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1 Introduction 
 

Since the early 70s, the M&S community has been trying to formulate approaches to modeling 

as system specification formalisms. As seen in the previous chapters of this book, the 

proliferation of DEVS-based M&S engines has brought the need to improve and standardize 

DEVS tools, facilitating the work of DEVS designers independently of the programming 

language implementations or algorithmic code expressions used. To understand the problem, let 

us consider that DEVS categorically separates the Model, the Simulator, and the Experimental 

frame. Building on this separation of concerns, the DEVS Protocol specifies the abstract 

simulation engine that correctly simulates DEVS atomic and coupled models. Interpreted in a 

distributed simulation context, the DEVS abstract simulator gives rise to a general protocol that 

has specific mechanisms for declaring who takes part in the simulation (the federates). It also 

specifies how federates interact in an iterative cycle that controls how time advances, when 

federates exchange messages, and perform internal state updating. A significant feature in 

comparison to simulation based on the HLA standard, is that if the federates in simulation are 

DEVS compliant then the simulation can be proved to be correct in the sense that the DEVS 

closure under coupling theorem guarantees a well-defined resulting structure and behavior. 

  

DEVS modeling and simulation research groups are interested in DEVS interoperability in 

order to enhance model composability and reusability of DEVS models and non-DEVS models 

in different languages and platforms. The problem to interoperate heterogeneous DEVS models 

with DEVS simulators is that DEVS simulators implement the DEVS modeling formalism in a 

growing number of diverse programming environments. Although the DEVS formalism 

specifies the same abstract simulator algorithm for any simulator, different simulators 

implement the same abstract simulator using different programming languages and 

environments.  

 

In other words, the model and the simulator exist in the same programming language. 

Consequently, legacy models as well as models that are available in one implementation are 

difficult to translate from one language to another (even when both the implementations are 

object oriented). Other constraints such as libraries inherent to the programming language (i.e., 

C++ or Java) are a source of complexity that prevents the desired interoperability. This is 

particularly important in large scale M&S, including M&S of Systems of Systems. In order to 

support such interoperability, various standards have been developed.  

 
The new computing methods of recent years (in particular, Grid computing and Cloud 

computing) introduced new ways of sharing computing power and storage in heterogeneous 

environments. Using these technologies, resources are virtualized as services consumed on 

demand (with minimal limitation for resource location). By exposing the unused resources 

available in most organizations, simulation performance can be improved through replication 

processes. This model of computation has been extremely successful, but it is still limited for 

more advanced simulations (for instance, when on-line interactivity is needed, for interfacing a 

simulation with sensor networks, etc.). Likewise, simulation interoperability on the Grid can 

require complex ad hoc tailoring, which is a costly and elaborate process.  

 

Parallel simulation middleware (e.g., GATech Time Warp [1], Warped [2], SPEEDES and 

WarpIV [3], etc.), had usually focused on tightly coupled systems. Instead, distributed 

simulation middleware must allow partitioning and running simulations remotely. For instance, 



 

 

DIS (Distributed Interactive Simulation [4]) allowed the development of distributed simulation-

based training solutions (by sharing data and computing power remotely). Other solutions 

included the HLA (High Level Architecture [5]), which was designed for interoperability of 

distributed simulation assets, and TENA (Test and Training Enabling Architecture [6]), which 

was built on top of CORBA (and subject to its strengths and limitations, see below) to enable 

real-time interoperation of assets in geographically distributed test ranges. This distributed 

simulation middleware focuses on data sharing, distributed processes, communication, and time 

management (in HLA), and has facilitated the development of large-scale distributed 

simulations. Nevertheless, model reuse using this kind of middleware is still difficult, ad hoc, 

and costly. The motivation for the discussion in this chapter stems from this need of model 

interoperability between the disparate simulator implementations; we intend to discuss the 

means to provide simulators that are transparent to model execution. We claim that a DEVS-

based standard would improve sharing and interoperability of M&S assets, both locally and 

distributed, including specifications to facilitate a System of Systems that interact using a net-

centric platform. At this level, model interoperability is one of the major concerns.  

 

As discussed earlier in this book, there are now numerous libraries and tools for expressing 

DEVS models across the globe, such as DEVSJAVA [7][1], DEVS/C++ [7], CD++ [8], 

ADEVS [9], DEVS-Suite [10], James [11], etc. (for a comprehensive list, check http://cell-

devs.sce.carleton.ca/devsgroup/?q=node/). Although this proliferation of libraries is witness to 

the numerous advantages in DEVS M&S, its multiplicity not only complicates sharing of 

models, it also requires modelers to learn the specific programming language in which the 

simulator is implemented. An important side effect of the latter is that most of the times the 

modelers then become locked to this language.  

 

The different designs to be discussed in this chapter show efforts to bridge the gap between the 

different implementations by employing standard means (i.e., XML) in order to share model 

information and make a step towards model interoperability and reuse.  

 

 
Figure 1: Concept of Standardized Independent-platform Model Representation 

 

The different designs discussed in this and the following two chapters deal with two different 

interoperability objectives:  

 

(1) Standardizing DEVS model representation: the idea is to allow a platform-independent 

DEVS model representation to be executed by a DEVS-based simulator. In this case, a 

DEVS model is executed on a single processor or on a parallel/distributed simulation 

environment. This allows model reusability without the need of performing long-

distance distributed simulation. Typically, models are stored in repositories and 
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retrieved as needed, as shown in Figure 1. In this figure, the Model boxes correspond to 

DEVS specifications independent of the application domain. These specifications must 

be independent of computer programming languages, for instance in set theory or some 

kind of calculus. From such formal specifications, software specifications—such as 

XML—can be derived. The boxes called Simulator represent the protocols that are 

needed to execute the specified models. By means of XML, the modeler may use a 

standard representation of a DEVS scenario that does not require much programming 

knowledge, making automatic transformations from the XML representation to a 

particular simulator representation. The implementations shown in this chapter are 

based on XML (i.e., Document Type Definition (DTD) and later on XML Schema, 

usually called XML Schema Definition (XSD)). 

 

(2) Standardizing Interoperability Middleware: the idea is to allow for interfacing different 

simulation environments, providing synchronization for the same simulation run across 

a distributed network regardless of their model representation, as shown in Figure 2.  

 

 
Figure 2: Concept of Standardized Distributed simulation Middleware 

 

The development of this middleware is the area of most interest to overcome current 

distributed simulation challenges and to meet future expectations, as indicated by a 

number of surveys [13][14]. Developing a standardized DEVS simulation protocol 

would allow enabling different DEVS implementations to simulate the same DEVS 

model hierarchy partitioned between various DEVS domains, while allowing all DEVS 

domains to execute their legacy models, performing distributed simulation experiment 

between different heterogeneous simulation models and engines. All middleware 

designs presented in this chapter offer simulation resources as consumable services. In 

this case, simulation entities act as peers (i.e., clients and servers at the same time) to 

each other to synchronize a simulation session.  

 

Each of these two objectives form two different set of standards and should be treated 

separately. In other words, a simulation tool does not need to conform to both sets of standards, 

stated above, to be able to reuse other resources from different working groups. 

 

DEVS-to-DEVS Interoperability is a basic form of interoperability that is enabled by 

a DEVS standard. Adoption of the DEVS standard would facilitate new development to 

achieve interoperability at the syntactic, semantic, and pragmatic levels. This is 

accomplished at the two levels stated above: model representation and middleware 

synchronization. 

 

DEVS-to-Non-DEVS Interoperability is more complex. We need to establish 

mechanisms to implement the core simulator interface, or the Abstract Model interface 

to interoperate at the syntactic level with DEVS and other non-DEVS peers. In its 
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strongest form, such simulation methodology guarantees well-defined time preservation 

and simulation correctness as a sound basis to aim for interoperability at the higher 

levels. This part relies more heavily on the middleware standard set. In this case, the 

middleware needs to hide as much as possible internal detailed implementation, 

including the DEVS formalism representation, in order to allow practical DEVS-to-

Non-DEVS simulation synchronization. 

 

Each of the above objectives faces different challenges. The main challenge of standardizing a 

DEVS model representation is in integrating the standardized representation into local 

simulation environments. In other words, the target simulation platform must interpret the 

standardized representation in a manner similar to its local model representation. For example, 

some DEVS tools define their models as programming language structures (e.g., Java/C++ 

classes). In this case, the problem extends beyond the applied programming language and also 

involves the complications of plugging the resulted programming structure into the overall 

hierarchy design of the DEVS tool. Afterwards, those models need to be compiled with DEVS 

tools legacy source code. In other cases, some DEVS tools define their coupled representation 

in tool-dependent textual format. The only issue here is in converting the standardized 

representation into the required textual format. Standardization independent of domain 

knowledge can be formulated in terms of handling different syntactical specifications and 

programming languages while handling alternative simulator designs, and simulator features. 

Syntactical interoperability can be defined in terms of the generality of the DEVS model 

specification and its underlying abstract simulator algorithm, both of which are independent of 

programming languages. Different design choices can support the same model syntax and 

abstract simulator semantics. In particular, the engine that performs a simulation includes 

features (e.g., visual component-based notation, display of simulation data trajectories, and 

configuration of simulation experiments) that must not have any side effect with respect to 

correctness of the simulator protocol [15]. On the one hand, the execution speed (performance) 

of the simulator may be adversely affected and on the other hand, users can benefit from 

important features such as simulation animation, viewing time-based trajectories, and run-time 

design of experiments [10].  

 

On the other hand, standardizing a middleware protocol to execute distributed simulation 

between heterogeneous simulation entities faces different challenges. In this case, a 

programming language or other local implementation issues are not a problem, since the 

standardized protocol should hide and overcome these issues, as in the case of any Grid/Cloud 

computing system. However, the main problem is to determine how the different environments 

synchronize a simulation session. This includes a number of issues such as the simulation 

semantics (e.g., messages versus programming parameters), synchronization protocol (i.e., how 

information is sent and received), etc. These issues, also shown in Figure 2, are important 

because they affect the flexibility of improving simulation algorithms, the required amount of 

software changes of DEVS tools, and the ability of a DEVS tool to evolve independently with 

other unrelated features to the standards. In fact, current DEVS tools support distributed 

simulation using different underlying technology, with their own defined synchronization 

protocol to manage a simulation between different distributed partitions.  

 

Interoperability among different simulation engines is generally considered domain-neutral. 

Execution of models implemented in two or more different programming languages can be 

guaranteed to be DEVS-compliant for a unique abstract simulation algorithm. The specifics of a 

system and the conditions under which it is to be experimented with can be modeled and 

simulated in terms of system and experimental frame models. The simulation engine is domain-

neutral and the domain-specific modeling constructs are built from generic DEVS modeling 

constructs. It is desirable for domain-specific models to be independent of the simulation 

engines that can execute them.  

 



 

 

 
 

Figure 3: Centralized and distributed DEVS-based simulators 

 

DEVS implementations have evolved independently over the years, which makes interoperating 

them a nontrivial task. The implementation of the DEVS formalism can range from one 

simulator implemented in a single programming language and executed on a single processor to 

multiple simulators implemented in multiple programming languages and executing on 

distributed processors ( 

Figure 3). Therefore, in order to manage complexity of simulation modeling (and more generally 

the entire M&S lifecycle), standardization is considered a necessity for interoperation among its 

different simulators and highly beneficial for non-distributed simulators. 

2 Background 

2.1 The DEVS Formalism 
 

For convenience of reference, let us briefly review the Discrete Event System Specification 

(DEVS) formalism [16] as a M&S specification that aims at studying discrete event systems. 

The model consists of components connected together through external port(s) where events are 

exchanged among models via those ports. Of course, as in any discrete-event simulation, the 

models being simulated change state only at discrete points in time, upon the occurrence of an 

event. DEVS expresses a system as a number of connected behavioral (atomic) and structural 

(coupled) components. The basic building block of DEVS models is the atomic DEVS model 

whereas coupled models connect a number of atomic or/and other coupled models. 

 

The P-DEVS formalism [15] expresses a system as a number of connected behavioral (atomic) 

and structural (coupled) components. A P-DEVS atomic model is formally defined as: 

 

M = <X, Y, S, δint, δext, δcon, λ, ta> 

 

where 

X is the set of input values; 

S is the set of states; 

Y is the set of output values; 

int: S → S is the internal transition function; 

ext: Q x Xb → S is the external transition function, where  

        Xb is a set of bags over elements in X, 

         ext (s, e, φ) = (s, e); 

conf: S x Xb → S is the confluent transition function; 

λ: S → Yb is the output function; 

ta: S → R+ 0 → ∞; 

where  

        Q = {(s, e) | s   S, 0   e   ta(s) is the total state set  
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         e is the time elapsed since last transition; 

 

At any given time, an atomic model is in some state s  S. It remains in state s for the time 

period specified by the state time advance function ta(s), with the assumption of not receiving 

external events. When the lifetime of the atomic model state expires, the model outputs value 

λ(s)  Y, and changes its state as indicated by the internal transition function δint(s). A P-DEVS 

model uses a bag of inputs (Xb) to exploit parallelism in the system, hence executing multiple 

concurrent events simultaneously. Furthermore, the model also changes its state as defined by 

the external transition function δext(s, e, Xb). If the atomic model receives one or more external 

events x  X before the expiration of ta(s), it merges the functionality of multiple external 

transitions into a single one. A confluent transition function (δcon) is used to conclude the next 

state of the model, thereby resolving the collisions when receiving external events and internal 

transitions simultaneously.  

 

It is worth noting that the main difference between DEVS and P-DEVS formalisms is the 

addition of the confluent function (conf), which is responsible for determining the next state of 

the model when an external input arrives at the same time of an internal transition. The 

definition of the confluent function is determined by the modeler so that the correct behavior 

can be modeled depending on the system under study. The physical system model is created by 

integrating different DEVS models together through their input and output ports; resulting in a 

coupled DEVS model. A coupled DEVS model consists of atomic and/or other coupled models 

connected together. A P-DEVS coupled model is formally defined as: 

 

N = <X, Y, D, {Md | d D}, EIC, EOC, IC> 

 

Both X and Y define the sets of input and output events respectively. D is a set of indices for the 

components of a coupled model and, for each d  D, Md is a basic P-DEVS model (atomic or 

coupled). The external input coupling (EIC) specifies the connections between external and 

component inputs, while the external output coupling (EOC) describes the connections between 

component and external outputs. The connections between the components themselves are 

defined by the internal coupling (IC). Thanks to the property known as closure under coupling, 

a coupled model can be reduced to a behaviorally equivalent atomic model, and thus be treated 

as a basic component in construction of more complicated hierarchical models. 

2.2 DEVS Simulation Protocol 
 

DEVS treats a model and its simulator as two distinct elements. The DEVS simulation 

protocol describes how a DEVS model should be simulated; whether in standalone fashion or 

in a coupled model. Such a protocol is implemented by a processor, which can be a simulator or 

a coordinator. As illustrated in Figure 4, the DEVS protocol is executed as follows: 

 

1. It starts with the coordinator first distributing to each of the simulators in the collection 

each other’s addresses and then telling each of them to perform their initialization 

function. 

2. A cycle is then entered in which the coordinator requests that each simulator provide its 

time of next event and determines the minimum of the returned values to obtain the 

global time of next event. 

3. Each of the simulators applies its computeInputOutput() method to produce an output 

that consists of a collection of content (port/value) pairs—for DEVS simulators this is a 

composite message computed according to the DEVS formalism based on the current 

state of its model. 

4. Then each simulator partitions its output into messages intended for recipient simulators 

and sends these messages to these recipient simulators—for DEVS simulators these 

recipients are determined from the output ports in the message and the coupling 

information that will have previously been received from the coordinator. 













 

 

5. Finally, each simulator executes its ApplyDeltFunc method which computes the 

combined effect of the received messages and internal scheduling on its state, a side 

effect of which is to produce the time of next event, tN—for DEVS simulators this state 

change is computed according to the DEVS formalism and the tN is updated using the 

time advance of its model. 

6. The coordinator obtains the next global time of next event and the cycle repeats. 

 

 
Figure 4:  Abstract parallel DEVS simulator protocol 

 

It should be noted that although the abstract simulator is unique, its actual implementations can 

be quite different. This is not only because of software design, but also because of the abstract 

simulator itself. The abstract simulator does not impose any strict ordering for the messages 

sent/received when multiple components are scheduled to receive inputs at the same time. For 

example, when the coordinator nextTN requests are sent to two or more simulators, the order in 

which the outTN responses are received can be arbitrary. This is expected since the parallel 

DEVS formalism is defined to assume no dependency between two messages received from one 

or more components. Therefore, there cannot be any dependencies between two simulators that 

are used together in distributed fashion. 

 

2.3 EXtensible Markup Language (XML) 
 

XML [17][18] is a specification for storing information or describing that information structure 

in textual documents and is increasingly adopted as a standard for the interchange of 

information in diverse fields of science, engineering, government, and business [12]. XML 

plays a major role in the DEVS model representation designs in this chapter as well, as many of 

them define an XML-based common model representation to be executed in any DEVS 

environment. It also plays a central role in the middleware standard implementation in the way 

simulation semantics is exchanged in form of XML messages or in the underlying technology of 

the distributed simulation middleware. XML is widely supported by a variety of programming 

environments, allowing developers to manipulate an XML-based document. 

 

XML was standardized by the World Wide Web Consortium (W3C), and it differs from other 

markup languages such as HTML in allowing users to define their own tags, provided they 

adhere to the XML standards. For example, Figure 5 shows a customized XML document, 

listing DEVS tools according to their name and applied programming language. In this example, 

we defined the “Tools” element to hold all “Tool” elements. Each “Tool” element holds two 

other elements: “name” and “language” elements. 
 

<?xml version="1.0"?>  

<Tools> 

   <Tool> 

      <name>CD++</name> 

After each simulation step

tN = t + ta(), tL = t

Coordinator
Coupled 

Model1. nextTN

2. outTN

3. getOut
4. returnOut5. applyDelt

Component Model can be an atomic or coupled model in 

which case a coordinator is needed instead of a simulator.

Simulator     

tN
Simulator     

tN

Simulator     

tN

Component 

Model            

tN, tL

Component 

Model            

tN, tL

Component 

Model            

tN, tL

After each simulation step

tN = t + ta(), tL = t

Coordinator
Coupled 

Model1. nextTN

2. outTN

3. getOut
4. returnOut5. applyDelt

Component Model can be an atomic or coupled model in 

which case a coordinator is needed instead of a simulator.

Simulator     

tN
Simulator     

tN

Simulator     

tN

Component 

Model            

tN, tL

Component 

Model            

tN, tL

Component 

Model            

tN, tL



 

 

      <language>C++</language> 

   </Tool> 

   <Tool> 

      <name>DEVSJAVA</name> 

      <language>Java</language> 

   </Tool> 

   … 

   … 

</Tools> 
Figure 5: XML Document Example 1 

 

The power of XML is its simplicity and flexibility to be extended and customized as needed. 

Thus, it can be used for data storage and transportation by any application. In this case, data is 

structured so that it can be extended or reduced (‘filtered’) as needed. For example, assume that 

the XML document shown in Figure 5 is transferred between two applications. In this case, for 

instance a new “Tool” element can be easily added to the document. On the other hand, this 

extensibility comes at a price. For example, the XML document shown in Figure 6 describes the 

same information shown in Figure 5, but differently. In this case, element “language” is 

renamed to element “lang”, and element “name” is converted to attribute “type”. This is easily 

realized by human readers with simple XML documents. Typically, though, XML documents 

are handled by software which considers element “name” in Figure 5 to be different from 

attribute “type” in Figure 6. Therefore, defining information in XML is not enough to 

interoperate two applications, but it is only the first step. For that reason, standardizing XML 

documents (i.e., structure, data, etc) is necessary to obtain practical interoperability. 

 
<?xml version="1.0"?>  

<Tools> 

   <Tool type=“CD++”> 

      <lang>C++</lang> 

   </Tool> 

   <Tool type=”DEVSJAVA”> 

      <lang>Java</lang> 

   </Tool> 

   … 

   … 

</Tools> 
Figure 6: XML Document Example 2 

 

The Document Type Definition (DTD) and XML Schema, introduced in the following sections, 

can be used to validate XML documents (for example, the expected XML building blocks). 

However, the elements and attributes still need to be standardized so that communicating 

application can synchronize correctly. 

2.3.1 Document Type Definition (DTD) 
 

DTDs define the legal building blocks (i.e., list of legal elements and attributes) of an XML 

document. For example, Figure 7 shows a DTD document that reads as follows: the element 

“Tool” contains two elements: “name” and “language”; both are of type “(#PCDATA)”, which 

means that these elements are only allowed to contain text (PCDATA stands for Parsed 

Character Data). The DTD provides more types such as EMPTY to define an empty element, or 

an element number of occurrence and so on. 

 
<! ELEMENT Tool  

            (name, language) > 

<! ELEMENT name     (#PCDATA) > 

<! ELEMENT language (#PCDATA) > 

 

Figure 7: DTD Example 

 



 

 

The DTD defines rules for all the XML documents elements and attributes. However, those 

DTD rules must be defined in the subject XML documents, so that tools can validate XML 

documents against those rules. 

 

DTDs can be useful, but there are other methods, for instance, XML Schema languages 

(discussed next). Some of the problems of using DTDs [18] are the need for additional parsers 

(since it does not follow XML syntax), the lack of support for namespaces or data typing 

(i.e., requiring data to be integer, string, etc), and the limited capacity for defining the number of 

nested children elements (for a parent element). 

2.3.2 XML Schema 
 

In 2001, the W3C developed a new schema to overcome the DTD shortcomings. This schema is 

also named XML (which is confusing since DTDs are also XML). Thus, it is often called XML 

Schema Definition (XSD) or, after version 1.1, XML Schema Definition Language 

(XSDL) [18]. XML Schema defines the legal building blocks of an XML document, as in the 

case of DTD. XML Schemas support data types. They are written in XML syntax; hence, are 

extensible and scalable. For example, Figure 8 shows two defined XML elements: “name” of 

type “string”, and “height” of type “integer”. 

 
<element name="name"  

  type="string"/> 

<element name="height"  

  type="integer"/> 

Figure 8: XML Schema Example 

2.4 Distributed simulation Interoperability Middleware 
 

The main objective of distributed simulation middleware is interfacing different simulation 

environments, allowing synchronization for the same simulation run across a distributed 

network, with heterogeneous simulation software components, as shown in Figure 2. For 

example, each simulation environment may differ from other entities in its simulation engine, 

algorithms, model representation, and formalism. Thus, it comes as no surprise that a number of 

surveys placed the middleware of distributed simulation as the area of most interest to overcome 

current distributed simulation challenges and to meet future expectation [19][13]. For example, 

a recent study carried out by Strassburger, Schulze, and Fujimoto [19] found that future efforts 

must include the integration of heterogeneous resources, and the joining of computer resources 

for complex simulations and training sessions. The study also identified some research 

challenges for distributed simulation middleware such as the Plug-and-Play capability. To 

support such capability, the middleware should couple heterogeneous models effortlessly even 

at runtime without prior knowledge, hence with a business mentality of “Try-before-you-buy” 

way of thinking via widely accepted standards in the industry. In fact, the underlying 

technology is the framework of the middleware; therefore, it affects the flexibility of any 

standards and its ability to meet current and future expectations. 

 

The Defense sector is currently one of the largest users of distributed simulation technology, 

mainly to provide virtual distributed training environment between remote parties, relying on 

the High Level Architecture (HLA) middleware to provide a general architecture for simulation 

interoperability and reuse [20][21][22]. The RTI software layer connects and synchronizes 

different HLA simulation entities (called federates), as shown Figure 9.  

 



 

 

 
Figure 9: HLA Interaction Overview 

 
Despite the results obtained by this standard, the current adoption of distributed simulation in 

the industry is still limited. Further, since its adoption in 1996, HLA has only made limited 

inroads in industry because of a number of issues such as its complexity and lack of 

interoperability in interfacing different Run-Time Infrastructure (RTI) vendors, because the 

RTI-to-RTI interface is not standardized. Instead, a DEVS-based standard has better prospects 

for successfully achieving these goals. There are several technologies that have been used to 

create DEVS middleware. In the following sections, we provide a brief review of each of these 

technologies, focusing on the way the consumers communicate with each other at the software 

level. This is important because standard requirements eventually need to be realized by 

software, hence playing a major role in defining the required changes for legacy systems 

software. A full analysis of distributed simulation current challenges and future trends is 

available in [23]. 

2.4.1 Common Object Request Broker Architecture (CORBA) 
 

CORBA [24] is an open standard for distributed object computing defined by the Object 

Management Group (OMG). CORBA object services are defined using the Interface Definition 

Language (IDL), which can then be compiled into programming language stubs such as C, C++, 

or Java (IDL syntax is similar to other programming languages).  

 

Clients in CORBA invoke methods in remote objects in remote procedure call (RPC) style 

fashion (using IDL stubs). The method call may return another CORBA handle (i.e., address) 

where the client can invoke methods of the returned object. CORBA IDL stubs and skeletons 

glue operations between the client and server sides. The Object Request Broker (ORB) layer 

provides a communication mechanism for transferring client requests to target object 

implementations on the server side.  

 

Building distributed simulations using CORBA is straightforward, since CORBA enables 

application objects to be distributed across a network. Therefore, the issue becomes identifying 

distributed object interfaces and defining them in IDL, hence a C++/Java local operation call 

becomes a remote procedure call (hidden by CORBA). Therefore, to support distributed 

simulation using CORBA all that is required is translating existing C++/Java simulation 

interfaces into a CORBA IDL definition. 

 

The use of CORBA in newly started projects has recently been declining, though. Henning [25] 

provides a number of reasons for this decline such as the standards complexity, the politics of 

accepting new standard designs, and the lack of certain needed features. 

2.4.2 SOAP-based Web-services 
 

WSDL (Web-Services Definition Language) and SOAP (Simple Object Access Protocol) are 

the main elements that enable SOAP-based Web-services (WS) interoperability. SOAP-based 

Web-services provide interoperability in a similar way as CORBA: WSDL is equivalent to 

CORBA’s IDL role, where SOAP corresponds to ORB data marshalling/serialization function. 

Further, Web-service ports are addressed by Unified Resource Identifiers (URI) where CORBA 
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objects are addressed by references. Both ports and objects contain a collection of procedures 

(called services by WS) similar to Java/C++ classes. Those procedures glue software 

components across the network, providing an RPC-style type of software interoperability, as 

shown in Figure 10. 

 

 
Figure 10: SOAP-based Web Service Client/Server Architecture [23] 

 

The server exposes a group of services via ports; each service is actually an RPC whose 

semantics are described via that procedure parameters. Client programmers must construct 

service stubs with their software at compile time. Clients, at run time, consume a service by 

invoking their stub, which, in turn, is converted into an XML SOAP message (describing the 

RPC call). This message is usually wrapped within an HTTP message, and sent to the server 

port using the appropriate port URI. Once the message is received at the HTTP server, it is 

passed into the SOAP layer (usually called the SOAP engine). SOAP engines are usually Java 

programs running inside HTTP servers, called Servlets. The SOAP layer parses the SOAP 

message, and converts it into an RPC call applied to the appropriate procedure of the proper 

port. The server returns results for the clients in the same way. Thus, the SOAP message role is 

to provide a common representation among all parties to the invoked procedure at runtime. For 

example, in Figure 11 we can see that, once the procedure “boolean stopSimulation(int in0)” is 

invoked by a client, the SOAP engine converts it into the message shown in Figure 11 and 

transmits it to the server, which in turn is converted into the appropriate procedure call. The 

server subsequently replies in a similar way. 

 
1 <?xml version="1.0" encoding="UTF-8"?> 

2 <SOAP-ENV:Envelope xmlns:xsd="http://www.w3.org/2001/XMLSchema" 

3    xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" 

4    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 

5  <SOAP-ENV:Body> 

6    <ns1: stopSimulation xmlns:ns1="http://WS-Port-URI/"> 

7      <in0 xsi:type="xsd:int">1000</in0> 

8    </ns1: stopSimulation> 

9  </SOAP-ENV:Body> 

10 </SOAP-ENV:Envelope> 

 
Figure 11: SOAP Message Request Example [23] 

 

Service providers need to publish their services as XML WSDL documents to enable clients to 

discover and use them. As seen in Figure 10, one way of doing so is via a broker called 

Universal Description, Discovery, and Integration (UDDI). UDDI is a directory for storing 

information about web services and is based on the World Wide Web Consortium (W3C) and 

Internet Engineering Task Force (IETF) standards. 
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Clients programming stubs (Figure 10) are generated via compiling the WSDL document. 

Figure 12 shows a WSDL example for the procedure “boolean stopSimulation(int in0)”. Lines 

1-7 show the messages used by the Web Service to send the request and to handle the response. 

Lines 9-17 show the port-type definition to define the used operations by the Web Service. 

Lines 19-35 show the binding part, which defines the message format and ports protocol details. 

The <wsdlsoap:binding> element style (in Line 35) attribute uses the RPC-style. The SOAP 

input/output encoding style for the operation stopSimulation is defined in lines 25-33.  

 
1  <wsdl:message name="stopSimulationRequest"> 

2    <wsdl:part name="in0" type="xsd:int"/> 

3  </wsdl:message> 

4 

5  <wsdl:message name="stopSimulationResponse"> 

6    <wsdl:part name="stopSimulationReturn" type="xsd:boolean"/> 

7  </wsdl:message> 

8 

9  <wsdl:portType name="CDppPortType"> 

10  <wsdl:operation name="stopSimulation" parameterOrder="in0"> 

11   <wsdl:input message="impl:stopSimulationRequest"  

12             name="stopSimulationRequest"/> 

13   <wsdl:output message="impl:stopSimulationResponse"  

14             name="stopSimulationResponse"/> 

15 </wsdl:operation> 

16 

17 </wsdl:portType> 

18 

19 <wsdl:binding name="CDppPortTypeSoapBinding"  

20                     type="impl:CDppPortType"> 

21   <wsdlsoap:binding style="rpc"  

22         transport="http://schemas.xmlsoap.org/soap/http"/> 

23   <wsdl:operation name="stopSimulation"> 

24      <wsdlsoap:operation soapAction=""/> 

25      <wsdl:input name="stopSimulationRequest"> 

26         <wsdlsoap:body encodingStyle="http://.../"      

27                namespace="http://..." use="encoded"/> 

28      </wsdl:input> 

29 

30      <wsdl:output name="stopSimulationResponse"> 

31         <wsdlsoap:body encodingStyle="http://.../"  

32               namespace="http://..." use="encoded"/> 

33      </wsdl:output> 

34    </wsdl:operation> 

35 </wsdl:binding> 

Figure 12: Excerpt of WSDL Document Example 

 

Once the client programming stubs are generated, programmers still must write their code in the 

body of those stubs, and so tools are usually needed to generate templates of the source code. In 

practice, this process can be tedious; in particular, the tools used to generate templates usually 

avoid overwriting existing stubs, thus, programmers need to rewrite and validate them 

manually. Also, service composition scalability and lack of dynamicity may be a problem at the 

client side, because the stub needs to be written and compiled for every service at the server 

side. Dynamic invocation in Java solves this problem for Java web platforms making it the 

preferred environment for new developments from this perspective.  

 

RPCs are heterogeneous (because they were invented by different programmers) and distributed 

simulation connectivity semantics are described on the parameters of those RPCs. RPCs directly 

influence the interoperability integration effort, since they are actually the Application 

Programming Interface (API) of a simulation component. Further, RPCs often reflect the 

software internal implementation since they glue distributed software together. 



 

 

2.4.3 REST-based Web-services 
 

The Representational State Transfer (REST) [26] style provides interoperability by imitating the 

World Wide Web (WWW) style and principles. REST answers the question of what makes the 

Web architectural style successful; hence, it is a reverse engineering of the Web architecture. 

REST exposes all services as resources with uniform connectors (channels) where messages are 

transferred between those resources through those uniform channels. REST is usually 

implemented using HTTP, URIs, and usually XML because these are the main pillars of the 

Web today. In this case, resources (services) are named and addressed by URIs, resource 

connectors are HTTP channels (usually called methods), and connectivity semantics are usually 

described in XML messages. This type of design is a recipe for a plug-and-play interoperability, 

as a consumer may search, locate, and consume a service at runtime. To achieve plug-and-play 

interoperability in a wide-range of scales, certain ingredients are needed (as in the case of the 

Web), as follows: 

• universal accepted standards (such as HTTP, URIs, and XML), 

• implementations are hidden in black-boxes (called resources in REST), 

• each resource (or service) has uniform connectors/channels (REST uses HTTP 

channels/methods), 

• each resource (or service) is addressed with universal unique identifier (i.e., URI in case 

of REST), and  

• message-oriented type of connectivity semantics (usually as XML). 

 

REST principles perfectly match the HTTP, since it is the existing Web protocol. HTTP 

exposes all services as URIs that can be accessed via few well-defined channels (called methods 

in HTTP standards): GET (to read a resource), PUT (to create/update a resource), POST (to 

append to a resource), and DELETE (to remove a resource). Thus, REST clients always 

communicate in the same standardized way, as shown in Figure 13. The client must know three 

things to invoke a service: (1) the service URI, (2) the HTTP channel, and (3) the message 

semantics and format. For example, a Web browser invokes a service from a Web site by 

sending a request via GET channel to that Web site URI. In response, the Web site transfers its 

representation in form of a message (e.g., HTML) to the client, thereby transferring the 

representational state to the client, as indicated by Representational State Transfer (REST) 

name. 

 
Figure 13: RESTful Web-service Client/Server Architecture 

 

In contrast, SOAP-based WS exposes services as RPCs in ports where each port is addressed in 

a single URI. RPCs have heterogeneous interfaces, and they have a split implementation.  It is 

worth noting that SOAP-based WS use the HTTP POST channel to transmit the description of 

all RPCs as SOAP messages. 

  

RESTful Web Services [27] are gaining increased attention with the advent of Web 2.0 [28] and 

the concept of mashup (e.g., IBM Mashup Center enterprise solutions [29]). At this point 

RESTful WS is supported by the leading WS tools in conjunction with the SOAP-based WS. 
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Mashup applications deliver new functions and services on the Web by combining different 

information or capabilities from more than one existing source.  

 

For example, suppose a Website is used for trip planning. In this case, based on the trip 

destination, this Website may display weather forecast, hotel rates, and average meal cost of the 

trip destination. Of course, it is impractical for a server to implement such capabilities for every 

possible destination in the world. Thus, this Website obtains the necessary information from 

different sources based on the planned trip, giving the impression of implementing these 

capabilities. Further, this Web site may search for this information at runtime before being able 

to read it. Moreover, the Website can also cache the searched results, hence enhancing 

performance of different users heading to similar destination. Achieving plug-and-play 

interoperability (in the style of the World Wide Web) for the Website in this example would not 

be feasible, and mashing up the various services dynamically at runtime would be very difficult. 

For example, the Website in the example would need to know in advance that it has to send a 

request to the URI of an information source via the corresponding HTTP GET channel, so it can 

retrieve an HTML document. If one must build a programming stub for every possible 

information source, the application design would be very complex, and interoperability 

unfeasible. 

 

Instead, the APIs of RESTful applications are expressed as URI templates [30] that can be 

created at runtime. Variables in URI templates (written within braces {}) are assigned at 

runtime by clients before a request is sent to the server, enabling clients to name their services 

URIs at the server side. For example, username in template <…/users/ {username}> can be 

substituted with any string to get the actual URI instance (such as <…/users/user1> or 

<…/users/user2>). Further, URIs may include query variables to define the request scope by 

appending them to a URI after a question mark “?”. For instance, a request via GET channel to 

URI <http://www. google.com/search?q=DEVS> would instruct the Google search engine to 

return information only about keyword “DEVS”. 

 

Service providers usually describe their URI template either textually and/or as a Web 

Application Description Language (WADL) [31] document. WADL is an XML description that 

describes a RESTful API, hence corresponds to WSDL in SOAP-based WS. WADL describes 

each service as shown in Figure 14. In this example, Line #1 shows the service URI. Lines 2-11 

describe the PUT channel. Lines 3-5 state that XML is the supported format by this message. 

Lines 6-10 define the response of requests made on the PUT channel. In this case, it only lists 

the possible generated faults. Lines 12-17 define the other supported channels. 

 
1 <resource path="sim/workspaces/{userworkspace}"> 

2 <method id="PutWorkspace" name="PUT"> 

3    <request> 

4       <representation mediaType="text/xml"/> 

5    </request> 

6    <response> 

7       <fault mediaType="text/html" status="400"> 

8        <doc>BAD_REQUEST: Error while parsing XML document</doc></fault> 

9        … 

10   </response> 

11 </method> 

12 <method id="GetWorkspaceState" name="GET"> 

13      … 

14 </method> 

15 <method id="DeleteWorkspace" name="DELETE"> 

16     … 

17 </method>  

18 </resource> 

 Figure 14: Excerpt of WADL Document Example 

 



 

 

3 Designing Interoperability of DEVS components 
 

The goal of a DEVS standard would be to provide a simple and mostly automated way of 

executing simulations that involve remote and/or heterogeneous DEVS models. This can be 

achieved by taking two different approaches to be discussed in the following sections: 

simulator-based interoperability and model-based interoperability. 

3.1 Model-based interoperability  
 

In this perspective, a distinction can be made between on-line (or dynamic) and off-line (or 

static) interoperability, which are both centered on the models, and bring into play several 

methods related to Model Driven Engineering (MDE) [32]. 

 

On-line (dynamic) model-based interoperability 

 

In on-line (dynamic) model-based interoperability solution, models themselves are deployed as 

services instead of simulators. Using this model driven approach, the operations invoked 

through the network are no longer simulation mechanisms, but model functions, such as δint, δext, 

the time advance function, etc. This extends the scope of practical DEVS interoperability. For a 

large class of existing model implementations it is easier to comply with this Model Interface 

(compared to complying with the Core Simulator interface).  

 

Using a standard representation of models, different techniques can be employed to smooth the 

process by making the generation of the adapter mostly automated. The following describes this 

approach in the case of web services (see Figure 15), but could be extended to other integration 

middleware.  

 

Given a model written for a specific framework (CD++, DEVSJava, James, etc.), the first thing 

to do is to generate its representation in a platform-independent language (which would allow 

the description of the model for all the tools). This description, and more particularly the port 

types defined in it, can be fed into model transformation tools to generate: 

- A web service description, as a WSDL file. 

- A wrapper that will adapt the model interface to the service interface, by forwarding the 

operation calls. 

 
Figure 15: Local simulation of distant and local models 

 



 

 

Therefore, each model is assigned its own description file and its model wrapper; which are 

fully specialized for this particular model. In this way, model consumers are provided with 

complete knowledge of the nature of the messages expected by the model, increasing both type 

safety and understanding of the model semantics. 

 

Once this is done, the client can retrieve the description of the model, and generate a stub that 

will conform to its framework and behave exactly as the original model, by invoking the 

wrapper service. The automatic generations mentioned above can be seen as automatic 

transformations in the model driven engineering terminology. Regarding remote coupled 

models, two solutions are possible. The first is to use some kind of adapter, as in the simulator-

based approach, which will make the coupled model appear as an atomic one. The second 

possibility is to take into account that coupled models do not have any operational semantics. 

All they do is describe their ports and their couplings, in a static way. As a consequence, we can 

use their XML representation to generate a copy of the model in the local framework, without 

losing any useful information. 

 

In a nutshell, model providers: 

1. Write a model in their favorite DEVS framework. 

2. Automatically generate the model’s XML description, from which they generate a 

WSDL file and a web service encapsulating the model. 

3. Deploy the web service, providing access to the underlying model. 

 

On their side, the model consumers have to: 

1. Find the location of the models they need, using some kind of model directory or more 

classical discovery procedures such as web searches or acquaintances. 

2. Give the addresses of the models’ web services to a generation tool that will download 

the WSDL files and generate client stubs adhering to the modeler framework. 

3. Run the simulation. The framework’s simulator deals with local and remote models 

without even knowing it. 

 

3.2 Simulator-based interoperability 
 

The main idea of this approach (used in DCD++ and DEVS/SOA, to be presented later), is to 

have a collection of simulation services distributed over the internet. These services provides 

several operations for simulating atomic or coupled DEVS models in a unified manner, by using 

the DEVS simulation protocol and the closure under coupling property of coupled models. The 

overall simulation is coordinated by a main service, which acts like an entry point for the user. 

This architecture is summarized in Figure 16. 

 



 

 

 
Figure 16:  DEVS components interoperability through simulators communication 

 

In order to communicate, the DEVS services expose a standard interface that accepts the usual 

simulation protocol messages: initialize, get time of next event, run transition and so on.  

 

From a user perspective, the simulation process consists of: 

1. Writing a coupled DEVS model, using their favorite framework. 

2. Providing a list of DEVS servers on which they wish to distribute the simulation. 

3. Deploying the DEVS models to the servers (either by downloading them from their 

location or activating existing remote models). 

4. Starting the simulation. 

 

It should be noted that the above is one form of many possible protocols that can provide 

various forms of conservative and optimistic simulation, each of which must be proved to be 

correct as a implementation of the DEVS closure under coupling property [10].  

 

Implicit in the above description are the following constraints involving methods in the 

CoreSimulatorInterface: 

 

• The sendMessages() method “must” employ the putContentOnSimulator() method as 

follows: for any simulator to which it wishes to send a content, it must call the 

recipient’s putContentOnSimulator() method with the recipient and the content as 

arguments. 

• Further, in applying its computeInputOutput() method, a simulator “must” be able to 

interpret the contents (satisfying the ContentInterface) it has received from the other 

simulators. 

 

Notice that we cannot enforce these “must” requirements, and cannot prove that the simulation 

executes a desired behavior, unless we are given further information about its behavior. One 

way to do ensure these conditions is when the simulators are truly DEVS simulators in that they 

satisfy the interfaces and constraints given below. Failing this additional rigor, the 

interoperation involving DEVS and non-DEVS is purely at the technical level similar to that of 

a federation of simulators in HLA. This contrasts with the situation in which the federation is in 

fact derived from a DEVS coupled model for which correct simulation of the coupled model is 

guaranteed according to the DEVS formalism. 



 

 

4 Comparing Existing Designs and Implementations 
 

The two objectives discussed (simulator-based interoperability and model-based 

interoperability) face different challenges and have different purpose. Thus, they form two 

different sets of standards, and they can be treated separately. In other words, a simulation tool 

does not need to conform to both sets of standards to be able to reuse other resources from 

different working groups. In recent years, there have been a number of efforts to deal with these 

issues, and we will compare and discuss these approaches here from the two objective 

viewpoints. 

4.1 Standardizing DEVS model representation 
 

Standardizing DEVS model representation allows a model to run on any DEVS simulation 

environment. This is powerful in the sense that a model can be retrieved from a repository and 

run locally on a different tool other than the originally intended running environment of that 

model. This is highly recommended to avoid performing distributed simulation between remote 

environments for obvious performance reasons. 

 

Different working groups have used XML as a mechanism for interchanging model information. 

In order to do so, we need to define an XML vocabulary, which is formally defined by an XML 

Schema against which every file written in the vocabulary can be automatically validated. This 

arrangement gives an XML vocabulary several important advantages over Platform Specific 

Models (PSMs): 

• Validation against a schema promotes stability of the standard. 

• The schema can restrict data types.  

• The schema can define key data to insure consistency in the models (including the 

validation of important properties in the data values, such as uniqueness or duplicity of 

use, when needed). 

• The schema can be extended to include constraint types or simulator directives. Files 

that are valid under the original schema continue to be valid under the extended one 

(though, of course, the reverse is not guaranteed). 

 

This broader relevance has benefits for DEVS systems: 

• When scenarios are stored in XML format, DEVS technology results are more readily 

integrated into broader information technology infrastructures. 

• XML is the data interchange language of Web services. 

• XML lends itself very well to compression. 

• XML-based eXtensible Stylesheet Language Transformations (XSLT) offer a convenient 

way to specify translations of XML documents. If a DEVS scenario (with perhaps 

corresponding results) is stored in XML, then XSLT is easily applied to the scenario to 

produce a Web browser document that displays the results data in reports that are 

suitable for people to read. 

• Encryption standards such as XML Encryption are emerging for XML data [12]. This 

encryption is important to commercial DEVS applications where the scenarios contain 

confidential data. 

 

Libraries for these purposes—validating files, defining keys, compressing files, and the like—

are provided by numerous XML tools designed for manipulating and parsing XML data. It 

suffices to define our XML vocabulary in the form of a schema to utilize these tools. This 

contrasts to ad hoc formats that require writing, debugging, and maintaining routines equivalent 

to these tools. 

 



 

 

 
Figure 17: DEVS/XML standard definition 

 

Figure 17 shows a DEVS/XML standard definition framework. The DEVS/XML Schema 

includes the grammar for both the structure and behavior of DEVS models (i.e., coupled and 

atomic models). When it is defined, the system designer is able to create DEVS models in XML 

that may be validated against the DEVS/XML Schema. This forms a valid DEVS/XML Model. 

Next, there are two possibilities. The first one is to transform the previous scenario into a PSM 

for a concrete simulation engine, such as DEVSJAVA, DEVS/C++, CD++, xDEVS, etc. The 

second one is the development of a DEVS/XML simulator in a high-level programming 

language. Finally, a reverse engineering layer must be provided to come back from the PSMs to 

the Platform Independent Models (PIMs). The reverse engineering is the most difficult to 

accomplish. In this case DEVS/XML must include a (complex) parser to obtain the 

corresponding DEVS/XML Scenario from a set of DEVS PSM files (atomic and coupled 

models), which compose the DEVS Scenario. Thus, in some cases, other approaches are needed 

to facilitate the reverse engineering. 

 

Table 1 shows different approaches (some not presented here) defined to implement a 

DEVS/XML standard, including DEVSML and DML that will be described in the next 

chapters. All the approaches define a DEVS structure, whereas the behavior is completely 

defined in eUDEVS, DEVSML, and DML. The transformations from PIMs to PSMs are also 

defined in all the standards. In addition, two XML simulators have been developed: one for FD-

DEVS, and another one for DEVS/SCXML. Finally, the reverse engineering has been partially 

applied to DEVS/Schema and DEVSML. 

 
Table 1. Different DEVS/XML designs of standard  

 Structure Behavior PIM→PSM XML Simulator Reverse Engineering 

DEVS/Schema [33]  ✓ ✓
1 

✓  ✓
3 

FD-DEVS [34] ✓ ✓
1 

✓ ✓  

DEVS/SCXML [35] ✓ ✓
2 

✓ ✓  

eUDEVS [36] ✓ ✓ ✓   

DEVSML [37] ✓ ✓ ✓  ✓
3 

DML [38] ✓ ✓ ✓   
(1) Behavior limited by the corresponding Schema definition 
(2) Behavior limited by the corresponding SCXML Schema definition 
(3) Implemented for two simulation platforms (DEVSJAVA and xDEVS) 

 

The different DEVS implementations have evolved independently over the years, specifying 

their own model representation and rules. In practice, most of the DEVS tools would compile to 

a standard representation in their local specification, hence avoiding redesigning the software 

implementation to handle the standard representation directly. Figure 18 shows a typical sharing 

scheme. In this example, the DEVS model representation is stored in a repository from which it 

is retrieved to be executed on the target platform. The main challenge, as shown in Figure 18, is 

at the target platform and pertains to compiling the standardized representation into a local 
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representation. This is actually different from converting a home-grown representation into a 

standardized representation, since the resulting representation may require producing new 

source code. As such, the newly produced source code must be integrated and compiled with 

legacy source code before being able to run the simulation. This problem extends beyond the 

use of a programming language. For example, converting an XML representation of an atomic 

model into a C++ class does not guarantee its successful integration with a C++ DEVS-based 

tool. In fact, many other issues may be involved such as, for example, registering the atomic 

model, including other appropriate legacy C++ header files, compiler version, etc. In other 

words, one should be familiar with the internal implementation structure to be able to compile 

newly injected source code. Consequently, the main effort that is to be expected when moving 

to support the DEVS standardized representation models is developing a converter from/to the 

home-grown representation to/from the standardized representation. This challenges the designs 

presented here to provide a value proposition that makes it worth the implementation effort to 

develop such a converter. This is an essential issue to overcome in order to reach practical 

standards that are widely adopted. One possible path to pursue is in working together in 

developing the common feature of this converter where each party can then extend it to resolve 

their internal representation specific issues. 

 

 
Figure 18: Standardized Model Representation Flow 

 

Table 2 shows the list of designs for standardizing DEVS model representations. Except for 

DEVSML, which uses Document Type Definition (DTD), all of the designs use the XML 

schema (also called XML Schema Definition (XSD)) for the DEVS representation. XML 

schemas are more powerful than DTDs and became a W3C Recommendation on May 02, 2001. 

DEVS/SCXML and CoSMoS include graphical notations on top of XML model representation. 

In this way, standardization in XML is also needed for the graphical notations before it is 

converted into DEVS XML representation. This introduces another standardization layer, which 

will add more complexity to a more broadly adopted standardization process. DML tackled the 

targeted programming languages, allowing XML representation to be more aware of used 

programming language. This is an interesting approach, making XML conversion to a 

programming language easier. However, this requires the modelers to know all programming 

languages that a model may eventually be converted to. It is worth noting that all of the designs 

assume that DEVS models are written in a programming language. However, this is not always 

true. For example, CD++ defines coupled models as textual scripts but atomic models as C++ 

classes. This type of differences may lead to having a specific converter for a simulation 

environment (Figure 18). 

 

To conclude, the biggest challenge that these designs face is bringing them closer together to 

form a more broadly based new standardized representation. This is because existing software 

needs to be changed to conform to the new standardized representation. 

 
Table 2. Summary of Standardizing DEVS model Representation Designs  

Design Description 

DEVS/XML XML representation for both DEVS atomic and coupled models 

DEVSML   
Document Type Definition (DTD) XML representation for both DEVS atomic and 

coupled models 

Standardized 
Representation 

DEVS Environment X Compile to 
Standard 

 

Is compilation 
needed? 

 

Repository 

DEVS Environment Y 

Standardized 
Representation 

 
Is compilation 

needed? 

Compile to Home 
Representation 

YES 

YES NO 

NO 



 

 

XFD-DEVS (XML Finite 

Deterministic DEVS) 

It provides XML Schema Definition (XSD) representation for both DEVS atomic and 

coupled models. It is tabular-based methodology to automate the DEVS state machine 

specification process. 

DEVS/SCXML (DEVS 

State Chart XML) 

DEVS State Machine (XFD-DEVS SM) model is XML representation that needs to be 

converted to run by simulation. This XFD-DEVS SM is converted from SCXML, which 

is an XML representation of a UML model.  

DML (DEVS Markup 

Language) 

It provides XML for DEVS models while making it more programming language aware, 

such as adding snippet code in XML. 

CoSMoS (Component-

based System Modeling) 

It deals with developing models graphically and code generation 

 

4.2 Standardizing Interoperability Middleware 
 

Interfacing different simulation environments is intended to synchronize the same simulation 

run across distributed network (i.e., distributed simulation). Distributed simulation can provide 

many benefits such as heterogeneous model reuse without the need to standardize model 

representation. Other benefits include removing impediments to moving people/equipment to 

other locations and information hiding—including the protection of intellectual property rights. 

This type of interfacing is the main objective of the distributed simulation middleware, which 

connects all participants.  

 

The middleware is the area of most interest to overcome current distributed simulation 

challenges and to meet future expectation, as indicated by a number of surveys of experts of 

different simulation background [19][13]. These surveys also identified some research 

challenges for a distributed simulation middleware:  

1. Plug-and-Play capability: the middleware should couple heterogeneous models effortlessly 

even at runtime. Thus, standards should be simple to understand, quick to support, and with 

low-risk for legacy systems (i.e., changing implementation is not acceptable). Further, plug-

and-play indicates a high-level of dynamicity, for instance simulations should be able to 

join/disjoin a simulation session with a history. In other words, having to change the source 

code and then compile it in order to be able to connect with a simulation component is not a 

plug-and-play approach. 

2. Automated semantic interoperability between domains is necessary to achieve the plug-and-

play challenge. To automate this process, connectivity semantic must be defined in the form 

of messages (i.e., XML) rather than programming parameters as in most of RPC-style 

systems. 

 

Figure 19 shows the relationship between the middleware and the simulation environments. A 

simulation engine executes a number of Coordinators (i.e., coupled model simulator) and 

Simulators (i.e., atomic model simulator). Simulation engines synchronize simulation activities 

via the middleware. In this case, a simulation engine packs the simulation information (i.e., 

called simulation semantics) and passes it to the middleware via the Application Programming 

Interface (API). Therefore, the simulation semantics and API play a major role in making the 

standards flexible enough for dynamicity and future improvements, since simulation engines 

influence each other only through this information. Afterward, the middleware delivers the 

simulation semantics to the destination address. 



 

 

 
Figure 19: Standardized Middleware Reference Model 

 

Each of the major elements shown in Figure 19, simulation semantics, API, and addresses, is 

important and directly affect the interoperability standards. Further, the underlying technology 

framework influences the design of those elements. The presented designs here use three 

technologies: CORBA, SOAP-based Web-services, and RESTful Web-services. We illustrated 

all of distributed simulation issues and future trends in [23]. 

 

The following requirements can be compiled for a middleware standard that combines the 

qualities of the separate approaches in order to achieve a broad based yet  practical standard: 

• Respect existing systems without requiring them to change software implementation 

dramatically. In other words, it needs to avoid standardizing software implementation. 

This is important to allow different teams to evolve independently. The standards 

should allow a team to extend their tools with other none-standard related features 

without breaking the standard support. Thus, standards should not make any 

assumptions on how a certain DEVS or none-DEVS implementation package is 

realized. 

• It must handle any type of DEVS model representation. In this case, a model is placed 

in a simulation engine domain that is capable of executing it. This is important because 

legacy models can still be used. 

• It must be flexible enough for future improvements and changes. In other words, the 

standards should be portable to another technology that may appear in the future. 

• The standards should support a full simulation experiment environment. The method 

should define the modeler-required steps to couple distributed models, execute the 

simulation, and retrieve results. Further, the standards should allow different none-

related sessions (i.e., experiments) to be executed simultaneously. 

• It must be not take much effort to support with low risk to existing systems. 

• It must be extendable to interoperate DEVS-based tools with none-DEVS tools. 

 

Table 3 summarizes the four current approaches with respect to the reference model shown in 

Figure 19. DEVS/SOA defines interfaces for simulators and coordinators where simulation 

information is passed in the form of programming procedures. The RPC call is then converted 

to a SOAP message by a SOAP engine and wrapped in an HTTP message. DEVS/SOA variant 

2 goes on to provide a DEVS Namespace, derived from the XML Namespace, to support 

interoperability among DEVS implementations that employ different internal representations of 

the values within DEVS messages. DEVS/SOA distributes models (via DEVML script) based 

on a DEVS tool, source code, and a machine IP address. This may be a problem when 

conducting multiple simulation sessions simultaneously. The Distributed DEVS Simulation 

Protocol is also based on SOAP WS, as in the DEVS/SOA case. However, it defines a single 
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WS port to wrap an entire DEVS domain, which allows fewer RPCs and more implementation 

hiding. All of the simulation information is exchanged in XML messages that are sent as SOAP 

attachments. This also makes it less dependent on the SOAP WS framework. All models are 

wrapped in a single coupled model simulated by the main domain. DEVS models are distributed 

among domains according to an XML document. The Shared Abstract Model is based on 

CORBA. It defines interfaces for simulators and coordinators (called proxies) where simulation 

information is passed in the form of programming procedures. The RESTful Interoperability 

Simulation Environment (RISE) is based on RESTful Web-services. It uses HTTP uniform 

channels (methods) to communicate all of the simulation information as XML messages. Each 

domain is wrapped behind three URIs that can be named at runtime. It uses a single Time 

Management component to synchronize all domains when the conservative-based method is 

applied. On the other hand, domains can directly exchange those XML messages when an 

optimistic-based method is used. RISE assumes an entire model is placed in each domain. 

Modelers connect the input/output ports of all models by means of an XML configuration 

document. RISE does not interfere with internal domains details, including DEVS coordinators 

and simulators, hence making it independent of the DEVS formalism.  

 
Table 3. Summary of Standardizing DEVS Interoperability Designs  

Design Technology API Simulation 

Semantics 

Addressing Simulation 

Algorithm 

DEVS 

Model 

Level  

 

DEVS/SOA 

(Variant 1) 

SOAP WS RPC-style Procedure 

Parameters 

WS Port (URI) 

per coordinator  

and simulator 

Conservative Coupled 

DEVS/SOA 

(Variant 2) 

SOAP WS RPC-style DEVS 

(XML)  

Namespace 

WS Port (URI) 

per coordinator  

and simulator 

Conservative Coupled 

Distributed DEVS 

Simulation 

Protocol 

SOAP WS RPC-style XML Single WS Port 

(URI) wrapper 

per simulation 

environment 

Conservative Coupled 

Shared Abstract 

Model Approach 

CORBA RPC-style Procedure 

Parameters 

CORBA 

object/proxy per 

coordinator and 

simulator 

Undefined Coupled 

RESTful 

Interoperability 

Simulation 

Environment 

(RISE) 

RESTful 

WS 

Four HTTP 

Uniform 

Channels 

(methods) 

XML three resources 

(URI) per 

simulation 

domain 

Conservative/ 

Optimistic 

Independent 

 

The main objective of standardized DEVS would be to enable different DEVS implementations 

to interface and coordinate among each other to simulate the same model structure across their 

domains. A standardized DEVS imposes some requirements and assumptions in order to make 

the proposed protocol achievable and acceptable by different teams. Because of these 

requirements, minimum design changes are expected to each DEVS implementation, mainly by 

hiding the detailed implementation behind a wrapper and focusing only on the exchanged 

information that is needed to perform simulation and coordination among distributed models. 

Such Coordinators must find the models that they want to send their messages without worrying 

about other details such as constructing messages in XML documents or where which specific 

DEVS implementation is simulating the other models. 

 

The DEVS simulation protocol was also discussed to show the exchanged messages format and 

contents. Further the overall simulation coordination showing each DEVS domain role in the 

phases of each simulation cycle was described. In addition, the head/proxy structure was 

introduced to coordinate a coupled model simulation in the distributed environment in order to 

reduce the number of exchanged messages across the network. However, a standard is not 



 

 

limited to one algorithm, hence more schemes may be added in the future and used easily by 

including this information in the exchanged XML documents. 

 

The presented protocol assumed the usage of web-services technology as the communication 

framework. However, the protocol takes into account that the DEVS simulation messages 

should be easily ported to different communication architecture in the future, if needed to do so. 

This is accomplished by constructing all simulation messages in XML documents so that any 

changes in the protocol messages will be done to those XML documents rather than to the web-

services specific communication interfaces. The DEVS Namespace formulated in DEVS/SOA 

is a foundation for such extension.  

5 Summary 
 

In this chapter, we have introduced the main ideas and concepts about DEVS M&S 

standardization. We discussed different designs to bridge the gap between implementations of 

DEVS M&S software, most of which are based on standard XML notations to share 

information, and to achieve model reuse.   

 

Two different interoperability objectives must be addressed: how to represent DEVS models 

that can interoperate in a platform-independent fashion and how to standardize the 

interoperability of the middleware used for simulation purposes. These objectives have different 

purposes, and they should be treated separately. The following two chapters will focus on each 

of these two objectives in detail. 

 

Different technologies have been proposed to deal with interoperability middleware: CORBA, 

XML, Web Services (SOAP-based and RESTful), the High Level Architecture and other 

technologies. In every case, this middleware must execute a DEVS simulation protocol, and 

should be able to parse and interpret the model representation.  

 

We have discussed different simulation environments and compared their facilities, including 

DEVS/Schema, FD-DEVS, DEVS/SCXML, eUDEVS, DEVSML, and DML. These tools have 

evolved independently over the years, and a need for interfacing these tools has emerged. We 

also presented a discussion of different representation designs, including DEVS/XML, 

DEVSML, XFD-DEVS, DEVS/SCXML, DML, and CoSMoS. 

 

Finally, we discussed the different aspects (including underlying technology, API style, 

synchronization algorithms, etc.) for various DEVS environments, including DEVS/SOA (and 

its different variants), the Distributed DEVS Simulation Protocol, the Shared Abstract Model 

approach, and RISE (the RESTful Interoperability Simulation Environment). 
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