
This article was downloaded by: [134.117.249.55]
On: 08 October 2013, At: 10:08
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,
37-41 Mortimer Street, London W1T 3JH, UK

Molecular Simulation
Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/gmos20

DEVS modelling and simulation of the cellular
metabolism by mitochondria
Gabriel Wainer a & Roxana Djafarzadeh b
a Systems and Computer Engineering , Carleton University , 1125 Colonel By Drive, Ottawa,
ON, Canada , K1S 5B6
b School of Information Technology and Engineering, University of Ottawa , 800 King Edward
Avenue, Ottawa, ON, Canada , K1N 6N5
Published online: 03 Nov 2010.

To cite this article: Gabriel Wainer & Roxana Djafarzadeh (2010) DEVS modelling and simulation of the cellular metabolism by
mitochondria, Molecular Simulation, 36:12, 907-928, DOI: 10.1080/08927022.2010.481793

To link to this article: http://dx.doi.org/10.1080/08927022.2010.481793

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained
in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no
representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the
Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and
are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and
should be independently verified with primary sources of information. Taylor and Francis shall not be liable for
any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever
or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of
the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic
reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any
form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://
www.tandfonline.com/page/terms-and-conditions

http://www.tandfonline.com/loi/gmos20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/08927022.2010.481793
http://dx.doi.org/10.1080/08927022.2010.481793
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions

DEVS modelling and simulation of the cellular metabolism by mitochondria

Gabriel Wainera* and Roxana Djafarzadehb1

aSystems and Computer Engineering, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6; bSchool of
Information Technology and Engineering, University of Ottawa, 800 King Edward Avenue, Ottawa, ON, Canada K1N 6N5

(Received 10 August 2009; final version received 28 March 2010)

We present a method for modelling and simulating metabolic pathways in the cells (namely, the glycolysis and Krebs’
cycle), using the discrete event system specification (DEVS) formalism. The hierarchical nature of DEVS makes it ideal for
describing naturally hierarchical systems as the Cell, while its discrete-event approach improves performance due to the
asynchronous nature of the events involved. DEVS time-based nature can adequately represent the timing of the chemical
reactions. We show how this methodology enables creating a precise and easy way to model and simulate biological
systems, including advanced visualisation of the experiments. The results presented, which focus on the simulation of the
cellular metabolism pathways in mitochondria, show the potential of our approach.

Keywords: DEVS; CDþþ ; mitochondria; glycolysis; Krebs’ cycle

1. Introduction

Simulation is becoming increasingly important in the

analysis and design of complex systems such as those

involving biological processes. The application of

simulation to biological systems aims at developing

methods to represent and analyse complex biological

phenomena. In general, research in this field focuses on

problems involving varied phenomena at many different

levels, whose complexity makes impossible to use

traditional mathematical representations. In general,

biological systems can be seen as composed of many

subsystems and components, each having its own unique

characteristics and behaviour that contributes to the

overall form and function of the whole. Moreover, these

systems are highly complex, exhibiting many simul-

taneous interactions and strong non-linearity. Computer

simulation provides adequate means to study these

problems, as one can focus on the analysis of particular

experimental conditions.

The reasons for building such models and running

simulations include the need to replicate the function of

living organisms, in order to test the current knowledge

about them, and allowing the study of conditions that are

difficult (or even impossible) to create experimentally.

Researchers in systems biology stray from the traditional

reductionist objective of identifying simple causes and

effects, and focus instead on the detailed behaviour of

biological systems.

Traditionally, the simulation of biological systems

posed many technical challenges, including the selection

of accurate model parameters, the validation of simulation

results and the optimisation of simulation code for

computational efficiency. On the one hand, modelling

and simulation methods can extend the solution space well

beyond what is possible with theoretical and purely

analytical solutions. On the other hand, researchers and

practitioners have to constantly seek the best trade-off

between simulation accuracy and computational load.

Nevertheless, it is also important to design the

simulation software properly. Modellers should be able

to easily understand their code, modify it and have

confidence that the desired computations are described.

This is difficult for two reasons. First, the systems are often

complex, and, as a consequence, models of those systems

tend to become complex. Second, realistic simulations

may require the integration of multiple complex

algorithms. Several algorithms would be necessary if one

wished to simulate, for example, the deformation of a cell

membrane, surrounded by reacting and diffusing chemi-

cals, in a changing electric field [1].

It has been shown that this complexity can be better

dealt with if one builds models of biological systems that

can be designed as hierarchies [2,3]. In this case, the

components of the hierarchy would typically reflect real-

world entities in the organism. Based on these ideas,

numerous methods have been proposed.

Some of the research in this field has focused on the

creation of advanced tools with application to particular

problems [for instance, the E-Cell project [4], the Silicon

Cell [5], the CyberCell Database (CCDB) [6], etc.]. Other

research in this field has focused, instead, on the utilisation

of advanced modelling and simulation methodologies

applied to this kind of problems. For instance, in [7], the

authors propose a new method to simulate coupled

ISSN 0892-7022 print/ISSN 1029-0435 online

q 2010 Taylor & Francis

DOI: 10.1080/08927022.2010.481793

http://www.informaworld.com

*Corresponding author. Email: gwainer@sce.carleton.ca

Molecular Simulation

Vol. 36, No. 12, October 2010, 907–928

D
ow

nl
oa

de
d

by
 [

13
4.

11
7.

24
9.

55
]

at
 1

0:
08

 0
8

O
ct

ob
er

 2
01

3

chemical reactions using both stochastic and non-Markov

processes; in [8], Gillespie proposes to simulate a single

trajectory of a chemical system using a stochastic

algorithm; in [9], numerous methods in this area are

presented and discussed. In [3], the authors show the

results of simulation experiments of mammary duct

formation using Cellular Automata [10], and in [11], a

swarming environment is used to show how blood flows

through liver lobules. Various teams have used Cellular

Automata [12–14].

In this work, we show how one can deal with the above

two categories: we present an advanced modelling

methodology for the field of systems biology (which

permits that a modeller can work with advanced models,

maintaining their software application and making easy

changes and running with high performance). On the other

hand, we show how the methodology can be applied to

build domain-specific basic libraries that experts could use

for experimentation. The library presented here is focused

on models applied to the study of mitochondria. In this

way, researchers in any field could modify and improve

the models in the library, and use them for different

applications. To do so, we show various models to

understand and control dynamics of mitochondrial

metabolism through computer simulation (the idea is to

be able to do this at the organelle scale).

Our solution is based on the use of the discrete event

system specification (DEVS) formalism [15]. DEVS

provides a framework for the construction of hierarchical

models in a modular fashion, allowing model reuse, and

reducing development and testing time. The hierarchical

nature of DEVS makes it ideal for describing naturally

hierarchical systems as the Cell. Likewise, its discrete-

event nature improves the execution performance due to

the asynchronous nature of the events occurring in the cell.

DEVS also uses explicit timing information; hence, we

can adequately represent timing of the reactions occurring

at different levels of abstraction. The advantages of DEVS

have been thoroughly discussed in the literature. DEVS is

compelling because it separates models from simulators,

and because it provides a framework with which models

can be defined as hierarchies of interacting submodels

[16–18] (a thorough discussion of the advantages of

DEVS is presented in Section 2).

As we will show, the complexity, multiple layers of

behaviour and local confinement of the behavioural

elements make DEVS extremely effective. The definition

of these models using the DEVS formalism brought two

major benefits: effectiveness (models that can be under-

stood, while improving quality) and performance (the

discrete-event nature of DEVS makes time to advance in a

discontinuous and irregular way depending on the next

relevant event, which is adequate for models in biology).

The approach presented here also allows users to construct

advanced model visualisations, which is an important

aspect for systems biology that is usually dismissed or

postponed. Nevertheless, visual information can provide

the biology practitioners with better ways of validating the

models, moreover considering that in this field the data are

usually scarce, and new theories can be derived from

observation. As shown in [19], one can easily integrate

independent DEVS simulations with advanced 3D

visualisation engines. We explain how these models can

be applied to the study of mitochondria, in such a way that

the researchers in this field could modify and improve

them, and use them for different applications. We chose

the mitochondrion, as it fulfils different important roles in

cellular metabolism [20], and a number of genetic diseases

(including diabetes, deafness, heart, Alzheimer’s, Parkin-

son’s etc.) are associated with mutations in mitochondrial

DNA. Studying the mitochondrion also affects other fields

of interest, including the study of apoptosis and forensic

science [21]. For this purpose, we built a mitochondrial

model that included two biological pathways. The model

puts emphasis on cellular metabolism and energy

production aspects.

2. Background

As discussed in Section 1, in recent years, there has been

an increasing trend in using modelling and simulation of

applications in systems biology. As seen in the literature of

this area, some of the works have focused on the creation

of advanced tools with application to a particular problem.

Some examples of these advanced tools include:

. The E-Cell project [4] aims to simulate the whole

cell, including not just metabolic pathways but also

protein synthesis and signal transduction. The E-

Cell system uses a set of reaction rules and initial

values, and users can run simulations and observe

dynamic changes in quantities and concentrations of

intra- and extracellular metabolites and substances.

The activities of biochemical reactions can be

monitored and the amounts of substances can be

altered by users during the simulation.
. The Silicon Cell project [5] models cellular

metabolism and regulation, trying to capture the

physical and chemical constraints in cells. Their in

silico approach incorporates experimental data

about individual components of organisms to derive

accurate models of cellular metabolism.
. The CCDB [6] is a comprehensive, Web-accessible

database designed to support and coordinate

international efforts in modelling a cell of

Escherichia coli (E. coli; a bacteria). The CCDB

brings together observed and derived quantitative

data from numerous sources (covering the genomic,

proteomic and metabolic character of E. coli, strain

K12). The database is self-updating but also

G. Wainer and R. Djafarzadeh908

D
ow

nl
oa

de
d

by
 [

13
4.

11
7.

24
9.

55
]

at
 1

0:
08

 0
8

O
ct

ob
er

 2
01

3

supports annotations by the community, and it

provides an extensive array of viewing, querying

and search options (including a powerful, easy-to-

use relational data extraction system).

Instead, other groups have focused their research effort

on how to improve and use advanced modelling and

simulation methodologies applied to this kind of problems,

for instance:

. In [7], the authors state two fundamental ways to

view coupled systems of chemical equations:

continuous (differential equations on the concen-

trations) or discrete (stochastic processes on the

number of molecules), approximated by numerical

simulation methods. One of such methods (the next

reaction method) is proposed to simulate coupled

chemical reactions using both stochastic and non-

Markov processes.
. Gillespie [8] defined one of the most widely used

techniques to date. His idea was to simulate a single

trajectory of a chemical system using a stochastic

algorithm, whose outcomes are equivalent to the

ones obtained by the chemical master equation. The

algorithm uses a number of molecules (and their

reactions), and then generates the next reaction at

random (using a probability proportional to the

number of molecules). The algorithm makes the

assumption that the system is equilibrium (all

molecules are distributed in a uniform manner). The

algorithm cannot be applied to numerous phenom-

ena, and the performance is an issue; therefore, there

have been numerous efforts addressing these

problems.
. In [9], the authors present a complete survey and

discussion on many different techniques applied in

the field, ranging from the next sub-volume method

(one of the techniques that extends Gillespie’s

approach for isolation of different conditions by

membranes), up to a variety of formal methods:

Markov processes, stochastic Petri nets, stochastic

p-calculus, etc. In particular, they analyse the use of

methods such as DEVS or Statecharts [22], which

are usually employed for modelling the micro-level

view on the molecules in the system (i.e. defining, as

in this paper, a detailed description of the

molecules’ interactions). They argue that these

techniques are not yet well adapted for representing

stochastic simulations (whose effects and inter-

actions cannot be expressed easily, moreover when

thousands of particles are available) and further

research in this field is needed.
. In [3], the authors show the results of simulation

experiments of mammary duct formation using

Cellular Automata [10] for approximation of a

reaction–diffusion process. In [11], the authors

combine a swarming environment to show how

blood flows through liver lobules.
. Numerous researchers have used Cellular Automata

as the basic modelling method. For instance,

Cellular Automata were used for modelling

tumour-immune systems [12], by creating a 2D

cell space through which immune cells wander in

search of a tumour. The authors show how to model

a core of necrotic cells, surrounded by a ring of

dormant cells, surrounded in turn by a ring of

proliferative cells.

As mentioned in Section 1, we have explored the use of

the DEVS formalism [15] to deal with these two kinds of

issues at the same time: we want to explore the use of new

methods in the field of biological studies, while

constructing libraries that are ready-to-use by researchers

in the field. As we will show in the following sections,

DEVS allowed us to achieve these goals, while providing

the means of creating advanced 3D visualisations to

improve validation of the simulation results.

DEVS provides a framework for the construction of

hierarchical models in a modular fashion, allowing model

reuse, and reducing development and testing time. The

hierarchical nature of DEVS makes it ideal for describing

naturally hierarchical systems as the cell. Likewise, its

discrete-event nature improves the execution performance

due to the asynchronous nature of the events occurring in

the cell. DEVS also uses explicit timing information;

hence, we can adequately represent timing of the reactions

occurring at different levels of abstraction. The advantages

of DEVS have been thoroughly discussed in the literature.

DEVS is compelling because it separates models from

simulators, and because it provides a framework with

which models can be defined as hierarchies of interacting

submodels.

Our models have been created using DEVS, a system’s

theoretical approach that allows the definition of

hierarchical modular models. Why DEVS? Because, as

discussed earlier, this methodology has proved to be very

successful, generic and it is gaining popularity. DEVS

supports hierarchical and modular construction of models,

reducing the development and testing effort. DEVS

decouples the model, experiments and the simulation;

thus, various experiments on the same model can be

executed on different simulation engines (allowing for

portability and interoperability at a high level of

abstraction). A well-defined and formally proven separ-

ation of concerns permits models and simulators to be

independently verified and reused in later combinations

with minimal re-verification. Each DEVS model can be

built as a behavioural (atomic) or a structural (coupled)

model. A real system modelled using DEVS can be

described as a set of atomic or coupled submodels. The

atomic model is the lowest level and defines dynamics,

Molecular Simulation 909

D
ow

nl
oa

de
d

by
 [

13
4.

11
7.

24
9.

55
]

at
 1

0:
08

 0
8

O
ct

ob
er

 2
01

3

while the coupled are structural models composed of one

or more atomic and/or coupled models. An atomic DEVS

model is defined as

M ¼ kX; S; Y ; dint; dext; l; tal;

where M is an atomic DEVS model defined by the

following: X is the external input event set; S is the

sequential state set; Y is the external output event set; dint:

S ! S is the internal transition function; dext: Q*X ! S is

the external transition function, where Q ¼ {(s,e)js [S,

and e [[0,ta(s)]} is the total state set and e is the

elapsed time since last state transition; l: S ! Y is the

output function; and ta: S ! R0
þ < 1 is the time advance

function.

Each atomic model can be seen as having an interface

consisting of input (X) and output (Y) ports to

communicate with other models. Every state (S) in the

model is associated with a time advance (ta) function,

which determines the duration of the state. Once the time

assigned to the state is consumed, an internal transition is

triggered. At that moment, the model execution results are

spread through the model’s output ports by activating an

output function (l). Then, an internal transition function

(dint) is fired, producing a local state change. Input external

events are collected in the input ports. An external

transition function (dext) specifies how to react to those

inputs.

A coupled DEVS model is formed by configuring

several atomic models or coupled models, and it is defined

as

CM ¼ kX; Y;D; {Mi}; {Ii}; {Zij}; select l;

where CM is a coupled DEVS model defined by the

following: X is the external input event set; Y is the external

output event set; D [N, D , 1 is an index for the

components of the coupled model; Mi: ;i [D, Mi is a

basic DEVS model (an atomic or a coupled model),

defined by

Mi ¼ kXi; Si; Yi; dinti; dexti;li; tail;

Ii is the set of influences of i and ;j [Ii (the models that

can be influenced by outputs of model i); Zij: Yi ! Xj,

;j [D, Zij is the i to j output translation function; and

select is a function, the tie-breaking selector.

Coupled models are defined as a set of basic

components (atomic or coupled), which are interconnected

through the models’ interfaces. The models’ coupling

defines how to convert the outputs of a model into inputs

for the others, and how to handle inputs/outputs from/to

external models.

As discussed in [16 – 18], DEVS provides the

following major advantages compared to other method-

ologies:

(a) Independency between modelling and simulation

mechanisms, which allows DEVS models to be

executed interchangeably in single-processor, parallel

or real-time engines without changes. Likewise, the

use of DEVS as the basic formal specification

mechanism enables one to define interactions with

models in other formalisms (i.e. PDE, Cellular

Automata, Petri nets, finite elements, finite differ-

ences, etc.), and integration between these formalisms

could be easily used for defining complex models

with diverse methods [23]. This approach provides

evolvability of the models through a technique that is

easy to understand, and able to be combined with

other techniques.

(b) DEVS enables high-performance execution due to its

discrete-event nature. In [17,18], we showed varied

experiments in which the application of DEVS can

improve the execution performance (of both discrete

and continuous models) in several orders of

magnitude. Also, as the simulation engines are

independent from the models themselves, we

introduced a parallel simulation engine that can

improve performance further without modifications to

the model. It has been shown that DEVS combined

with parallel simulation techniques can produce

speedups of up to 1000 times [17,18]. This is

particularly important for biological systems, in

which timescales vary at the different levels of the

modelled hierarchy (from thousands of reactions per

second at the intracellular level up to seconds or

minutes at the organelle level). In order to provide

precise timing behaviour; traditional discrete-time

simulators (such as those used for simulating PDEs)

need to find a common timeslot for all the levels in the

system in order to be able to activate every component

in the model at the smallest possible rate.

(c) DEVS provides the advantages of being a formal

approach: a formal conceptual model can be

validated, improving the error detection process and

reducing testing time (thus improving the quality and

development costs of a simulation). DEVS provides

facilities to translate the formal specifications into

executable models, facilitating the verification of the

simulator and the validation against the real system.

(d) The existence of an internal transition function is a

unique feature that eases the definition of certain

properties. Internal state changes can be captured,

describing complex internal interactions in a simple

and elegant way (in biological systems, it is good to

have a mechanism to represent state changes without

the influence of external factors). DEVS is also a

time-based formalism, in which representing timing

information in the models is straightforward.

Although the state associated with any submodel

may change only at discrete times, DEVS exploits an

G. Wainer and R. Djafarzadeh910

D
ow

nl
oa

de
d

by
 [

13
4.

11
7.

24
9.

55
]

at
 1

0:
08

 0
8

O
ct

ob
er

 2
01

3

‘elapsed time’ parameter to facilitate the represen-

tation of continuously changing system properties.

This is valuable to represent the time information for

the cell components. Modelling of these phenomena

is difficult under other techniques.

(e) DEVS theory has been extended to be able to express

hybrid systems (i.e. those with both discrete and

continuous components). The theory can be applied to

predictive quantisation of arbitrary ordinary differen-

tial equation models [24], represented as combined

discrete-event/differential equation formalism

approximated by DEVS.

Arguably the most compelling reason to use DEVS is that

the formalism facilitates hierarchical model design. The

separation of model and simulator is also a significant

advantage, but the separation of different aspects of the

model is the key to addressing the complexity of a

biological system and the methods used to simulate it.

Despite the popularity of the DEVS formalism and the

widespread use of simulation in the study of biological

systems, the application of DEVS to biological models is

still relatively rare. The results presented here show one of

the first attempts. Two other groups (one led by Adelinde

M. Uhrmacher at the University of Rostock, and a second

one by Prof. A. Hunt at UCSF) have also applied DEVS to

various models of biological systems. The following

examples show some recent efforts that have used DEVS

for modelling biological systems. In most of these

examples, the authors used the DEVS software for

defining a concrete application (instead of building a

ready-to-use library).

For instance, in [11,25], the authors presented a DEVS

model of liver lobules, which make up the main functional

and structural component of the liver (which is comprised

of thousands of them). When blood flows through a lobule,

it undergoes several chemical reactions in multiple stages.

In [11], the lobule was modelled like a hexagonal cylinder

including multiple zones (as seen in Figure 1). There are

three stages (zones), comprising several interconnected

nodes, whose number is proportional to the approximated

lobule volume of that particular zone. Each node is

responsible for receiving a substance, and transforming it,

and each node works interdependently of each other.

In [25], a DEVS model of the lobule was built based on

these assumptions (which was easily defined as a DEVS

coupled model following the structure presented in

Figure 1). The model’s behaviour was defined based on

the equations introduced in [11], where each node has its

own set of parameters to determine the output when given

a certain input. Each node is given a delay to represent the

time it takes for a substance reaction to reach completion.

In [25,26], a model of interaction of synapsin and

vesicles was defined using DEVS as the underlying

methodology. Synapsin is a neuron-specific phosphopro-

tein that binds to small synaptic vesicles and actin

filaments in a phosphorylation-dependent pattern. The idea

was to model the reserve pool of synaptic vesicles,

predicting the number of synaptic vesicles released from

the reserve pool as a function of time under the influence

of action potentials (APs) at differing frequencies. The

model defines the molecular interactions of synapsin (S)

with vesicles (V) which occur inside a nerve cell, and the

behaviour of synapsin movements until reaching a vesicle

and binding to it. Once binding has occurred, depending on

offrate, V and S can break their bindings and separate. The

onrate and offrate describe how often bindings occur or

break then after. Different scenarios were modelled: (1) V

is stationary (with a fixed position on cell space) and S is

mobile; (2) V is mobile and S is stationary; and (3) Vand S

are both mobile (leads to a maximum number of total

movements and therefore bindings). Binding patterns are

in such a way that each S can bind to more than one V, and

V can bind to more than one S. Examples of such binding

are presented in Figure 2, which shows a stable image of

synapsin–vesicles bindings where single/double/multiple

bindings had occurred within the neuron.

In [27], an advanced DEVS model was used to

improve the performance of the execution of AP functions.

The model presented an approximation of Hodgkin–

Huxley equations programmed as a DEVS atomic model

(whose results are presented in Figure 3(a)). It then

presented a polynomial approximation to the original PDE

defining the cell’s behaviour (Figure 3(b)), which

transformed the coefficients in the polynomials into

discrete-event signals using DEVS. Each cell used

polynomial coefficients to compute the current state, and

to inform the cell’s state to the neighbouring cells in the

heart tissue. The specification of the local computing

function included in each of the cells will now receive the

Figure 1. Zones and nodes.

Molecular Simulation 911

D
ow

nl
oa

de
d

by
 [

13
4.

11
7.

24
9.

55
]

at
 1

0:
08

 0
8

O
ct

ob
er

 2
01

3

coefficient events from the neighbouring cells. The cell’s

outputs will now be the current cell states specified as

polynomial coefficients. Timing of activation for each

polynomial can be easily defined using the model delay

functions.

DEVS was also used to model tumour-immune systems

that involve growing tumours interacting with immune cells

[28], based on the work done in [12]. Tumours can be

regarded as a core of necrotic cells, surrounded by dormant

cells, surrounded in turn by proliferative cells. The growth of

a tumour is effected by the division of its proliferative cells,

but inhibited by nearby immune cells. The use of DEVS for

defining this model was advantageous, as it facilitated the

formal specification and reuse of cellular models. Simulation

results indicated that, in a qualitative sense, the desired

behaviour of tumours and immune cells was captured. This

can be seen in Figure 4, which shows the simulation results

for this system, in a case where the tumour overwhelms the

immune system. In Figure 4(a), the immune cells have

cleared away a large section of proliferative cells on the

upper side of the tumour. Nevertheless, later, in Figure 4(b),

the tumour has regained this region. It thereafter proceeded

to expand towards the boundaries of the cell space.

Although these works show the feasibility of using

DEVS for modelling and simulation of biological systems,

they are all focused on particular models. The rest of the

paper focuses on how to define a library using the open-

source DEVS software that can be easily modified and

reused. We focus on the design aspects, the integration with

visualisation engines, and on the creation of domain-specific

models. We show the multiple advantages of the DEVS

formalism, permitting the reader to understand how these

models could be created (using the CDþþ toolkit, which

implements DEVS theories [29,30]). We explain how these

models can be applied to the study of mitochondria, in such a

way that the researchers in this field could modify and

improve them, and use them for different applications.

Mitochondria are small double-membrane organelles

found in the cytoplasm of eukaryotic cells. Mitochondria

are responsible for converting nutrients into the energy

yielding molecule, adenosine tri-phosphate (ATP), to fuel

Figure 2. Vesicle–synapsin binding and clustering.

Figure 4. Tumour-immune system simulation: (a) immune cells
attacking the tumour and (b) tumour proliferating.

Figure 3. (a) AP approximation based on Hodgkin–Huxley
equations and (b) DEVS approximation of heart tissue AP.

G. Wainer and R. Djafarzadeh912

D
ow

nl
oa

de
d

by
 [

13
4.

11
7.

24
9.

55
]

at
 1

0:
08

 0
8

O
ct

ob
er

 2
01

3

the cell’s activities [31]. Mitochondria can be divided into

four components: outer membrane; inter-membrane space;

inner membrane; and the matrix (see Figure 5).

The smooth outer membrane holds numerous transport

proteins, which shuttle materials in and out of the

mitochondrion. The components between the outer and

inner membranes have important roles in electron

transport and oxidative phosphorylation. The inner

membrane has many folds, called cristae, which are the

sites of ATP synthesis. The cristae enclose a liquid-filled

region known as the matrix, which contains mitochondrial

genome. These gene products include various enzymes

involved in the process of aerobic respiration, proteins

necessary for the import of proteins, and proteins and

nucleic acids required for the mitochondrial genome [32].

The chief function of the mitochondria is to create energy

for cellular activity by the process of aerobic respiration. In

this process, glucose is broken down in the cell’s cytoplasm

via the glycolysis process, to form pyruvic acid. In a series of

reactions, part of which is called Krebs’ cycle, the pyruvic

acid reacts with water to produce carbon dioxide and

hydrogen. Energy is released as the electrons flow from the

coenzyme down the electron transport chain to the oxygen

atoms. The enzyme ATPase, which is embedded in the inner

membrane, adds a phosphate group to adenosine di-

phosphate (ADP) in the matrix to form ATP. Aerobic

respiration is an ongoing process and mitochondria can

produce hundreds of thousands of ATP molecules/minute.

ATP is transported to the cytoplasm, where it is used for

virtually all energy-requiring reactions. As ATP is used, it is

converted into ADP, which is returned by the cell to the

mitochondrion and is used to build more ATP [33].

Various efforts have focused on the creation of models

of mitochondria. For instance, [34] created a model of

oxidative phosphorylation in different tissues, with the

goal to include these virtual mitochondria in a virtual cell.

We want to carry out simulation-based studies of this

metabolism cycle. In the following sections, we show how

to carry out simulation-based studies of this metabolism

cycle using DEVS.

3. A DEVS model of glycolysis

Glycolysis, also called Embden–Meyerhof pathway, is a

sequence of reactions used by virtually all cells to

metabolise glucose [32]. The role of glycolysis is to

produce energy. Glycolysis generates about 15% of the

energy produced by aerobic respiration, and it is the basis

for the metabolism in virtually all the living creatures. It

consists of a sequence of 10 reactions that converts a

glucose molecule into two pyruvate molecules with the

production of NADH and ATP. Specific enzymes control

each of the different reactions, as shown in Figure 6.

The glycolysis pathway was defined as a DEVS

coupled model, and it was implemented using CDþþ . We

present, as an example, the definition of Step 1, in which

glucose is phosphorylated by ATP to form glucose-6-

phosphate and ADP [35].

Translating the step into a DEVS atomic model is

straightforward. The idea is to define each of the reactions

in Figure 7 as the corresponding activation of the DEVS

functions. Internal state changes are driven by the internal

transition function; external events are handled by the

external transitions. Timing of the reactions can be

precisely defined by the time advance function. In this

case, the atomic model is defined by

Matrix
Outer

membrane

Inner
membrane

Intermembrane
space

Ribosome

Enzymes

mDNA

Cristae

Figure 5. Scheme of the mitochondria.

Glucose

Step 1
ATP

ADP

ATP

ADP

ADP

ATP

X 2

ADP

ATP

NAD+

NADH

Step 2

Step 3

Step 4
Step 5

Step 4 to 5
Step 6

Step 7

Step 8

Step 9

Step 10

Glucose-6-phosphate

Fructose-6-phosphate

Fructose-1,6-bisphosphate

1,3-Diphosphoglycerate
(DPGA)

3-Phosphoglycerate
(3-PGA)

2-Phosphoglycerate
(2-PGA)

Phosphoenolpyruvate
(PEP)

Pyruvate

Glyceraldehyde-3-phosphate
(GDP) (PGAL)

Dihydroxyacetone phosphate
(DHP)

Figure 6. Glycolysis pathway.

Molecular Simulation 913

D
ow

nl
oa

de
d

by
 [

13
4.

11
7.

24
9.

55
]

at
 1

0:
08

 0
8

O
ct

ob
er

 2
01

3

As we can see, the external transition function is

invoked every time glucose, ATPi or hexokinase are

received, and the reactions previously discussed of the step

to the enzyme (hexokinase) or each of the inputs (glucose

and ATPi) as previously described in Figure 6. The internal

transition function schedules an internal event after a

preparation time describing the timing for the transfer. If

there is glucose, ATPi and hexokinase in the system, then

the reaction will happen.

When the time interval expires, the output function is

invoked and the first value in Step 1 is sent through the

corresponding output port. In this case, the output function

is activated when all the conditions of the external function

have been satisfied, i.e. all three input events are in, and the

reaction can happen. As a result, ADP, glycose_6_pho-

sphate and H will be sent out through the corresponding

output ports.

After calling the output function, the internal transition

function is invoked. The internal transition function will

produce an internal state change according to the

substances available in the mitochondria. This function

updates the number of substances available according to

the reaction, and it then passivates, waiting for the next

input.

In this case, dint passivates the model and resets the

counter (i.e. an internal event with infinite delay is

scheduled, waiting for the next input).

The remaining steps of Figure 6 (steps 2–10) were

developed using a similar approach: the behaviour of each

component was carefully specified with an analysis of

inputs and outputs for each step; then, each step was

defined as a DEVS model following the specification.

Finally, each model was implemented in CDþþ , and

tested separately. Numerous simulations were carried out

individually for each of the steps, validating the results

with those found in the literature [20,21]. Performing

individual tests of all possible cases for each step is very

simple, as DEVS provides well-defined interfaces, and the

hierarchical decomposition mechanism allows one to do

exhaustive analysis of each subcomponent, finding errors

very quickly and being able to fix them without much

effort. Once every step was thoroughly tested, the main

model was built as a coupled model connecting all the

submodels (see Figure 8 and the corresponding textual

notation on Table 9 in the appendix).

This model was defined in CDþþ [29,30], which is a

modelling and simulation tool defined using the specifica-

tions of the DEVS formalism. CDþþ is built as a class

hierarchy of models related to simulation processing

entities. DEVS atomic models can be programmed and

incorporated onto the Model basic class hierarchy using

Cþþ . Once an atomic model is defined, it can be

combined with others into a multi-component model using

a specification language specially defined with this

purpose. CDþþ also provides client/server services,

which provide remote access to a high-performance

simulation server. Using these facilities, the users can

develop and test their models in local workstations, and

Step 1 ¼ kS;X; Y ; dint; dext; ta; ll; t

S ¼ {atpc, glucosec, ifhex, counter, phase, sigma};

X ¼ {glucose, ATPi, hexokinase};

Y ¼ {glucose_6_phosphate, ADP, H};

dext (phase ¼ passive, e, ATPi) ¼ {ATPi ¼ TRUE};

dext (phase ¼ passive, e, glucose) ¼ {glucose ¼ TRUE};

dext (phase ¼ passive, e, hexokinase) ¼ {hexokinase ¼ TRUE};

l (phase ¼ passive, ATPi ¼ glucose ¼ hexokinase ¼ TRUE) ¼ glucose_6_phosphate, ADP, H;

dint (phase ¼ passive, ATPi ¼ glucose ¼ hexokinase ¼ TRUE) ¼ {phase ¼ active};

dint (phase ¼ active) ¼ {phase ¼ passive};

ta (passive, any(ATPi, glucose, hexokinase) ¼ TRUE) ¼ 0.2 ms;

ta (phase ¼ active) ¼ reaction_time(Step1).

Figure 7. Step1 of glycolysis [35].

G. Wainer and R. Djafarzadeh914

D
ow

nl
oa

de
d

by
 [

13
4.

11
7.

24
9.

55
]

at
 1

0:
08

 0
8

O
ct

ob
er

 2
01

3

submit them in a remote CDþþ high-performance server.

Then, they can receive, visualise and analyse the results on

a local computer, improving model definition and

execution. First, the components of the coupled model

are defined. Then, the input and output ports are included.

Finally, the links show the translation functions.

When we execute this model in CDþþ , we can study

the model’s behaviour by analysing the model’s outputs.

One simulation scenario we created validating the

glycolysis model is presented in Table 1.

These simulation results accurately describe the

reactions occurred during glycolysis [33], following the

results of Figure 2. Tables 1 and 2 show the input/output

trajectories for the glycolysis model and Step 1, res-

pectively. As we can see in Table 2, by time 30:00, we have

Figure 8. Coupled model of glycolysis.

Table 1. Inputs/outputs for glycolysis model.

Inputs Outputs

10:00 glucose 2 50:000 h 2
18:00 ATPi 3 72:000 nadh 2
50:00 hexokinase 1 72:000 h 2
51:00 phospohGlucoisomerase 1 72:000 atpo 2
52:00 PFK 2 72:000 h2o 2
53:00 isomerase 1 72:000 atpo 2
55:00 aldolase 1 72:000 pyruvate 2
62:00 G3PD 1
63:00 PGK 1
64:00 PGM 1
65:00 enolase 1
67:00 pyruvKinase 1
70:00 NAD 3
72:00 P 2

Molecular Simulation 915

D
ow

nl
oa

de
d

by
 [

13
4.

11
7.

24
9.

55
]

at
 1

0:
08

 0
8

O
ct

ob
er

 2
01

3

all the three inputs required to produce a reaction. At time

30:00, two glucoses and six ATPi enter the system

generating two ADP, two glucose_6_phosphate and two H

molecules.

Figure 9 shows the execution results for Step 1 using

the CDþþ modeller. CDþþ allows the execution of the

same model using a local application or a remote server.

Once the simulation is done, the user can analyse the

simulation results using different visualisation tools. In

this way, specialists located remotely are able to run

different experiments, and to analyse them locally using

the visual tools presented here. In Figure 9, we see that at

time 40:00, four glucose molecules enter the system

generating four more outputs of each of the ADP,

glucose_6_phosphate and H molecules.

In [19], we presented CDþþ /Maya, an application to

generate 3D visual representation of DEVS models.

Autodesk Maya [36] is a software application for 3D

digital animation and visual effects. It provides a suite of

tools for 3D world creation, including animation,

rendering, dynamics, etc. In CDþþ /Maya, the log files

generated from CDþþ can be translated into 3D

representations. We used CDþþ /Maya to create 3D

graphics and animations for the glycolysis model. Figure

10 shows a snapshot of the animation. In this case, we

show that, while the enzymes are entering the reactions,

their names are being added as text to the top of the screen

for clarity.

4. Krebs’ cycle modelling

Krebs’ cycle, also called the tri-carboxylic acid cycle and

the citric acid cycle (CAC), oxidises pyruvate formed

during the glycolysis pathway into CO2 and H2O. This

cycle is a series of chemical reactions of central

importance in all living cells that utilise oxygen. The

CAC takes place within the mitochondria in eukaryotes,

and within the cytoplasm in prokaryotes. For each turn of

the cycle, 12 ATP molecules are produced, one directly

from the cycle and 11 from the reoxidation of the

three NADH molecules and one FADH2 molecule

produced by the cycle by oxidative phosphorylation [37].

Glucose is converted by glycolysis into pyruvate.

Pyruvate enters the mitochondria, linking glycolysis to

Krebs’ cycle. This step (Step A), as seen in Figure 11, is

also called the bridging step. Pyruvate dehydrogenase – a

complex of three enzymes and five coenzymes – oxidises

pyruvate using NADþ to form acetyl CoA, NADH

and CO2.

We defined a model of Krebs’ cycle (depicted in

Figure 11), using identical principles than the ones used in

the previous section. In Step A, as seen in Figure 12,

Table 2. Inputs/outputs for step 1.

Inputs Outputs

15:00 hexokinase 1 30:000 adp 2
30:00 glucose 2 30:000 glucose_6_phosphate 2
30:00 ATPi 6 30:000 h 2
40:00 glucose 4 40:000 adp 4
40:00 ATPi 1 40:000 glucose_6_phosphate 4
55:00 glucose 1 40:000 h 4
55:00 ATPi 1 55:000 adp 1
65:00 glucose 1 55:000 glucose_6_phosphate 1

55:000 h 1
65:000 adp 1
65:000 glucose_6_phosphate 1
65:000 h 1

Figure 9. Atomic animation of Step 1 of glycolysis.

G. Wainer and R. Djafarzadeh916

D
ow

nl
oa

de
d

by
 [

13
4.

11
7.

24
9.

55
]

at
 1

0:
08

 0
8

O
ct

ob
er

 2
01

3

pyruvate is degraded and combined with coenzyme A to

form acetyl coenzyme A. NADH and CO2 are released

during this process (Step A is the link between glycolysis

and Krebs’ cycle).

The atomic model for Step A of Krebs’ cycle is shown

in Figure 13.

The DEVS atomic model for Step A is defined as

Step A ¼ kS;X; Y; dint; dext; ta; ll;

S ¼ {pyruvatec, pyruvateDehydrogenase, hscoaic, nadc,

counter, phase, sigma}; X ¼ {pyruvate, pyruvateDehy-

drogenase, HSCoAi, NAD}; Y ¼ {acetyl_CoA, NADH, H,

Figure 10. Visualisation of the glycolysis execution in CDþþ /Maya: Step 6.

Acetyl_CoA

Citrate

Isocitrate

Oxaloacetate

Malate

Fumarate

Succinate

Succinyl_CoA

α-Ketoglutarate

Pyruvate
NAD+

NADH

CO2

NAD+

NADH

NAD+

NADH

CO2

NAD+

NADH

CO2

FADH2

FAD

GTP

GDP

P

StepA

StepB1

StepB2

StepB3

StepB4
StepB5

StepB6

StepB7

StepB8

Figure 11. Krebs’ cycle reactions.

Figure 12. Step A of Krebs’ cycle [35].

StepA

Acetyl CoA

NADH

H

CO2

HSCoA

Pyruvate

Pyruvate dehydrogenase

NAD+

Figure 13. Atomic model for Step A of Krebs’ cycle.

Molecular Simulation 917

D
ow

nl
oa

de
d

by
 [

13
4.

11
7.

24
9.

55
]

at
 1

0:
08

 0
8

O
ct

ob
er

 2
01

3

CO2}; dint ¼ internal function; dext ¼ external function;

ta ¼ time advance (it controls the timing of internal

transitions: when the sigma state variable is present, this

function just returns the value of sigma; sigma holds the

time remaining to the next internal event); and l ¼ output

function.

Table 3 shows the external transition function. The

external transition function will be invoked every time

pyruvate, pyruvate dehydrogenase, HSCoAi or NAD

arrives. When an event arrives at any of the input ports, its

value is added to a counter kept for that kind of input

(pyruvatec, ifpyruvate dehydrogenase, hscoaic and nadc).

Once the value of the counter of the input event is

incremented, the condition for the other requirements is

checked. For example, if the input event is pyruvate, the

pyruvate counter value is incremented by the value of the

pyruvates entered, and then it is checked against other

input counters: hscoaic; nadc; and ifpyruvate dehydro-

genase. If there are NAD, HSCoAi and pyruvate

dehydrogenase present in the system, then the reaction

will happen. In the case of pyruvate dehydrogenase, since

it is an enzyme and its presence is only needed for the

reaction, its value is set to true.

Table 4 shows the internal function for Step A of

Krebs’ cycle. Before calling this method, the sigma value

is zero because the interval to the internal transition has

expired. When the preparation time interval expires and

after calling the output function, this method is invoked.

Table 5 shows the output function for Step A of Krebs’

cycle. When the preparation time interval expires, this

method is invoked and the Acetyl_CoA, NADH, CO2 and

H have to be sent out through the output ports. The internal

transition function updates the counter of molecules

available in the mitochondria, and passivates the model

waiting for the next arrival of a substance.

The definition of Krebs’ coupled model using CDþþ

is presented in Figure 14, which was transformed into a

CDþþ specification, seen in the Appendix. The figure

presents a sketch of the coupled model for Krebs’ cycle.

All the remaining steps were developed using a similar

approach. To do this, the behaviour of each component was

carefully specified with an analysis of inputs and outputs.

Each step was defined as a DEVS model following the

specification. Afterwards, each model was implemented in

CDþþ , connecting all the submodels defined, as in Figure

15. CDþþ permits defining coupled models as this one

using a graphical user interface. Figure 15 presents the

visual input creation of this coupled model, which is

exported to CDþþ notation to be executed.

Table 6 lists the input event files (stepA.ev) which

include a list of inputs with their timestamp and value, and

the output files (stepA.out) which include the outputs

resulted from simulation, for three different scenarios.

In scenario 1, the first input event pyruvate enters at

time 00:00:15:00 and has a value 5. The second input is

HSCOi with a value 1 and it enters at time 00:00:15:00.

The third input is NAD with timestamp 00:00:35:00 and a

value 2. The last input is the enzyme pyruvate

dehydrogenase which enters at time 00:00:42:00 with a

value 1. All the outputs are generated at time

00:00:42:000, at the same time that the last input enters.

This means that all the four inputs are needed for any

output to be generated.

Table 3. External transition function (dext).

dext (s, e, x) {
if (x ¼ pyruvate) {

Pyruvatec ¼ pyruvatec þ x;
if (hscoaic . 0 and nadc . 0 and ifpyruvateDehydrogenase ¼ true)

ta(active, prep_time);
}
else if (x ¼ HSCoAi) {
hscoaic ¼ hscoaic þ x;
if (pyruvatec . 0 and nadc . 0 and ifpyruvateDehydrogenase ¼ true)

ta(active, prep_time);
}
else if (x ¼ NAD) {
nadc ¼ nadc þ msg.value();
if (pyruvatec . 0 and hscoaic . 0 and ifpyruvateDehydrogenase ¼ true)

ta(active, prep_time);
}
else if (x ¼ pyruvateDehydrogenase) {
ifpyruvateDehydrogenase ¼ true;
if (pyruvatec . 0 and hscoaic . 0 and nadc . 0)

ta(active, prep_time);
}

}

G. Wainer and R. Djafarzadeh918

D
ow

nl
oa

de
d

by
 [

13
4.

11
7.

24
9.

55
]

at
 1

0:
08

 0
8

O
ct

ob
er

 2
01

3

In Scenario 2, the input event file produces an empty

output file. This is because the enzyme pyruvate

dehydrogenase is missing from the input list. In

scenario 3, we have two sets of outputs generated.

The first set is generated at time 00:01:25:000, and

the second set are generated at time 00:03:01:000.

As we can see, pyruvate dehydrogenase enters at time

00:00:42:00 with a value 1. Since only the presence of this

enzyme is needed, one unit of this input is enough.

The number of total outputs (2 unit of each) matches the

lowest value of any other input event which in this case is

equal to the total number of HSCoAi in the input list (1

unit at time 00:01:25:00, and another unit at time

00:03:01:00).

Table 4. Internal transition function (dint).

dint (s, e) {
counter ¼ 0;
if (pyruvatec . ¼ 1 and hscoaic . ¼ 1 and nadc . ¼ 1 and ifpyruvateDehydrogenase ¼ true) {

if (pyruvatec . ¼ hscoaic and hscoaic . ¼ nadc) {
pyruvatec ¼ pyruvatec 2 nadc;
hscoaic ¼ hscoaic 2 nadc;
counter ¼ nadc;
nadc ¼ 0;

}
else if ((pyruvatec . ¼ nadc) && (nadc . ¼ hscoaic)) {

pyruvatec ¼ pyruvatec 2 hscoaic;
nadc ¼ nadc 2 hscoaic;
counter ¼ nadc;
hscoaic ¼ 0;

}
else if ((hscoaic . ¼ nadc) && (nadc . ¼ pyruvatec)) {

nadc ¼ nadc 2 pyruvatec;
hscoaic ¼ hscoaic 2 pyruvatec;
counter ¼ pyruvatec;
pyruvatec ¼ 0;

}
else if ((hscoaic . ¼ pyruvatec) && (pyruvatec . ¼ nadc)){

pyruvatec ¼ pyruvatec 2 nadc;
hscoaic ¼ hscoaic 2 nadc;
counter ¼ nadc;
nadc ¼ 0;

}
else if ((nadc . ¼ pyruvatec) && (pyruvatec . ¼ hscoaic)){

pyruvatec ¼ pyruvatec 2 hscoaic;
nadc ¼ nadc 2 hscoaic;
counter ¼ hscoaic;
hscoaic ¼ 0;

}
else if ((nadc . ¼ hscoaic) && (hscoaic . ¼ pyruvatec)) {

hscoaic ¼ hscoaic 2 pyruvatec;
nadc ¼ nadc 2 pyruvatec;
counter ¼ pyruvatec;
pyruvatec ¼ 0;

}
else if ((pyruvatec ¼ ¼ hscoaic) && (hscoaic ¼ ¼ nadc)) {

counter ¼ pyruvatec;
pyruvatec ¼ nadc ¼ hscoaic ¼ 0;

}
}

}

Table 5. Output function (l).

l (s) {
if (counter is not zero)
send outputs through the ports; //Acetyl_CoA, NADH, CO2, H

}

Molecular Simulation 919

D
ow

nl
oa

de
d

by
 [

13
4.

11
7.

24
9.

55
]

at
 1

0:
08

 0
8

O
ct

ob
er

 2
01

3

After testing all the atomic models one by one, and

adding them on top of each other and testing them again,

we can make sure that all the submodels are free of error.

Once all the basic atomic models are tested, the Krebs’

coupled model is formed by connecting all the previously

tested atomic models.

Table 7 shows the input and output files for three

different scenarios for the Krebs’ coupled model.

These simulation results accurately describe the

reactions occurred in the mitochondria, as described in

Figure 16.

Table 8 shows a list of the input and output events for

Krebs’ model. Figure 16 demonstrates the atomic

animation for this set of inputs and outputs. This time,

for each event chosen in the input event, a timeline starting

exactly based on the time specified in Table 8 is drawn,

with the value of the event marked on the line.

Figure 17 shows snapshots of some of the reactions in

the Krebs’ cycle animation done in CDþþ /Maya. Figure

17(a) shows the beginning of the reaction, in which one

pyruvate and four NADþ appear. Figure 17(b) shows the

formation of acetyl CoA, and the production of carbon

dioxide and NADH as by-products.

5. Discussion and conclusions

During the last several decades, computer simulation has

become an integral part in both the basic and applied fields

Figure 14. Coupled model of Krebs’ cycle.

G. Wainer and R. Djafarzadeh920

D
ow

nl
oa

de
d

by
 [

13
4.

11
7.

24
9.

55
]

at
 1

0:
08

 0
8

O
ct

ob
er

 2
01

3

of biological research. The hierarchical and discrete-event

capabilities of DEVS make it an ideal method for

modelling biological events. As illustrated herein, CDþþ

can be used to model and simulate biological pathways

using a systematic method with models that consist of sets

of lower-level interactions. We show how suitable

hierarchies can help biologists and medical researchers

simulate complex biological systems with code that can be

Figure 15. Defining the Krebs’ coupled model using the CDþþ modeller.

Table 6. Input event files and corresponding output files resulted from simulating Step A of Krebs’ cycle.

Scenario StepA.ev StepA.out

1 00:00:15:00 pyruvate 5 00:00:42:000 acetyl_coa 1
00:00:25:00 HSCoAi 1 00:00:42:000 nadh 1
00:00:35:00 NAD 2 00:00:42:000 co2 1
00:00:42:00 pyruvateDehydrogenase 1 00:00:42:000 h 1

2 00:00:15:00 pyruvate 5
00:00:25:00 HSCoAi 1
00:00:35:00 NAD 2

3 00:00:15:00 pyruvate 1 00:01:25:000 acetyl_coa 1
00:00:35:00 NAD 2 00:01:25:000 nadh 1
00:00:42:00 pyruvateDehydrogenase 1 00:01:25:000 co2 1
00:01:25:00 HSCoAi 1 00:01:25:000 h 1
00:02:15:00 pyruvate 5 00:03:01:000 acetyl_coa 1
00:02:35:00 NAD 4 00:03:01:000 nadh 1
00:03:01:00 HSCoAi 1 00:03:01:000 co2 1

00:03:01:000 h 1

Molecular Simulation 921

D
ow

nl
oa

de
d

by
 [

13
4.

11
7.

24
9.

55
]

at
 1

0:
08

 0
8

O
ct

ob
er

 2
01

3

easily understood and modified. The different examples

presented here show how one can organise the models in a

manageable way.

Using this method, complex simulations can be built

and validated incrementally. The use of DEVS, combined

with domain-specific libraries, provides a system that

allows even non-computer science specialists the ability to

develop complex simulation models for specific research

problems. This approach also enables reuse of simulation

components and allows seamless integration of these

components into more complex simulation models. This

capability would allow for sharing and interoperability of

model components, thus aiding the development of a wide

variety of model implementations for the broader medical

research field.

Table 7. Event and output files of Krebs’ coupled model.

Scenario Krebs.ev Krebs.out

1 00:00:10:00 pyruvate 1 00:01:11:000 nadh 1
00:00:25:00 NAD 2 00:01:11:000 co2 1
00:00:40:00 H2O 2 00:01:11:000 h 1
00:00:57:00 HSCoAi 2 00:02:01:000 hscoao 1
00:01:11:00 pyruvateDehydrogenase 1 00:02:01:000 h 1
00:02:01:00 oxaloacetate 1 00:02:30:000 co2 1
00:02:14:00 acontinase 1 00:02:30:000 nadh 1
00:02:30:00 isocitrateDehydrogenase 1 00:02:30:000 co2 1
00:02:30:00 alpha_ketoglutarateDehydrogenase 1 00:02:30:000 h 1
00:02:50:00 succinylCoA_Synthetase 1 00:03:11:000 hscoao 1
00:03:l0:00 GDP 1 00:03:11:000 gtp 1
00:03:11:00 Pi 1 00:03:28:000 fadh2 1
00:03:15:00 FAD 1 00:03:45:000 nadh 1
00:03:28:00 succinateDehydrogenase 1 00:03:45:000 h 1
00:03:40:00 fumarase 1
00:03:45:00 malateDehydrogenase 1

2 00:00:10:00 pyruvate 1 00:03:12:000 nadh 1
00:00:25:00 NAD 2 00:03:12:000 co2 1
00:00:40:00 H2O 1 00:03:12:000 h 1
00:03:45:00 malateDehydrogenase 1 00:03:45:000 hscoao 1
00:00:57:00 HSCoAi 2 00:03:45:000 h 1
00:01:14:00 citrateSynthase 1 00:03:45:000 nadh 1
00:02:14:00 acontinase 1 00:03:45:000 co2 1
00:02:30:00 isocitrateDehydrogenase 1 00:03:45:000 nadh 1
00:02:30:00 alpha_ketoglutarateDehydrogenase 1 00:03:45:000 co2 1
00:02:50:00 succinylCoA_Synthetase 1 00:03:45:000 h 1
00:03:l0:00 GDP 1 00:03:45:000 hscoao 1
00:03:11:00 Pi 1 00:03:45:000 gtp 1
00:03:12:00 pyruvateDehydrogenase 1 00:03:45:000 fadh2 1
00:03:15:00 FAD 1 00:03:45:000 nadh 1
00:03:28:00
succinateDehydrogenase 1 00:03:45:000 h 1
00:03:40:00 fumarase 1
00:03:45:00 oxaloacetate 1

3 00:00:10:00 pyruvate 1 00:03:12:000 nadh 1
00:00:25:00 NAD 2 00:03:12:000 co2 1
00:00:40:00 H2O 1 00:03:12:000 h 1
00:03:45:00 malateDehydrogenase 1
00:00:57:00 HSCoAi 2
00:02:14:00 acontinase 1
00:02:30:00 isocitrateDehydrogenase 1
00:02:50:00 succinylCoA_Synthetase 1
00:03:l0:00 GDP 1
00:03:11:00 Pi 1
00:03:12:00 pyruvateDehydrogenase 1
00:03:15:00 FAD 1
00:03:28:00 succinateDehydrogenase 1
00:03:40:00 fumarase 1
00:03:45:00 oxaloacetate 1

G. Wainer and R. Djafarzadeh922

D
ow

nl
oa

de
d

by
 [

13
4.

11
7.

24
9.

55
]

at
 1

0:
08

 0
8

O
ct

ob
er

 2
01

3

As illustrated in this paper, the use of DEVS (which

was used to model and simulate biological pathways –

glycolysis and Krebs’ cycle) provided a systematic method

in which a model consists of a set of lower-level

interactions. The use of DEVS enables proving the

correctness of the simulation engines and permits to model

the problem even by a non-computer science specialist.

The high-level language of DEVS reduces the algorithmic

complexity for the modeller while allowing complex

cellular timing behaviours. Sharing and interoperability of

model implementations, focusing in different model

examples in the area of medicine, is a means of developing

independent models that can be integrated at the level of

DEVS interactions, and how models can be composed into

simulations that can execute in distributed environments.

We used an example based on the development of

models for mitochondria, which are complex organelles

that can be modelled as systems with hierarchical

Figure 16. Atomic animation of Krebs’ cycle.

Table 8. Inputs and outputs for Krebs’ model.

Inputs (krebs.ev) Outputs (krebs.out)

00:00:10:00 pyruvate 1 00:01:11:000 nadh 1
00:00:25:00 NAD 2 00:01:11:000 co2 1
00:00:40:00 H2O 2 00:01:11:000 h 1
00:00:57:00 HSCoAi 2 00:02:01:000 hscoao 1
00:01:11:00 pyruvateDehydrogenase 1 00:02:01:000 h 1
00:01:14:00 citrateSynthase 1 00:02:30:000 nadh 1
00:02:01:00 oxaloacetate 1 00:02:30:000 co2 1
00:02:14:00 acontinase 1 00:02:30:000 nadh 1
00:02:30:00 isocitrateDehydrogenase 1 00:02:30:000 co2 1
00:02:30:00 alpha_ketoglutarateDehydrogenase 1 00:02:30:000 h 1
00:02:50:00 succinylCoA_Synthetase 1 00:03:11:000 hscoao 1
00:03:l0:00 GDP 1 00:03:11:000 gtp 1
00:03:11:00 Pi 1 00:03:28:000 fadh2 1
00:03:15:00 FAD 1 00:03:45:000 nadh 1
00:03:28:00 succinateDehydrogenase 1 00:03:45:000 h 1
00:03:40:00 fumarase 1
00:03:45:00 malateDehydrogenase 1

Molecular Simulation 923

D
ow

nl
oa

de
d

by
 [

13
4.

11
7.

24
9.

55
]

at
 1

0:
08

 0
8

O
ct

ob
er

 2
01

3

structure. Many complex reactions can occur in mito-

chondria, typically arranged to form multiple self-

compensating feedback loops. Moreover, the chemical

reactions always occur due to the presence of suitable

enzymes, and in specifically dedicated sites in the cell or

within its organelles. This combination of high overall

complexity, multiple layers of behaviour (cell, organelles

and specific reaction sites) and local confinement of the

behavioural elements (i.e. the chemical reactions) makes a

block decomposition approach such as the one advocated

by the DEVS formalism extremely effective. In addition to

that, the CDþþ toolkit fully supports hierarchical and

compositional system specification in the modelling,

testing, deployment and execution phases. Deterministic

models based on differential equations used for other

applications are regarded as inadequate for these processes

of considerable complexity.

The definition of these models using the DEVS

formalism brings two major benefits to scientists interested

in studying the behaviour of cells or similarly challenging

biological systems. The first benefit is modelling

effectiveness, to be understood as a combination of

different factors that ease the work of the creators and

maintainers of models, as well as improving its quality.

A first important factor is the increased under-

standability yielded by hierarchical model representations.

Here, the structured DEVS language and the modelling

tools work together to make the models of complex

biological systems manageable within the user’s

grasp. These features also bring about another significant

factor, composability and information hiding. Details are

effectively encapsulated and hidden, so that more and

more models can be assembled together, leveraging

multiple aggregation layers without jeopardising the

overall model comprehension.

Beyond the two core factors outlined above, there are

other ways in which our approach based on DEVS

increases modelling effectiveness. First, the modular and

hierarchical decomposition of the models allows distribut-

ing the modelling tasks themselves across a team of

scientists, due to the clear interfaces defined between the

component parts of a coupled model. Second, and

somewhat analogously, the model structure eases also

the testing work, by allowing naturally planning and

executing multi-level and hierarchical test strategies.

Creating advanced 3D visualisation environments is also

straightforward. Visualisation is an important aspect of

modelling and simulation, and it is very important in the

domain of biological systems (as it provides a mechanism

for validating the execution of the simulations, and the

relationships with in vitro experiments). Nevertheless, this

aspect is usually dismissed or postponed for later versions

of the model. Instead, in our case, simulation results can be

easily used to construct useful 2D and 3D images,

including animations via Autodesk Maya.

Another major benefit brought about by DEVS is

execution performance improvement. In this discrete-

event simulation execution model, time advances in a

discontinuous and irregular way depending on the next

relevant event. This approach effectively replaces the

quantised continuum of the temporal and spatial physical

dimensions with a logical state space, evolving according

to systems theoretical principles.

Other approaches that do not abstract away from the

continuous physical space and time, such as [38,39], are

able to process very precise information (e.g. the exact

space disposition of molecules or the probability of a

molecule passing through a small gap). Nevertheless, these

models have typically to pay the price of increased

computational resources and lower scalability with respect

to the model size and complexity. Moreover, these

Figure 17. (a) Krebs’ cycle begins and (b) acetyl CoA is formed.

G. Wainer and R. Djafarzadeh924

D
ow

nl
oa

de
d

by
 [

13
4.

11
7.

24
9.

55
]

at
 1

0:
08

 0
8

O
ct

ob
er

 2
01

3

approaches typically require some tuning of the simulation

time steps, which can also cause a higher number of

simulation runs and thus an increased computation load.

When we compare the size of the teams, the effort

involved and the duration of the efforts for other

applications, the advantage of DEVS becomes apparent

(for instance, projects such as the E-Cell are ongoing

efforts that started in 1996 and have required dozens of

full-time researchers; in our case, a small team was able to

build the basic building blocks of energy pathways at a

reduced cost, thanks to the advantages provided by the

DEVS formal specifications).

Beyond the performance benefits stemming from

DEVS discrete-event simulation approach, there are also

direct contributions in terms of deployment and execution.

The communication among the different processors

follows a message-passing paradigm, and various kinds

of topologies are possible. In particular, distributed

execution on different machines is possible; the model-

driven organisation of such processors does not assume

any specific multicomputer architecture, so that it is

extremely suited to modern infrastructures for scientific

calculations such as Grid Computing.

Acknowledgements

This work has been partially funded by the NSERC, and by Prof.
Tofy Mussivand at the Ottawa Heart Institute. Rhys Goldstein
(Autodesk Research) has provided useful feedback in the later
version of the manuscript.

Note

1. Email: roxanadj@site.uottawa.ca

References

[1] R. Goldstein and G.A. Wainer, DEVS-based design of spatial
simulations of biological systems, Proceedings of Winter Simulation
Conference, Austin, TX, 2009.

[2] C. Maus, M. John, M. Röhl, and A. Uhrmacher, Hierarchical
modeling for computational biology, in Formal Methods for
Computational Systems Biology, Springer-Verlag, Berlin, Heidel-
berg, 2008, pp. 81–124.

[3] M.R. Grant, C.A. Hunt, X. Lan, J.E. Fata, and M.J. Bissell,
Modeling mammary gland morphogenesis as a reaction–diffusion
process, Proceedings of 26th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society, IEMBS ’04,
San Francisco, CA, 2004, pp. 679–682.

[4] K. Takahashi, N. Ishikawa, Y. Sadamoto, H. Sasamoto, S. Ohta, A.
Shiozawa, F. Miyoshi, Y. Naito, Y. Nakayama, and M. Tomita, E-
cell 2: Multi-platform E-cell simulation system, Bioinformatics 19
(2003), pp. 1727–1729.

[5] G. Olivier Brett and L. Snoep Jacky, Web-based kinetic modelling
using JWS online, Bioinformatics 20 (2004), pp. 2143–2144.

[6] S. Sundararaj, A. Guo, B. Habibi-Nazhad, M. Rouani, P. Stothard,
M. Ellison, and D.S. Wishart, The cybercell database (CCDB): A
comprehensive, self-updating, relational database to coordinate
and facilitate in silico modeling of Escherichia coli, Nucl Acids Res.
32 (2004), pp. 293–295.

[7] M.A. Gibson and J. Bruck, Efficient exact stochastic simulation of
chemical systems with many species and many channels, J. Phys.
Chem. A 104 (2000), pp. 1876–1889.

[8] D.T. Gillespie, A general method for numerically simulating the
stochastic time evolution of coupled chemical reactions, J. Comput.
Phys. 22 (1976), p. 403.

[9] R. Ewald, C. Maus, A. Rolfs, and A.M. Uhrmacher, Discrete event
modeling and simulation in systems biology, J. Simul. 1 (2007),
pp. 81–96.

[10] J. von Neumann, Theory of Self-Reproducing Cellular Automata,
University of Illinois Press, Urbana, IL, 1966.

[11] C.A. Hunt, G. Ropella, M. Roberts, and L. Yan, Biomimetic in silico
devices, Proceedings of Computational Methods in Systems
Biology 2004; Lecture Notes in Bioinformatics 3082 (2005),
pp. 35–43.

[12] R. Huricha and X. Ruanxiaogang, A simple cellular automaton
model for tumor-immunity system, Proceedings. 2003 IEEE
International Conference on Robotics, Intelligent Systems and
Signal Processing, Changsha, Hunan, China.

[13] O. Inghe, Genet and ramet survivorship under different mortality
regimes – A cellular automata model, J. Theor. Biol. 138 (1989),
pp. 257–270.

[14] K. Takahashi, S.N.V. Arjunan, and M. Tomita, Space in systems
biology of signaling pathways – Towards intracellular molecular
crowding in silico, FEBS Lett. 579 (2005), pp. 1783–1788.

[15] B.P. Zeigler, H. Praehofer, and T.G. Kim, Theory of Modeling and
Simulation, 2nd ed., Academic Press, London, 2000.

[16] G. Wainer, Applying Cell-DEVS methodology for modeling the
environment, Simul.: Trans. Soc. Model. Simul. Int. 82 (2006),
pp. 635–660.

[17] G. Wainer, ATLAS: A language to specify traffic models using Cell-
DEVS, Simul. Model. Pract. Theory 14 (2006), pp. 313–337.

[18] G. Wainer, S.S. Daicz, L. De Simoni, and D. Wasserman, Using the
ALFA-1 simulated processor for educational purposes, ACM J. Edu.
Resour. Comput. 1 (2001), pp. 111–151.

[19] G. Wainer and Q. Liu, Tools for graphical specification and
visualization of DEVS models, Simulation 85 (2009), pp. 131–158.

[20] S. Krauss, Mitochondria: Structure and role in respiration, in
Nature Encyclopedia of Life Sciences, Nature Publishing Group,
New York, 2001.

[21] J. Poulton and L. Bindoff, Mitochondrial respiratory chain
disorders. Nature Encyclopedia of Life Sciences, Nature Publishing
Group, New York, 2000.

[22] D. Harel and M. Politi, Modeling Reactive Systems with Statecharts,
McGraw-Hill, New York, 1998.

[23] H. Saadawi and G. Wainer, Defining models of complex 2D physical
systems using Cell-DEVS, Simul. Model. Pract. Theory 15 (2007),
pp. 1268–1291.

[24] F.E. Cellier and E. Kofman, Continuous System Simulation,
Springer Science þ Business Media, New York, 2006.

[25] G. Wainer, B. Al-aubidy, A. Dias, R. Bain, S. Jafer, M. Dumontier,
and J. Cheetham, Advanced DEVS models with applications to
biomedicine, Proceedings of AIS’2007 Artificial Intelligence,
Simulation and Planning, Buenos Aires, Argentina, 2007.

[26] R. Bain, S. Jafer, M. Dumontier, G. Wainer, and J. Cheetham,
Vesicle, synapsin and actin concentration time series modelling at
the presynaptic nerve terminal (poster), Proceedings of Symposium
on Progress in Systems Biology 2006, Ottawa, ON, Canada, 2006.

[27] N. Giambiasi and G. Wainer, Using G-DEVS and Cell-DEVS to
model complex continuous systems, Simul.: Trans. Soc. Model.
Simul. Int. 81 (2005), pp. 137–151.

[28] R. Goldstein and G.A. Wainer, Modelling tumor-immune systems
with Cell-DEVS, June, 2008.

[29] G. Wainer, Discrete-Event Modeling and Simulation: A Prac-
titioner’s Approach, CRC Press, Boca Raton, FL, 2009.

[30] G. Wainer, CDþþ : A toolkit to develop DEVS models, Softw.
Pract. Exp. 32 (2002), p. 1261.

[31] B. Alberts, D. Bray, L. Lewis, M. Raff, K. Roberts, and D. Watson,
Molecular Biology of the Cell, 1st ed., Garland Publishing, Inc.,
New York and London, 1983.

[32] P. Thorsness and T. Hanekamp, Mitochondria: Origin. in Nature
Encyclopedia of Life Sciences, Nature Publishing Group, New York,
2000. Available at http://www.Els.Net/[Doi:10.1038/npg.Els.
0001381] 2000.

[33] H. Curtis and N. Barnes, Biology, 5th ed., W.H. Freeman, New York,
1989.

Molecular Simulation 925

D
ow

nl
oa

de
d

by
 [

13
4.

11
7.

24
9.

55
]

at
 1

0:
08

 0
8

O
ct

ob
er

 2
01

3

[34] M. Aimar-Beurton, B. Korzeniewski, T. Letellier, S. Ludinard, J.
Mazat, and C. Nazaret, Virtual mitochondria: Metabolic modelling
and control, Mol. Biol. Rep. 29 (2002), pp. 227–232.

[35] J. Maber, Step by step glycolysis, Dept Biochemistry and Molecular
Biology, The University of Leeds, 2004. Available at http://www.Jo
nmaber.Demon.Co.uk/glysteps

[36] ALIAS, Corp Maya 6 features in detail, Available at http://www.Alia
s.Com/eng/products-services/maya/file/maya6_features_in_detail.
Pdf 2004.

[37] B.D. Hames and N.M. Hooper, Instant Notes in Biochemistry, 2nd
Ed., Springer, New York, 2000.

[38] S.S. Andrews and D. Bray, Stochastic simulation of chemical
reactions with spatial resolution and single molecule detail, Phys.
Biol. 1 (2004), pp. 137–151.

[39] J. Stiles and T. Bartol, Monte Carlo methods for simulating realistic
synaptic microphysiology using MCell, in Computational Neuro-
science: Realistic Modeling for Experimentalists, E. De Schutter, ed.,
Boca Raton, FL, CRC Press, 2001, pp. 87–127.

G. Wainer and R. Djafarzadeh926

D
ow

nl
oa

de
d

by
 [

13
4.

11
7.

24
9.

55
]

at
 1

0:
08

 0
8

O
ct

ob
er

 2
01

3

Appendix. Model implementation in CD11

Besides the functions defined in the formal DEVS specification, CDþþ requires defining the model basic architecture in Cþþ .

This includes the creation of the state variables and a constructor.

Step1.h: Model Definition
class Step1: public Atomic {

protected:
Model &initFunction();
Model&externalFunction(ExternalMessage&);
Model &internalFunction(InternalMessage&);
Model &outputFunction(InternalMessage&);

private:
const Port & glucose; // inputs
const Port &ATPi;
const Port &hexokinase;

Port &glucose_6_phosphate; // outputs
Port &ADP;
Port &H;

Time preparationTime;
double atpc;
double glucosec;
bool ifhex;
double counter;
}; // class Step1

Step1.cpp: Model Implementation
Step1 < Step1(const string &name): Atomic(name)
glucose(addInputPort(‘glucose”))
ATPi(addInputPort(“ATPi”))
hexokinase(addInputPort(“hexokinase”))
glucose_6_phosphate(addOutputPort(“glucose_6_phosphate”))
ADP(addOutputPort(“ADP”))
H(addOutputPort(“H”))
preparationTime(0, 0, 10, 0) {

counter ¼ atpc ¼ glucosec ¼ 0;
ifhex ¼ false;

}

Model&Step1 < externalFunction (const ExternalMessage &msg) {
if(msg.port() ¼ ¼ glucose) {

glucosec ¼ glucosec þ msg.value();
if ((atpc . 0) ¼ true))

holdIn(active, Prep_Gluc);
}
else if(msg.port() ¼ ¼ ATPi) {

atpc ¼ atpc þ msg.value();
if ((glucosec . 0) ¼ true))
holdIn(active, Prep_ATPi);

}
else if (msg.port() ¼ ¼ hexokinase) {

ifhex ¼ true;
if ((glucosec . 0) 0))
holdIn(active, Prep_Hexo);

}
}
Model &;Step1 < outputFunction(InternalMessage &msg) {

if (counter ! ¼ 0) {
sendOutput(msg.time(), ADP, counter);
sendOutput(msg.time(), glucose_6_phosphate, counter);
sendOutput(msg.time(), H, counter);

}
return *this;
}

Molecular Simulation 927

D
ow

nl
oa

de
d

by
 [

13
4.

11
7.

24
9.

55
]

at
 1

0:
08

 0
8

O
ct

ob
er

 2
01

3

Model &Step1 < internalFunction(const InternalMessage
counter ¼ 0;
if (state() ¼ ¼ idle) {

passivate();
}
else {

if ((atpc . ¼ 1) ¼ 1) ¼ true)) {
if (atpc . glucosec) {

atpc ¼ atpc – glucosec;
counter ¼ glucosec;
glucosec ¼ 0;

}
else if (atpc , glucosec) {

glucosec ¼ glucosec-atpc;
counter ¼ atpc;
atpc ¼ 0;

}
else if (atpc ¼ ¼ glucosec) {

counter ¼ atpc;
atpc ¼ glucosec ¼ 0;

}
holdIn(passive, Time < Zero);

}
else {

passivate();
}

‘}
return *this;

}

Table 9. Glycolysis coupled model.

[top]
components: step1@Step1 step2@Step2 step3@Step3 step4@Step4
step4to5@Step4to5 step5@Step5 step6@Step6 step7@Step7 step8@Step8
step9@Step9 step10@Step10

out: H ADP NADH H2O pyruvate ATPo
in: glucose ATPi hexokinase phosphoglucoisomerase PFK isomerase aldolase G3PD NAD P PGK PGM enolase
pyruvate_kinase

Link: glucose glucose@step1
Link: ATPi ATPi@step1
Link: hexokinase hexokinase@step1
. . .
Link: aldolase aldolase@step4
Link: isomerase isomerase@step4to5
. . .
Link: ATPo@step7 ATPo
Link: H2O@step9 H2O
Link: pyruvate@step10 pyruvate
Link: ATPo@step10 ATPo
. . .

G. Wainer and R. Djafarzadeh928

D
ow

nl
oa

de
d

by
 [

13
4.

11
7.

24
9.

55
]

at
 1

0:
08

 0
8

O
ct

ob
er

 2
01

3

