperability, this approach has the benefit that it 

drastically reduces the communications with remote servers. In fact, after the model description 

has been downloaded, there is no more need for accessing the network (hence the "off-line" 

appellation). However, the drawback of this is that a given model can have several 

unsynchronized versions all over the world. A solution to this issue could be to use some sort of 

update feed, but this is still more complicated than simply invoking a service without caring 

about the underlying implementation, which can continuously improve and evolve. 

Simultaneously, knowing the details about the implementation can provide insight into the 

structure of the model (which is an important factor for model-based publishing [2]. 

  

To sum up both interoperability solutions exposed here, we can say that the simulator-based 

approach (i.e., via distributed simulation middleware, as discussed in Section Error! Reference 
source not found.) is aimed at coupling distributed or local models over remote servers, 

whereas the model-based approach aims at integrating distributed models in a local simulation. 

 

Although the DEVS mathematical formulation is universal and well known, representing 

complex models with DEVS is still a difficult task (and, it is not easy to understand). 



 

 

Consequently, there are a number of alternatives to represent DEVS models with different 

notations and tool support. In the following sections, we will introduce model-based efforts by 

different M&S groups around the world that have tackled the problem of standardizing DEVS 

models and their simulators.  

2 DEVSML 
 

DEVSML is a novel way of writing DEVS models in XML. DEVSML is built on JAVAML (an 

XML implementation of JAVA). JAVAML is used to specify the behavioral logic of atomic 

models and the structure of coupled models. DEVSML models are transformable back and forth 

between Java and DEVSML, with the objective to provide interoperability between various 

models and to reuse and create dynamic scenarios.  

 

The layered architecture of DEVSML is shown in Figure 1. A DEVS model can be provided as 

a set of platform-specific components, as a set of DEVSML components, or as a combination of 

both (see layer 1 in the Figure). Next, the final composed model can be transformed into a full 

DEVSML representation (layers 2 and 3). To do so, the user must provide the platform from 

which their model originates (e.g. DEVSJAVA, CD++, etc.). Finally, using layer 4, the 

DEVSML model can be transformed to any of the compatible DEVS platforms (layer 5)  

  

 
 

Figure 1: DEVSML layered architecture 

2.1 DEVS Structure 
 

To ensure that the final DEVSML complex model is "DEVS compliant", a single atomic 

Document Type Definition (DTD) and a single coupled DTD are defined. Thus, every DEVSML 

atomic or coupled model may be validated against the DEVSML DTDs. Both DTDs are listed 

below: 

 
<!-- DEVS ATOMIC MODEL --> 

<!ENTITY % variable-info  

 "name CDATA #REQUIRED  

  type CDATA #REQUIRED"> 

<!ELEMENT atomic 

(inputs,outputs,states,ta,deltint,deltext,deltcon,lambda,services?,java-specific?)> 

<!ATTLIST atomic 
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 name ID #REQUIRED 

 simulator (devsjava|xdevs) #REQUIRED 

 host CDATA #REQUIRED> 

<!ELEMENT inputs (port*)> 

<!ELEMENT port EMPTY> 

<!ATTLIST port 

 name CDATA #REQUIRED> 

<!ELEMENT states (state*)> 

<!ELEMENT state EMPTY> 

<!ATTLIST state 

 %variable-info;> 

<!ELEMENT outputs (port*)> 

<!ELEMENT ta (block?)> 

<!ELEMENT deltint (block?)> 

<!ELEMENT deltext (block?)> 

<!ELEMENT deltcon (block?)> 

<!ELEMENT lambda (block?)> 

<!ELEMENT services (service*)> 

<!ELEMENT service (method)> 

<!ATTLIST service 

 name ID #REQUIRED 

 port CDATA #REQUIRED> 

<!ELEMENT java-specific (package-decl,import*,constructor*,method*)> 

<!ELEMENT import EMPTY> 

Figure 2: DEVSML atomic DTD 

 
<!-- DEVS COUPLED MODEL --> 

<!ENTITY % connection-info 

 "component_from CDATA #REQUIRED 

  port_from      CDATA #REQUIRED 

  component_to   CDATA #REQUIRED 

  port_to        CDATA #REQUIRED"> 

<!ELEMENT devs (scenario,models)> 

<!ELEMENT scenario (coupled)> 

<!ELEMENT coupled 

(inputs,outputs,components,internal_connections,external_input_connections, 

external_output_connections,java-source-program)> 

<!ATTLIST coupled 

 name ID #REQUIRED 

 model CDATA #REQUIRED 

 simulator (devsjava|xdevs) #REQUIRED 

 host CDATA #REQUIRED> 

<!ELEMENT inputs (port*)> 

<!ELEMENT port EMPTY> 

<!ATTLIST port 

 name CDATA #REQUIRED> 

<!ELEMENT outputs (port*)> 

<!ELEMENT components (coupledRef|atomicRef)*> 

<!ELEMENT coupledRef (components?)> 

<!ATTLIST coupledRef 

 name  CDATA #REQUIRED 

 model CDATA #REQUIRED 

 simulator (devsjava|xdevs) #IMPLIED 

 host CDATA #REQUIRED> 

<!ELEMENT atomicRef EMPTY> 

<!ATTLIST atomicRef 

 name  CDATA #REQUIRED 

 model CDATA #REQUIRED 

 simulator (devsjava|xdevs) #IMPLIED 

 host CDATA #REQUIRED> 

<!ELEMENT internal_connections (connection*)> 

<!ELEMENT external_input_connections (connection*)> 

<!ELEMENT external_output_connections (connection*)> 

<!ELEMENT connection EMPTY> 

<!ATTLIST connection 

 %connection-info;> 

     

<!ELEMENT models (model*)> 

<!ELEMENT model (java-source-program)> 

<!ATTLIST model 

 name ID #REQUIRED> 

Figure 3: DEVSML coupled DTD 

 

Both DTDs define the structure and behavior of a DEVS model. As Figure 2 and Figure 3 show, 

both atomic and coupled components are formed by standard DEVS structural definitions. In 



 

 

the following code snippet (Figure 4), we show how the structure of a Lorentz Attractor coupled 

model may be defined. Note that typically, a DEVS coupled model consists of structural 

definitions, so no JavaML code is needed in the transformation from Java to DEVSML. 

 
<devs> 

 <scenario> 

  <coupled name="root" model="LorentzAttractor" simulator="xdevs" host="127.0.0.1"> 

   <inputs/> 

   <outputs/> 

   <components> 

    <atomicRef name="fxu" model="Function" simulator="xdevs" host="127.0.0.1"/> 

    <atomicRef name="integrator" model="Integrator" 

               simulator="xdevs" host="127.0.0.1"/> 

    <atomicRef name="gxu" model="Function" simulator="xdevs" host="127.0.0.1"/> 

    <atomicRef name="scope" model="Scope" simulator="xdevs" host="127.0.0.1"/> 

   </components> 

   <internal_connections> 

    <connection component_from="fxu" port_from="out"  

                component_to="integrator" port_to="in"/> 

    <connection component_from="integrator" port_from="out" 

                component_to="fxu" port_to="x"/> 

... 

Figure 4: Code snippet for a Lorentz Attractor coupled model 

 

The structure definition of both atomic and coupled DEVS components is easy to describe in 

XML following the DTD shown in Figure 2 and Figure 3. 

2.2 DEVS behavior 
 

The behavior of a DEVS model is limited to atomic components, that is, the body of the 

transition and output functions, as well as the time advance function. When the behavior of an 

atomic DEVS component is generated, all this code is transformed to JavaML. However, 

platform-specific sentences are transformed to platform-independent ones, extending the 

JavaML specification with new tags such as platform-specific, state-assignment, port-read, etc. 

For example, if an atomic component contains DEVSJAVA code such as: 

 
void deltint() { 

 holdIn("standby", 3.5); // DEVSJAVA library function call 

} 

 

It is transformed to DEVSML using the following extension of JavaML: 

 
<deltint> 

 <block> 

  <platform-specific> 

   <state-assignment op="="> 

    <lvalue> 

     <var-ref name="phase"/> 

    </lvalue> 

    <literal-string value="standby"/> 

   </state-assignment> 

   <state-assignment op="="> 

    <lvalue> 

     <var-ref name="sigma"/> 

    </lvalue> 

    <literal-number kind="float" value="3.5"/> 

   </state-assignment> 

  </platform-specific> 

 </block> 

</deltint> 

 

Using these special tags, a DEVSML model can be transformed to any supported DEVS 

simulation engine. The main disadvantage of using this methodology is the portability between 

different programming languages (for example, between Java and C++). Every programming 



 

 

language has its native as well as external libraries to simplify applications code, (e.g., 

containers, numeric libraries, etc). With DEVSML, transformations between DEVS simulation 

engines developed in different programming languages would be possible only if no specialized 

functions or libraries were used. However, the DEVSML reverse engineering provides full 

interoperability between models developed in the same programming language which is a great 

advantage when models from different repositories are used to compose bigger coupled models 

using DEVSML seamless integration capabilities. Furthermore, all the DEVSML files 

generated can be stored in a Library for reuse. The composed integrated model is complete in 

every respect as it contains behavior and is ready for simulation. Based on the information 

contained in the DEVSML model description, the corresponding simulator is called; after the 

simulator has instantiated the model, the model executes with the designated simulator. 

DEVSML provides new concepts for easily integrating reverse engineering into a DEVS/XML 

standard providing both interoperability and reuse. Note that in this example two DTDs were 

created instead of two XML Schemas (the reason is that JavaML is defined in terms of DTDs; 

the DTD definition is included in the DEVS/XML standard). 

2.3 A DEVSML application 
 

Figure 5 shows the Java application that implements DEVSML principles. It contains two 

simulators, namely, xDEVS and DEVSJAVA, demonstrating the validation of DEVSML 

atomic and coupled models with the same Atomic and Coupled DTDs. It converts any 

atomic/coupled model from their Java implementation to DEVSML and vice versa. It also 

validates any DEVSML model description and integrates any coupled DEVSML description 

into a composite DEVSML coupled model ready to be simulated with the target simulator. The 

tool also generates a Java code library from a composite DEVSML coupled model. It contains 

various web services in operation. The five web services that are publicly offered are: (1) 

convert Java model to DEVSML; (2) convert DEVSML to Java code; (3) validate the existing 

DEVSML model; (4) integrate coupled and atomic DEVSML models towards a portable 

'Composite' Coupled DEVSML file that is simulatable at any remote server; and (5) simulate 

the Composite Coupled file and send console messages at the Server to the Client window 

providing evidence that the simulation is running. The users can select their own Source and 

Target directories and can choose their implementation, that is, Java code and Simulator 

compatibility. The Server application checks for compatibility as well. 

 



 

 

 
Figure 5: Client application snapshot implemented as an applet 

 

To conclude, DEVSML partially solves the interoperability in DEVS/XML, and fully supports 

the reuse between different simulation platforms by means of reverse engineering. 

3 DEVS/SOA 
 

This section presents DEVS/SOA in detail. We start by introducing how DEVS/SOA works in 

general terms, from a user point of view. Next, we present an overview and the software 

architecture of DEVS/SOA [3] and its implementation using web standards. Finally, we show 

how the DEVS/SOA framework is able to integrate several DEVS and non-DEVS models. 

 
As stated before, there are many libraries for expressing DEVS models. All have efficient 

implementations for executing the DEVS protocol and provide advantages of Object Oriented 

frameworks such as encapsulation, inheritance, and polymorphism. In order to simplify 

notation, we use the term DEVS/JAVA to denote a DEVS library implemented in Java (for 

example DEVSJAVA or xDEVS) and DEVS/NET to denote a DEVS library implemented in 

any language supported by .NET (for example aDEVS in C, CD++ in C++, and DEVS.NET in 

C#). 

 

First of all, DEVS/SOA is another DEVS simulation platform. Implemented in both Java and 

.NET programming environments, DEVS/SOA includes a modeling library as well as a 

simulation library. The main difference with respect to other DEVS simulation libraries is that 

the modeling package (including both atomic and coupled classes) are “adapters” of other 

DEVS simulation engines. For instance, as seen in Figure 27, a DEVS/SOA atomic component 

can be written in DEVSJAVA or xDEVS (as well as its own DEVS/SOA native atomic 

component). Thus, DEVS/SOA allows interoperability among different DEVS simulation 

engines using diverse web services infrastructures. 

 



 

 

 
 

 

The same situation happens in the DEVS/SOA .NET infrastructure. The “magic” of 

interoperability between DEVS/SOA Java and DEVS/SOA .NET resides in the message-

passing interface. As Figure 28 shows, when a simulator must send a message to another one, 

all the objects (or entities) included in the message are passed from one simulator to the other in 

XML format. To this end, some intermediate libraries such as JAXB in Java and native .NET 

transformations are used to transform an object representation to its XML equivalent (both at 

the model level, not at the simulator level). Managing messages in XML format makes possible 

the publication of web services, giving DEVS/SOA the ability to publish simulators (and even 

atomic or coupled models) as web services. 

 

 
 

 

How to compose a DEVS/SOA model? As stated before, each DEVS M&S library is developed 

using a particular programming language (Java, C, C++, C#, etc.). Since DEVS/SOA provides 

interoperability, the composition of the desired DEVS model at the client application level is 

completed using a platform independent mechanism. Therefore, our approach describes DEVS 

coupled models exploiting the XML description format. Figure 8 shows the DEVSML 

representation of a DEVS coupled model including an Experimental Frame and a Processor [12] 

using three different platforms: xDEVS, DEVSJAVA, and DEVS.NET. The DEVS/XML 

notation used to define the structure of DEVS/SOA distributed and interoperable models is 

based on DEVSML (see Section Error! Reference source not found.). The root coupled 

element determines the root model identification and the localization of the DEVS web 

coordination service. The children nodes of the root element represent DEVS atomic models, 

connections among DEVS models, or other DEVS coupled models (in a recurrent manner). The 

data included for each atomic model item are: its name, the platform where the model can be 

simulated, the class that implements the model that must be instantiated, the localization of the 

DEVS web simulation service that has access to the model implementation class repository, and 

finally, the names of the input and output ports of a model as well as the class types of their 

messages (as internal elements). The connection items designate links between a model output 

and a model input port.  

 

Figure 6. Heterogeneous DEVS/SOA model 
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Figure 8. EFP DEVS/SOA model structure (DEVSML) 

Summarizing, from a user’s perspective, the use of DEVS/SOA M&S implies: 

• Compose a DEVS model according to the localization of the original submodels. 

• Write a DEVSML file as a result of the modeling phase. 

• Partition the composed model either manually or through the DEVS/SOA automated 

mechanism 

• Deploy the models 

• Run the distributed simulation. 

• Wait for the results. 

 

The main advantage of DEVS/SOA with respect to other distributed M&S methods is that the 

original models remain encoded in the native programming language related to the selected 

DEVS library. Therefore, from a user point of view, no middleware is needed (although of 

course DEVS/SOA is built using web services technologies), and, most important, the software 

engineer does not need special distributed programming skills. 

3.1 DEVS/SOA software architecture 
 
In DEVS/SOA, an implementation of the DEVS formalism is developed within SOA so as to 

provide DEVS M&S services over the WWW. DEVS/SOA allows distributing simulations over 

multiple processors in the same computer, over Internet, or over both. A DEVS coupled model 

is split into different submodels that run on multiple computers in a distributed manner. For this 

purpose, the DEVS/SOA coordinator deals with simulators hosted anywhere on the web. Every 

DEVS/SOA simulator is responsible for managing its corresponding DEVS atomic model. 

Communications between simulators and coordinators are performed using standard 

technologies. As a result, DEVS models can be composed in a transparent, open, and scalable 

way. Another advantage of this architecture is the interoperability among DEVS submodels. 

Since the communication among simulators is performed in a standard way such as XML, the 

associated DEVS submodels can be implemented using different DEVS simulation engines. 

<?xml version="1.0" encoding="UTF-8"?>
<coupled name="efp" host="http://192.168.1.2:8080/axis2/services/Coordinator">
<coupled name="ef" platform="devsjava" class="Ef“ host="http://192.168.1.4:8080/axis2/services/Simulator">
<atomic name="generator" platform="xdevs" class="Generator“ host="http://192.168.1.4:8080/axis2/services/Simulator">
<inport name="stop" class="Job"/>
<outport name="out" class="Job"/>

</atomic>
<atomic name="transducer" platform="xdevs" class="Transducer“ host="http://192.168.1.4:8080/axis2/services/Simulator">
<inport name="solved" class="Job"/>
<inport name="arrived" class="Job"/>
<outport name="out" class="Job"/>

</atomic>
<inport name="in" class="Job"/>
<outport name="out" class="Job"/>

<connection atomicFrom="ef" portFrom="in" atomicTo="transducer" portTo="solved"/>
<connection atomicFrom="generator" portFrom="out" atomicTo="ef" portTo="out"/>
<connection atomicFrom="generator" portFrom="out" atomicTo="transducer" portTo="arrived"/>
<connection atomicFrom="transducer" portFrom="out" atomicTo="generator“ portTo="stop"/>

</coupled>
<atomic name="processor" platform="devs.net" class="Processor“ host="http://192.168.1.3:3158/Simulator.asmx">
<inport name="in" class="Job"/>
<outport name="out" class="Job"/>

</atomic>
<connection atomicFrom="ef" portFrom="out" atomicTo="processor" portTo="in"/>
<connection atomicFrom="processor" portFrom="out" atomicTo="ef" portTo="in"/>

</coupled>



 

 

 
Figure 9. DEVS/SOA architecture 

 
The proposed DEVS/SOA architecture, whose basics are captured in Figure 9, embraces three 

levels of interoperability between DEVS M&S elements. The outer level comprehends the 

interaction between the client application layer and the DEVS coordinator service. It is 

implemented using the SOAP communication protocol according to the operations detailed at 

the Coordinator WSDL file. Next, a similar interoperability level is encountered as the 

communication between the DEVS coordinator and simulation services. Again, the SOAP 

protocol specification is applied for exchanging structured information between both types of 

services. The operations offered by the Simulator service are encoded in the Simulator WSDL 

file. Finally, the third level is at the junction of a DEVS simulator with its associated native 

DEVS model, responsible for implementing the DEVS/SOA atomic models. The messages 

among different native DEVS models are expressed in XML. In the following, these three levels 

(modeling, simulation, and client application) are described in detail. 

3.2 DEVS/SOA modeling layer 
 

Figure 10 shows excerpts of the DEVS/SOA atomic interface, base class, and the DEVSJAVA 

atomic adapter. The former follows a classic DEVS atomic structure. In addition, the given 

interface includes functions to receive input data in XML and to obtain the output in XML (both 

implemented in the DEVS/SOA atomic model). The DEVS/SOA atomic model (class 

AtomicBase) implements the previous interface, including functions getOutput and 

receive, which send and receive data in XML. Finally, the DEVSJAVA adapter inherits from 

this DEVS/SOA JAVA atomic model and implements the DEVS/SOA atomic interface. By 

using these classes, heterogeneous DEVS/SOA and DEVSJAVA models can coexist in a 

simulation. Thus, to allow interoperability with other DEVS simulation platforms, a new 

adapter (only one class per simulation framework) must be implemented. 

 
public interface AtomicInterface { 

 // DEVS protocol 

 void initialize(); 

 double ta(); 

 void deltint(); 

 void deltext(double e); 

 void deltcon(double e); 

 void lambda(); 

 // Source code is omitted for brevity ... 

 Ports getInput(); 

 Ports getOutput(); 

 String[] getOutput(String portName); // Get values at output port in XML 
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 void receive(String portTo, String[] xmlValue) throws Exception; // Receive input data in XML 

} 

 

public class AtomicBase implements AtomicInterface { 

 // Source code is omitted for brevity ... 

 public String[] getOutput(String portName) { 

  Port port = output.get(portName); 

  Set<Object> values = port.getValues(); 

  String[] xmlValues = new String[values.size()]; 

  int i = 0; 

  for(Object value : values) { 

   StringWriter writer = new StringWriter();   

   Result result = new StreamResult(writer); 

   JAXB.marshal(value, result); 

   String xmlValue = writer.toString(); 

   xmlValues[i++] = xmlValue; 

  } 

  return xmlValues; 

 } 

 public void receive(String portTo, String[] xmlValues) throws Exception { 

  Port port = this.getInput().get(portTo); 

  for(int i=0; i<xmlValues.length; i++) { 

   if(xmlValues[i]!=null) { 

    StringReader reader = new StringReader(xmlValues[i]); 

    Object value =  

     JAXB.unmarshal(reader, Class.forName(port.getPortClass())); 

    this.getInput().get(portTo).addValue(value); 

   } 

    

  } 

 } 

 // Source code is omitted for brevity ... 

} 

 

public class AtomicDevsJava extends AtomicBase implements AtomicInterface { 

 private genDevs.modeling.atomic model; 

 public AtomicDevsJava(Element xmlAtomic) throws Exception { // Constructor 

  super(xmlAtomic); 

  // It processes the corresponding portion of the input DEVSML file ... 

 } 

 // Source code is omitted for brevity ... 

 public void deltext(double e) { // external transition function 

  genDevs.modeling.message msg = buildMessage(); 

  model.deltext(e, msg); 

 } 

 public void lambda() { 

  genDevs.modeling.message msg = model.out(); 

  genDevs.modeling.ContentIteratorInterface itr = msg.mIterator(); 

  while(itr.hasNext()) { 

   genDevs.modeling.ContentInterface devsJavaPort = itr.next(); 

   Port port = output.get(devsJavaPort.getPortName()); 

   if(port!=null)  

    port.addValue(devsJavaPort.getValue()); 

  } 

 } 

 // Source code is omitted for brevity ... 

 public genDevs.modeling.message buildMessage() { 

  genDevs.modeling.message msg = new genDevs.modeling.message(); 

  Map<String, Port> ports = input.ports; 

  Iterator<String> itr = ports.keySet().iterator(); 

  while(itr.hasNext()) { 

   String portName = itr.next(); 

   Set<Object> values = ports.get(portName).getValues(); 

   for(Object value : values) { 

   genDevs.modeling.content con = model.makeContent(portName, (entity)value); 

   msg.add(con); 

   } 



 

 

  } 

  return msg; 

 } 

} 

Figure 10. DEVS/SOA JAVA atomic interface, base class, and the DEVSJAVA adapter 

4 DML: DEVS Markup Language 
 

The DEVS Markup Language DML [4] is a design that standardizes the representation of 

DEVS models (which can be defined in different DEVS platforms), and at the same time is as 

generic and flexible as possible. The idea is to use an XML representation of a specific 

programming language, for example the Java Markup Language, as done in DEVSML. This 

approach has the advantage that many tools are available to manipulate and transform the source 

code and the XML representation. However, it induces a strong coupling between the model 

and a particular language, therefore restricting its deployment scope. 

 

To enlarge this scope, a more generic representation could be employed, such as Metal [5] or 

Object Oriented XML (O2XML) [6]. These markup languages enable a representation of most 

object-oriented programming languages by specifying a common denominator between them. 

Thereby, an XML document can be transformed into source code in any object-oriented target 

language. Though this solution seems attractive, it prevents the modeler from using certain 

language features or libraries (e.g., pseudo-random numbers generation with the Stochastic 

Simulation library [7]; matrix operations using Boost uBLAS, etc.). Consequently, such a high-

level language with a small set of features would reduce the universality of the standard, and 

make the representation of legacy models very difficult as they are usually written in a specific 

programming language and use advanced language functionalities and libraries. 

 

To resolve this issue, one should let the modelers use their favorite language and delegate the 

task of interpreting them to simulators or proxies. That would imply developing an architecture 

in which a model is composed of several modules in multiple languages, this model being itself 

simulated by an application possibly written in yet another language. Even though this 

architecture is conceivable (using technologies such as JNI, RMI, CORBA, and Web Services), 

the complexity and the loss of performance would be high.  

 

DML tries to reach a compromise between generality and flexibility, by defining an XML 

representation of source code.  

4.1 DEVS structure 
 

Describing the structure of DEVS models is done by translating the set of formalism into an 

XML representation. Input and output ports, parameters, and state variables are characterized by 

a name and a type. To allow the deployment of the model on any simulator, this type should be 

as generic as possible. However, in real-world applications, the modeler may need to use certain 

types defined in particular language libraries. To satisfy these apparently contradictory 

requirements, three different kinds of types must be considered: 

- intrinsic types, which are natively supported by all object-oriented languages 

(e.g., integer, string, float, etc.), 

- custom types, which are types that are defined by the modeler in a language independent 

manner, and 

- language dependent types, which have to be bound to a particular type, for each targeted 

languages. This notion, close to the one of Abstract Data Types, lets the modeler 

conceive algorithms using abstract types that must be matched to library or language 

types in order to generate the source code on the target platform. 

 



 

 

Figure 11 shows an example of the use of these different types. In this example, the state 

variable sigma is a floating-point number, whereas phase is a more complex type, namely, an 

enumeration with two possible values: busy or idle. Finally, the variable queue has an abstract 

type, which we bind to specific types in Java and C++. Therefore, to make this model 

deployable on a simulator written in another language, the modeler has to specify what type can 

be used as a queue in this language. We can also imagine having repositories of abstract types 

along with their bindings in numerous programming languages, to allow their reusability in 

several models. 

 
<state> 

  <variable> 

    <name>phase</name> 

    <type kind="custom">procPhase</type> 

  </variable> 

  <variable> 

    <name>buffer</name> 

    <type kind="languageDependent">Queue</type> 

  </variable> 

  <variable> 

    <name>sigma</name> 

    <type>double</type> 

  </variable> 

</state> 

... 

<type id="procPhase" xsi:type="enum"> 

  <value>busy</value> 

  <value>idle</value> 

</type> 

<type id="Queue" xsi:type="languageDependent"> 

  <implementation lang="java"> 

    java.util.LinkedList<String> 

  </implementation> 

  <implementation lang="c++"> 

    std::queue<std::string> 

  </implementation> 

</state> 

Figure 11: Sample of XML representation of state variables 

 

The XML Schema for coupled DEVS models includes ports, components, and coupling 

declarations, as well as a tie-breaking function in the case of classic DEVS. Components are 

described by their name and the type of model they instantiate. The couplings are pairs of ports, 

if necessary qualified by their component's name. Finally, the Select function is described by 

ordered sets indicating priorities among components. 

4.2 DEVS Behavior 
 

One of the main issues in standardizing behavior of atomic DEVS models boils down to the 

following question: How can we describe application logic in a language-independent manner? 

Several efforts have been directed towards providing an XML representation of source code. 

Some of them are oriented towards a sole programming language, for example, JAVAML [8], 

PascalML [9], or CppML [10], while others propose vocabularies that contain a common 

denominator between object-oriented languages [6][10]. 

 

None of these frameworks is generic or open to extension with language dependent features. 

DML proposes a compromise between both approaches, by drawing inspiration from the 

concept of weaving used in Aspect Oriented Programming [11], or more simply from the C and 

C++ macros. The main concept is to use a pseudo-language such as O2XML so that the major 

part of the code can be reused across different simulators, while supporting the possibility to 

include language specific code snippets. This concept is illustrated in Figure 12, where generic 

programming constructs are represented in XML, and use of libraries is abstracted and tied to 



 

 

the specific implementations in several languages. This semi-generic language can also be used 

to create custom types (i.e., classes, enumerations), which become usable in the variables and 

ports declarations. 

 
<if> 

  <test> 

    <binaryExpr op="equality"> 

      <lhs> 

        <var>phase</var> 

      </lhs> 

      <rhs> 

        <enumValue> 

          <enum>procPhase</enum> 

          <value>idle</value> 

        </enumValue> 

      </rhs> 

    </binaryExpr> 

  </test> 

  <then> 

    <codeSnippet id="enqueue" queue="buffer" element="job" /> 

  </then> 

</if> 

... 

<codeSnippet id="enqueue"> 

  <parameter name="queue" /> 

  <parameter name="element" /> 

  <impl lang="java"> 

    queue.offer(element); 

  </impl> 

  <impl lang="c++"> 

    queue.push(element); 

  </impl> 

</codeSnippet> 

 

 

 

 

 

 

 

 

 
Figure 12: Representation of model dynamics using a semi-generic language 

 

This approach has two advantages: 

- It allows the use of programming language features and libraries. 

- It permits the representation of legacy models written for a specific simulator. 

By limiting the language-dependent code snippets to a minimum, the migration of models 

between platforms becomes easier, and thereby their portability and reusability are enhanced. 

4.2.1 Parameterization and initialization 
 

The above description of DEVS models is not sufficient to produce an executable specification. 

Indeed, models can have parameters, which need to be set prior to simulation, and their initial 

state must be specified in some way. 

 

Figure 13 depicts how a model, regarded as a template, can be instantiated into several 

parameterized models depending on the values assigned to each parameter. After that, the state 

must be initialized to obtain a ready-to-simulate model. A simulator can then be fed with this 

Java C++ 

if (phase == procPhase.idle) 

{ 

  queue.offer(element); 

} if (phase == procPhase::idle) 

{ 

  queue.push(element); 

} 



 

 

executable model, along with an input trajectory if need be, and produce the output of the 

simulation. 
 

 
 

Figure 13: Parameterization and initialization of a model 

 

To perform these operations, two approaches are possible depending on the degree of freedom 

required. The simplest is to restrict parameterization and initialization to pairs of variable 

identifiers and values. However, these operations can sometimes be more complex than mere 

assignments (e.g., for file manipulation or random number generation). Therefore, in DML 

these two activities are described in a similar fashion as the model dynamics, using the source 

code representation outlined in the previous paragraph. 

 

Consequently, the modeler needs to define two functions for each atomic model in the 

hierarchy: one to set the parameters values, and the other one to initialize the state. Ideally, these 

functions should be kept separate from the model definition, so that it can be easily reused with 

different scenarios. 

 

In order to simulate a DEVS model, four specifications are needed: structure, dynamics, 

parameterization, and initialization. Given these specifications and if required an input 

trajectory, a simulator can then produce results representing the model behavior. 

4.2.2 Model behavior 
 

The behavior of a model is normally fully represented by its output trajectory. However, it is 

common to desire its state trajectory and, in the case of coupled models, the behavior of its 

components as well. These two aspects can be described by sets of values annotated with a 

timestamp. Figure 14 shows a sample state trajectory of a coupled model, namely the 

pipeSimple defined in [12]. 

 

The XML schema for this representation of a trajectory can be deduced from the model 

structure: each variable or port becomes an XML tag accepting a value in accordance with its 

type. Another solution would be to have a tag variable with an attribute containing the name of 

the variable. 

 

In the case of variables of complex type, the value at a given time can be obtained by serializing 

the object from memory, as is done when exchanging data between web services. This supposes 



 

 

providing an XML Schema describing the structure of the object, for later use (e.g., in a 

visualization tool). For custom types, this schema can be deduced from the type definition made 

in the model specification; for language dependent types, the schema can often be automatically 

generated from the source code. 
 
<behavior id="pipeSimple"> 

  <state> 

    <snapshot time="0"> 

      <component id="p0"> 

        <phase>idle</phase> 

        <queue /> 

        <sigma>infinity</sigma> 

      </component> 

      <!-- other components --> 

    </snapshot> 

    <snapshot time="3"> 

      <component id="p0"> 

        <phase>busy</phase> 

        <queue> 

          <elem>job1</elem> 

        </queue> 

        <sigma>10</sigma> 

       </component> 

       <!-- and so on --> 

Figure 14: Sample state trajectory 

 

This XML representation of trajectories has the valuable advantage that it can be easily 

processed by a machine while remaining human readable. However, because of the potentially 

huge size of data generated, it may be necessary to switch to a more compact representation, 

such as the eXternal Data Representation standard [13]. 

5 DCD++ 
 
Distributed CD++ (DCD++) Error! Reference source not found.Error! Reference source 

not found. supports simulation over SOA in two versions:  SOAP-based Web-service Error! 

Reference source not found.[14] and RESTful Web-services Error! Reference source not 
found.Error! Reference source not found.Error! Reference source not found.. The Distributed 

DEVS Simulation Protocol (described in Section 5.2) is based on SOAP DCD++ whereas RISE 

(described in Section 5.1) is based on RESTful DCD++. Both versions provide modelers with 

the complete required cycle to run a simulation experiment. This includes submitting a model to 

be simulated (i.e., usually partitioned over different machines) and retrieving simulation results. 

Both versions decouple model representations from simulation, hence different simulation 

engines can collaborate in the same simulation run. This enables different model representations 

to participate in the same simulation run, hence allowing DEVS simulation engines to execute 

legacy models and standardized model representations. In this section, we discuss the modeling 

structure and partitions for both approaches followed by DEVS model behaviors. 

5.1 RESTful Interoperability Simulation Environment (RISE) 
 

RESTful Interoperability Simulation Environment (RISE) provides lightweight thin middleware 

based on RESTful Web-services. RISE is independent of any simulation environment and 

provides interoperability at three levels. First, the interoperability framework architecture level 

provides the URI templates API that allows modelers to create simulation/modeling 

environment (including modeling configuration, distributing simulations, starting simulation 

and retrieving results). Second, the model interoperability level provides XML rules for binding 

different models together. Third, the simulation synchronization level provides high-level 



 

 

simulation algorithms and synchronization channels. The first and third levels are discussed in 

Chapter 18 whereas the second level is discussed in this Section. 

 

RISE Experiment framework is a URI created by the modeler (see URI templates API in 

Chapter 18) to contain a domain, where a domain is a simulation environment that contains a 

model and simulation engine. RISE completely wraps a domain interior, hence simplifying 

interoperability between heterogeneous domains. RISE modeling interoperability level assumes 

an entire model is placed in a domain, hence a domain at this level can be viewed as a model 

wrapped within a URI (e.g. …/myFireModel), as shown in Figure 15. RISE treats all models 

(domains) as black boxes with input and output ports. In other words, each model views other 

heterogeneous models as part of its environment. It is worth to note that a model (within a 

domain) may be partitioned among different processors, simulated by conservative/optimistic 

algorithms according to DEVS/none-DEVS formalism. However, at the RISE layer the model is 

seen as a URI (which contains both the model and the simulation engine that simulates it). 

 
Figure 15: RISE Domain Models Interconnections 

 

Modelers need to configure the experiment frameworks by sending XML configuration 

documents via PUT channels to their URIs (e.g. …/MyFireModel). This represents models 

interconnections shown in Figure 15 in the XML document. Note that the model 

interconnections map is converted into routing tables by simulation engines (see Chapter 18), 

allowing them to route messages during simulation according to the model URI and message 

input port. Further, plug-and-play capability of RESTful Web-services takes this configuration 

to another level. This plug-and-play level allows modelers to overwrite model interconnection 

during simulation runtime, allowing simulation engines to create routing tables. Thus, models 

(without prior knowledge) may join or leave a simulation session at runtime. In such a case, the 

XML configuration is sent to the simulation engine URI (…/MyFireModel/simulation). 

 

In Figure 15, Model-2 influences Model-1 via ports-2 and 3 of Model-2. Model-3 influences 

both Model-1 and Model-2 via Port -1 of Model-3. This implies that the output ports of a model 

can generate RISE external messages addressed to their connected input ports during 

simulation, thereby influencing the receiving models. Note that Port-1and Port-3, of Model-3 

and Port-4 of Model-1 are not used by RISE. These ports can still be used by modelers, for 

instance, to influence a model dynamically during active simulation. Figure 16 shows the XML 

configuration document for the example in Figure 15. This document needs to be submitted to 

each domain (typically constructed and submitted by client software). The RISE configuration 

must be the enclosed element <RISE> body (which starts on line 4 in Figure 16). The domains 

are free to define their own specific configuration outside the <RISE> block. Line #3 shows 

RISE protocol version, and simulation type where “C” type stands for Conservative-based and 

“O” type for Optimistic-based simulation. Lines 4-32 define domains (models) configurations. 

Line #5 defines the Main domain URI. The Main domain is needed during active simulation, 

Domain-3 
Domain-2 

Model-2 

Port-1 Port-2 Port-3 
Port-4 

Domain-1 

Model-1 

Port-1 Port-2 Port-3 Port-4 

Model-3 

Port-1 
Port-2 

Port-3 

RISE Layer 



 

 

discussed in Chapter 18. Lines 6-31 define RISE ports interconnections. For example, Lines 7-

12 define the connection from port #2 in URI <…/Domain-2> to port #1 in URI <…/Domain-

1>. 
 

1 <ConfigFramework> 

2 … 

3 <RISE Version=”1.0” Type=”C”> 

4  <Domains> 

5   <Main><URI>…/Domain-1</URI></Main> 

6    <Links> 

7  <Link> 

8   <From><Port>Port-2</Port> 

9              <URI>…/Domain-2</URI></From> 

10   <TO><Port>Port-1</Port> 

11           <URI>…/Domain-1</URI></TO> 

12  </Link> 

13  <Link> 

14   <From><Port>Port-3</Port> 

15            <URI>…/Domain-2</URI></From> 

16   <TO><Port>Port-2</Port> 

17            <URI>…/Domain-1</URI></TO> 

18  </Link> 

19  <Link> 

20   <From><Port>Port-1</Port> 

21             <URI>…/Domain-3</URI></From> 

22   <TO><Port>Port-4</Port> 

23             <URI>…/Domain-2</URI></TO> 

24  </Link> 

25  <Link> 

26   <From><Port>Port-1</Port> 

27             <URI>…/Domain-3</URI></From> 

28   <TO><Port>Port-3</Port> 

29             <URI>…/Domain-1</URI></TO> 

30   </Link> 

31    </Links> 

32   </Domains> 

33 </RISE> 

34 … 

35 </ConfigFramework> 

Figure 16: RISE Model Domain Configuration 

 

RISE is independent of any modeling representation or simulation engines. For example, CD++ 

uses RISE to simulate different distributed model partitions. In this case, the CD++ domain is 

viewed as a single model that is executable by a CD++ engine. In the RESTful DCD++ Error! 

Reference source not found.Error! Reference source not found.), the modeler partitions the 

DEVS or Cell-DEVS model among different RISE instances. Note that the CD++ interior 

domain is hidden behind a single URI, as discussed previously, even though it is using other 

RISE middleware instances to simulate its own domain model partitions. RISE in this case is a 

server with an IP address and port number, hence RISE is usually placed on a machine by itself. 

However, multiple instances of RISE may be placed on the same machine by assigning different 

port numbers, usually for testing purposes. For example, assume a modeler created experiment 

framework <…/cdpp/sim/ workspaces/Bob/DCDpp/Producer_Consumer>.  The RISE server 

then creates experiment Producer_Consumer. Workspace Bob and service DCDpp are created, 

if they do not already exist. DCDpp service indicates that the simulation is using the DCD++ 

engine to execute the model. Assume further that the modeler wants to place atomic model 

“Producer” on a server while atomic model “Consumer” is placed on a different server. In this 

case, the modeler needs to send the following partitioning (Figure 17) to the experiment URI: 
<DCDpp> 

 <Servers> 



 

 

   <Server IP="10.0.40.8" PORT="8080"> 

     <MODEL>Producer</MODEL></Server> 

   <Server IP="10.0.40.9" PORT="8282"> 

     <MODEL>Consumer</MODEL></Server> 

    </Servers> 

  </DCDpp> 

Figure 17: RESTful DCD++ Model Partitions by a Modeler 

 

Though it is easier for a modeler to partition a model in terms of IP address and port number, 

the simulation is conducted among URIs (which allows multiple users and experiments to be 

performed simultaneously). Thus, the main server must convert the modeler documents into the 

format shown in Figure 18. In this case, the main server assigns an ID to every server in the 

distributed simulation where “0” is its own ID. It further creates a name for each server (i.e., a 

combination of the server IP and port number). This name is the server user account on all other 

servers. This is needed because all messages during simulation are authenticated according to a 

user name and password. Furthermore, it assigns a URI for each model partition. The model 

partition at the main server is assigned the URI created by the modeler while other server 

partitions are assigned slightly modified URIs. This is because the main server needs to create 

experiment partitions on other supportive servers similar to other clients. This also ensures URI 

uniqueness on all servers, since supportive servers on an experiment may be used as main 

servers by other modelers for other experiments.  
 

<DCDpp> 

 <Servers> 

  <Server ID=”0” NAME="10_0_40_8_8080"> 

    <URI>…/workspaces/Bob/DCDpp/Producer_Consumer</URI> 

    <MODEL>Producer</MODEL></Server> 

  <Server ID=”1” NAME="10_0_40_9_8282"> 

    <URI>…/workspaces/10_0_40_8_8080/DCDpp/Producer_Consumer_Bob</URI> 

    <MODEL>Consumer</MODEL></Server> 

 </Servers> 

 </DCDpp> 

Figure 18: RESTful DCD++ Model Partitions by the Main Server 

 

5.2 Modeling using the Distributed DEVS Simulation Protocol  
 

In [14], a flexible and scalable XML-based message-oriented mechanism was developed to 

allow interoperability between different DEVS implementations based on the SOAP-based 

DCD++ Error! Reference source not found. simulation package. This section focuses on the 

modeling part while simulation synchronization is described in Chapter 18.  The interoperability 

is achievable with minimum design changes to each DEVS implementation, mainly by hiding 

the detailed implementation behind a wrapper (i.e., a SOAP port) and focusing only on the 

exchanged XML messages. This method assumes the simulation is conducted among different 

domains where a domain contains a DEVS model (with an engine capable of executing that 

model). The model in this case represents a complete reusable feature that a modeler wants to 

plug into an overall model hierarchy. The main idea behind modeling here is wrapping all 

models across domains within a single DEVS coupled model, which can be simulated by the 

main domain simulation engine while other domains only simulate their portion of the overall 

coupled model. For example, Coupled 1 and Coupled 2 are wrapped within Coupled 0, as 

shown in Figure 19. This information is described in the Model structure XML document. 



 

 

 
Figure 19: Coupled model partitioned across DEVS Domains 

 
The Model structure XML document (shown in Error! Reference source not found.) is initially 

submitted by the modeler to the main DEVS domain to describe how the overall model is 

structured so that each DEVS version can identify which models belong to its domain. Further, 

from this document, the main domain can identify the participant supportive domains. The 

model structure document contains enough information to allow different domains to create 

local models, coordinators (i.e., coupled model processor), and simulators (i.e., atomic model 

processor). It also includes data on how they will relate to other models in different domains. 

The main DEVS domain must pass this document before it starts the simulation. The model 

structure document contains the following information (Error! Reference source not found.): 

• model names,  

• model type (coupled/atomic),  

• model input/output ports,  

• coupled models internal submodels and their ports connections,  

• models domain URIs, and 

• coupled models synchronization algorithms used (e.g., the Head/Proxy Coordinator 

discussed in Chapter 18).  

 

The DEVS models hierarchy can easily be mapped into this XML document. For example, 

assume two models connected with each other as in Figure 19 (two DEVS domains where each 

model is specific to its domain implementation). In this case, the two models would be enclosed 

within an outer model (Coupled 0), resulting in the XML document shown in Error! Reference 
source not found.. This XML document also serves as an agreement contract between various 

implementations on the used synchronization schemes. For example, the COUPLED_SYNC 

keyword can be used to choose different coordination schemes to simulate a distributed coupled 

model across various domains. In this way, the standard can easily adopt any new schemes that 

may appear in the future. 

 
<MODEL_STRUCTURE ver=”1.0”> 

 <COUPLED_SYNC> 

    <scheme ver=”1.0”>HeadProxy</scheme> 

 </COUPLED_SYNC> 

 <Models> 

   <Model Type=”Coupled”> 

     <Name> Coupled0 </Name> 

       <Components> 

        <Name Type=”Coupled”>Coupled1</Name> 

        <Name Type=”Coupled”>Coupled2</Name> 

       </Components> 

     <URI>http://… </URI> 

     <LINKS> 

        <LINK> 

          <FROM> 

            <Component>Coupled1</Component> 

     <Port>OUT1</Port> 

Coupled 1 
 

OUT1 
 

IN1 
 

Coupled 2 
 

IN2 
 

OUT2 
 

Coupled 0 
 



 

 

          </FROM> 

          <TO> 

            <Component>Coupled2</Component> 

     <Port>IN2</Port> 

          </TO>  

        </LINK> 

        … 

     </LINKS> 

     … 

   </Model> 

   <Model Type=”Coupled”> 

     <Name> Coupled1 </Name> 

     <Ports> 

       <Port Type=”in”>IN1</Port> 

       <Port Type=”out”>OUT1</Port> 

     </Ports> 

     <URI>http://… </URI> 

     … 

   </Model> 

   <Model Type=”Coupled”> 

     <Name> Coupled2 </Name> 

     <Ports> 

       <Port Type=”in”>IN2</Port> 

       <Port Type=”out”>OUT2</Port> 

     </Ports> 

     <URI>http://… </URI> 

     … 

   </Model> 

 

  </Models> 

     … 

</MODEL_STRUCTURE> 
Figure 20: XML Model Structure Document Example 

 

A given domain can use any model representation, since each domain should contain a 

simulation engine capable of executing that model partition. For example, the SOAP-based 

DCD++ Error! Reference source not found. partitions a model among different machines 

where each machine is wrapped within a SOAP port. Figure 21 shows an example of such 

partition. Lines 2-11 list all machines participating in the distributed simulation. Each machine 

has a rank (i.e., id) and a SOAP-port URI. Lines 12-19 describe the model partitions. In this 

example, a 30x30 Cell-DEVS fire coupled model (i.e., each cell is an atomic model) is split 

between two machines. 

 
1 <Grid> 

2  <MACHINES> 

3  <MACHINE> 

4  <MACHINE_RANK>0</MACHINE_RANK> 

5  <MACHINE_URI>http://.../CDppPortType</MACHINE_URI> 

6 </MACHINE> 

7 <MACHINE> 

8  <MACHINE_RANK>1</MACHINE_RANK> 

9  <MACHINE_URI> http://.../CDppPortType</MACHINE_URI> 

10 </MACHINE> 

11 </MACHINES> 

12 <MODEL_PARTITIONS> 

13 <PARTITION machine="0"> 

14  <ZONE>fire(0,0)..(14,29)</ZONE> 

15    </PARTITION> 

16    <PARTITION machine="1"> 

17   <ZONE>fire(15,0)..(29,29)</ZONE> 

18 </PARTITION> 

19 </MODEL_PARTITIONS> 

20 </Grid> 

Figure 21: SOAP-based DCD++ Cell-DEVS Model Partitioning 



 

 

 

5.3 CD++ DEVS Model Structure and Behavior 
 

CD++ DEVS modeling behavior is the same for both SOA versions. This is mainly because 

DCD++ separates SOA (RESTful or SOAP Web-services) from the actual modeling/simulation 

environment. This separation allows CD++ to be portable to other platforms other than SOA 

and to keep the door open for algorithms optimization and other improvement. In other words, 

separation between simulation environment and Web-services allows both parts to evolve 

independently with less complexity.  

 

CD++ represents its coupled models in textual format by connecting ports of models together 

similar to what has been discussed so far. The coupled model representation is parsed and its 

information is loaded into a coordinator where it is simulated. For example, Figure 22 shows a 

CD++ coupled model for a barbershop. In this example, “top” coupled model is defined in lines 

2-27. Lines 4-7 lists the models enclosed in the “top” coupled model. In this case, Line #5 

shows an atomic model instance named “reception” defined in C++ class “Reception”. This 

allows more instances of an atomic model to be used, if needed. Line #6 declares a coupled 

model named “Barber” and its definition should come later. Lines 8-13 define “top” model 

input/output ports. Lines 14-25 define port connections for the “top” model. For instance, Lines 

15-23 define a connection from input port “newcust” of the “top” model to port “newcust” of 

the “reception” atomic model. Lines 29-32 define the “Barber” coupled model in a similar way 

to the “top” model. Lines 33-39 initialize certain values for the “reception” atomic model. 
 
1 <Models> 

2    <Model Type=”Coupled”> 

3      <Name>top</Name> 

4      <Components> 

5         <Name Type=”Atomic” Class=”Reception”>reception</Name> 

6         <Name Type=”Coupled”>Barber</Name> 

7      </Components> 

8      <Ports> 

9         <Port Type=”in”>newcust</Port> 

10        <Port Type=”in”>next</Port> 

11        <Port Type=”out”>cust</Port> 

12        <Port Type=”out”>finished</Port> 

13     </Ports> 

14     <LINKS> 

15        <LINK> 

16          <FROM> 

17         <Port>newcust</Port> 

18          </FROM> 

19          <TO> 

20            <Component>reception</Component> 

21         <Port>newcust</Port> 

22          </TO>  

23        </LINK> 

24        … 

25     </LINKS> 

26     … 

27   </Model> 

28 

29   <Model Type=”Coupled”> 

30     <Name>Barber</Name> 

31 … 

32   </Model> 

33   <Model Type=”Atomic”> 

34     <Name>reception</Name> 

35     <Parameter> 



 

 

36        <Name>numberofChairs</Name><Value>3</Value> 

37     </Parameter> 

38     … 

39   </Model> 

40  </Models> 

Figure 22: CD++ Coupled Model Example 

 

The CD++ provides a template for modelers where they need to overwrite four C++ methods, as 

shown in Figure 23. Methods initFunction, externalFunction, internalFunction, and 

outputFunction are wrappers to initialize model specific values, handle a message from a port, 

handle an internal transition, and generate outputs, respectively. The new atomic model is then 

inherited from the shown Atomic class in Figure 23. During simulation, those methods are 

invoked by the atomic model “simulator” according to the DEVS formalism. 

 
Figure 23: CD++ Atomic Model Template 

6 CoSMoS  
 

The design of CoSMoS is based on the separation of model specification and simulator 

protocol. This partitioning was used to develop the concept of the Shared Abstract Model 

(which will be fully discussed in the following chapter). The concept of interoperability, 

however, cannot be completely divorced from model specification. One simulation engine can 

correctly execute a model that is developed for another simulation engine if and only if both 

simulation engines adhere to the same mathematical specification. The implication is to have a 

syntactical standard for model specification that conforms to the mathematical specification.  

 

Model specification should consist of (i) visual syntax, (ii) database syntax, and (iii) 

programming syntax. To achieve this objective, the Component-based System Modeling 

(CoSMo) framework has been developed [15][16][15]. The CoSMo has a unified framework 

that supports logical, visual, and database persistent modeling. It is aimed at discrete-event, 

discrete-time, continuous-time, and cellular automata specifications. The goal is to provide a 

mechanism for visual model development, and for storing logical models in databases, while 

also providing support and management facilities for developing a family of interrelated 

models. Such capabilities are useful for individual users and crucial for teams of users, for 

example for purposes of software/hardware co-design [18].  

 

The top down concept of CoSMo has a visual syntax for logical models, which serves as the 

basis for storing logical specification of models in alternative database and flat files. Given the 

stored logical models, they can be translated to different programming languages for different 

target simulation engines. Other approaches to interoperability are generally defined in terms of 

programming syntax such as C++, Java, and XML—standardization is based on the traditional 

software engineering concepts and techniques. For example, simulation tools such as DEVS-

Suite render a visual representation of models from implemented code that persist in flat files. 



 

 

In CoSMo, visual and database persistence of models are proposed to be integral to 

standardization. 

 

The CoSMo environment supports developing Parallel DEVS models and generating partial 

code for execution using DEVS-Suite. For coupled DEVS models, it generates complete code. 

For atomic models, it generates partial code. For the transition, output, and time advance 

functions only template code is generated. Other translators can be developed in a 

straightforward manner for other simulators such as ADEVS. As shown in Figure 24, the 

separation of a modeling engine and a simulation engine has important implications for 

standardization particularly when standardization is not at the level of XML [15] and DEVSML 

[19], or high-level programming languages such as Java. In effect, the CoSMo Simulator 

environment (called CoSMoS) is built from CoSMo and DEVS-Suite. Users can develop 

models using well-formed visual syntax that in turn allows generating “standardized” models 

stored in relational databases which in turn can be used to generate XML-based and high-level 

programming code. Standardization, from the perspective of the CoSMoS framework, enhances 

visual model development, model management via databases as well as reducing errors in 

programming code.   

 

 
 

Figure 24: separation of a modeling engine and a simulation engine 

 

The underlying concept of CoSMoS can enable interoperability among multiple simulation 

engines. The CoSMoS architecture and realization supports adding translators as plug-ins. The 

CoSMoS framework also aids in supporting interoperating simulators given current and new 

generations of middleware technologies such as service-oriented computing. As a result, the 

XML Schema translator developed for CoSMo can be used to support SOA-based distributed 

simulation. For example, the DEVS/SOA environment [19] can be a target simulation engine 

and thus writing models at the level of DEVSML, one can visually develop models that are 

logically correct with respect to the parallel DEVS formalism. Therefore, users can 

automatically generate code for atomic and coupled models given target simulation engines. 

The structures of the atomic and coupled models as well as their relationships are formulated as 

a set of tables and relations in a relational database. The axioms of CoSMo also provide a set of 

rules for creating a family of models such that composition and specialization relationships 

among different model designs do not conflict with one another.  

 

The visual, and programming elements for DEVS mathematical specifications, and the support 

repositories, must account for the behaviors of atomic and coupled models. A key obstacle to 
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achieving this goal is the lack of visual notation for atomic models. Different authors have 

proposed and used variations of the Statecharts formalism to represent states and functions of 

atomic models. The visual statechart elements (states, function, and transitions) are adapted 

such that internal, external, and output functions can be distinguished (solid, small dashed, and 

large dashed lines are used). In other work [20], a notation that is also derived from Statecharts 

is developed for specifying the conditionals and distinguishing between transition functions 

with at=0 and ta>0. From the perspective of making DEVS accessible to a broader community 

of users, the UML visual notation is proposed for modeling the behavior of atomic models [21]. 

In this work, the developed DEVS/UML models are executed using a parallel DEVS simulation 

engine. Unfortunately, developing a simple visual notation suitable for complete behavior 

specification of atomic model remains challenging since Java and other such programming 

languages allow arbitrary logic and, compared to visual notation, can capture complete details 

of a model dynamics. Therefore, existing notations and tools can only support generating partial 

and complete source code for atomic models. The CoSMo modeling engine can be extended 

once a standardized visual notation for atomic models becomes available. The extension of the 

relational database and model translators to target programming code will be straightforward.  

 

Finally, it is noted that although use of generic modeling formalisms is important, it is equally 

important to provide users with user-friendly, yet formally grounded, capabilities for developing 

simulation models. In DEVS, as in other general-purpose M&S approaches, domain knowledge 

must be incorporated into the generic atomic and coupled model specifications. It is only then 

that the model dynamics of a system can be simulated and evaluated. For certain application 

domains, such as electrical systems, visual notation (and thus programming code templates) are 

available. However, for other application domains, such as biological and social-ecological 

systems, universal agreements do not exist. Nonetheless, standardization for the generic atomic 

and coupled DEVS models is highly important and undoubtedly necessary toward developing 

domain-specific standards and more generally enabling a new kind of model verification and 

simulation validation. 

7 SUMMARY 
 

This chapter has focused on various methods for standardizing DEVS model representations, 

which is necessary to enable platform-independent DEVS models to interoperate with each 

other. The concept relies on defining a generic representation that other tools can use to 

understand how a model is created, which allowis sharing of existing models. Most of the 

examples in this chapter are based on XML descriptions that can be transformed and 

manipulated to achieve interoperability. 

 

We showed how DEVSML (an XML notation built on JAVAML) can be used to transform 

different compatible DEVS platforms. DEVS coupled models are built using Document Type 

Definitions, and the atomic models are transformed into a combination of JavaML code with 

special tags. 

 

DEVS/SOA includes a model library and a simulation library (implemented in Java and .Net). 

Interoperability is achieved by using standardized XML for message passing, and the ability to 

publish simulators, atomic, and coupled models as web services. 

 

DML, the DEVS Markup Language, standardizes the DEVS model representation using an 

XML representation of specific languages (e.g., JavaML), and provides the common 

denominator of most object-oriented languages in order to allow the use of the features of 

language libraries. Modelers can use their favorite programming language, which is interpreted 

by a simulation proxy. 

 



 

 

DCD++ supports simulation on SOAP-based or RESTful Web Services (also called the 

Distributed DEVS Simulation Protocol, DDSP, and the RESTful Interoperability Simulation 

Environment, RISE). In both cases, different simulation engines can interoperate to execute a 

complete simulation. DDSP introduces an XML-based environment to interoperate different 

DEVS implementations, using SOAP-based messages. RISE provides an interoperability 

framework (and API based on URIs so the modelers can create models, simulations, and 

experiments), a model interoperability layer (providing XML rules to combine different models 

together, and simulation synchronization algorithms. 

 

Finally, CoSMoS provides a visual syntax, a programming syntax, and a database syntax that 

allow the models to be visually created, to be stored in a persistent data store, and overall make 

implementation and interoperability of components easy. CoSMoS supports the creation of 

models and generates code that can (partially) be executed on the DEVS-Suite environment. 

 

These different efforts show the varied possibilities in achieving model interoperability, sharing, 

and reuse, based on a DEVS-based methodology. 
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