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1. Introduction 

As we can see in the numerous examples found throughout this book, DEVS modeling and sim-

ulation (M&S) has become a widely used tool for tackling complex problems and supporting ef-

ficient decision-making in a broad array of domains. Nevertheless, as the system under study 

becomes more and more complex, the simulations tend to be time-consuming and re-

source-demanding. In the quest for better performance, parallel and distributed simulation tech-

nologies have received increasing interest, as these technologies allow executing simulations on a 

computing system using multiple processors interconnected by a communication network.  

A parallel or distributed simulation typically comprises a collection of concurrent processes, each 

modeling a different part of the physical system and executing on a dedicated process, interact 

with each other by exchanging time-stamped event messages. The subtask executed by each 

process consists of a sequence of event computations, where each computation may modify the 

state of the process and/or schedule new events that need to be executed on the present process or 

on other processes. Unlike sequential simulations (which ensure that all events are simulated in 

time stamp order) parallel and distributed simulations use varied resources executing concurrently 

at different speeds, thus, we need to employ advanced synchronization mechanisms in order to 

guarantee same results obtained with sequential execution.  

Such synchronization is key to parallel and distributed simulation. It ensures that each process 

complies with the local causality constraint [1], which requires that events are processed in 

non-decreasing time stamp order. Errors resulting from out-of-order event execution are referred 

to as causality errors. Synchronization techniques for Parallel Discrete Event Simulation (PDES) 

systems generally fall into two categories: conservative approaches that strictly avoid violating 

the local causality constraint, and optimistic approaches that allow violations to occur, but provide 

mechanisms to recover from them through an operation known as rollback. Usually, optimistic 

approaches can exploit higher degree of parallelism available in the simulation, whereas con-



  

servative approaches tend to be overly pessimistic and force sequential execution when it is not 

necessary. Moreover, conservative approaches generally rely on application-specific information 

to determine which events are safe to process. Optimistic algorithms can also execute more effi-

ciently with such information, but this is not needed for correct execution, allowing more trans-

parent synchronization and simplifying software development. On the other hand, the overhead of 

state saving and rollback operations incurred in optimistic simulations constitutes the primary 

bottleneck that may result in degradation of system performance. 

CD++ [2] is an open-source M&S environment that implements both P-DEVS and Cell-DEVS 

formalisms and has been used to successfully solve a variety of sophisticated problems (see, e.g., 

[3-5]). The CD++ environment has been ported to different platforms, including an embedded 

version [6], a standalone one, several parallel versions (conservative and optimistic synchroniza-

tion protocols) [7-9], and a distributed version that supports Web-based simulations over the In-

ternet [10]. In this chapter, we discuss the advanced techniques that have been developed for 

parallel simulation of DEVS and Cell-DEVS models in the PCD++ family of simulators. Specif-

ically, we will cover the software architecture, parallel event execution paradigm, synchronization 

protocols, and performance optimizations in PCD++.  

2. Parallel Simulation 

The first parallel simulator, introduced in [7], was the first attempt to reduce simulation time in 

CD++ using parallel execution of models. It has been shown that this parallel simulator can speed 

up the execution of both DEVS and Cell-DEVS models in comparison to the stand-alone version 

[9]. This parallel simulator, presented in this section, was based on an approach exploiting the 

parallelism inherent to the DEVS formalism. Under that scheme, a single root coordinator acts as a 

global scheduler for every node participating in the simulation. Based on this structure, all events 

with the same timestamp are scheduled to be processed simultaneously on the available nodes. The 

simulator introduces two different types of coordinators; Head and Proxy to reduce inter-process 

communication. The simulator consists of a hierarchical structure creating a one-to-one corre-

spondence between the model components and simulation objects. 

2.1. Parallel DEVS abstract simulator 

DEVS separates the model from the actual simulator engine. The abstract simulator creates a 

one-to-one correspondence between the model and the simulation entity as illustrated by Figure 1.  
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Figure 1. Correspondence between the model and the DEVS processors [11] 

The simulation is carried out by DEVS processors which are of two types: simulator and coordi-

nator. The simulator represents an atomic DEVS model, where the coordinator is paired with a 

coupled model. The simulator is in charge of invoking the atomic model’s transition and external 

event function. On the other hand, the coordinator has the responsibility of translating its chil-

dren’s output events and estimating the time of the next imminent dependant(s). As shown in 

Figure 1 every coordinator has a set of child DEVS processors. When running parallel and dis-

tributed simulation, the whole model is divided among a set of logical process, each of which will 

execute on a different CPU. In general terms, each logical process will host one or more simulation 

objects. For the present discussion, those simulation objects will be DEVS processors. 

Coordinator

2 31

5

6

4

LP0 LP1
      inter-process message

     intra-process message

 

Figure 2. A single coordinator with remote and local child processes 

At the beginning of the simulation, one logical process will reside on each machine (physical 

process). Then, each logical process will host one or more DEVS processors. This implies that not 

all of a coordinator’s children are necessarily sitting on the same logical process. Due to the 

one-to-one correspondence, each coupled model is mapped to only one coordinator. A coordinator 

communicates with its child processors through intra-process messaging if they reside on the same 

logical process, and through inter-process messaging if they are sitting on remote logical pro-

cesses. Figure 2 shows a scenario at which a coupled DEVS model consisting of six atomic 

components is simulated using this simulator. The coordinator itself and three of its child pro-

cessors are on the same logical process (LP0), where the other three child processors are hosted on 

another logical process (LP1). When the number of remote child processors of a coordinator is 



  

high, this design mechanism will lead to considerable overheads due to inter-process messages 

that are sent back and forth among the coordinator and its child processors. To overcome this issue, 

the concept of Head and Proxy Coordinators was introduced [7]. 

In the new design a coordinator is assigned with each logical process. As a result, all child pro-

cessors will have a local coordinator through which they can communicate with remote child 

processors. The Head coordinator is responsible for synchronizing the model execution, inter-

acting with upper level coordinators, and exchanging messages among the local and remote model 

components. The Proxy coordinator is responsible for message exchange among the local model 

components, and forwarding local components messages to the Head coordinator if it resides on 

another logical process. This structure organizes DEVS processor into a hierarchy which does not 

have a one to one correspondence with the model hierarchy. Thus, a parent-child relationship that 

takes into account the existence of Head and Proxy coordinators must be defined as follows [7]:  

1. For each simulator, the parent coordinator will be the parent’s model local processor. 

2. For each Proxy coordinator, the parent coordinator will be the model’s Head coordinator. 

3. For each Head coordinator, the parent coordinator will be the parent’s model local pro-

cessor; just as if it was a simulator. 

Under this design, the simulation advances as a result of exchange of messages in the form of 

(type, time) between the parent and child DEVS processors based on the original algorithm in [11]. 

Two different types of messages exist: synchronization and content messages. The Collect mes-

sage (@, t) is sent from a parent DEVS processor to its imminent children to tell them to send their 

outputs. The Internal message (*, t) is sent from a parent DEVS processor to its imminent children 

to tell them to invoke their transition function (either an external, internal, or confluent). The re-

sults produced by a model can be translated into Output messages (y, t) which are exchanged 

among a child DEVS processor and its parent. Finally, the External messages (q, t) represent the 

external messages arrived from outside the system or the ones generated as a result of an output 

message being sent to an influence. 

3. Optimistic PCD++ – A Time Warp Based Parallel Simulation Engine for CD++ 

Originally introduced in [12], Jefferson’s Time Warp protocol is the first and most well-known 

optimistic synchronization. A Time Warp simulation is executed via several Logical Processes 

(LPs) interacting with each other by exchanging time-stamped event messages. Each LP maintains 

a Local Virtual Time (LVT) that changes in discrete steps as each event is executed on the process. 



  

A causality error arises if an LP receives an event with time stamp less than its LVT. Such events 

are referred to as straggler events. Upon the arrival of a straggler event, the process recovers from 

the causality error by undoing the effects of those events executed speculatively during previous 

computations through the rollback operation. Due to the nature of optimistic execution, erroneous 

computations on an LP can spread to other processes via false messages. These false messages are 

cancelled during rollbacks by virtue of anti-messages. When an LP sends a message, an an-

ti-message is created and kept separately. The anti-message has exactly the same format and 

content as the positive (original) message except in one field, a negative flag. Whenever an an-

ti-message meets its counterpart positive message, they annihilate one another immediately, hence 

canceling the positive one.  

The Time Warp protocol consists of two distinct pieces that are sometime called the local control 

and global control mechanisms [1]. The local control mechanism is provided in each LP to im-

plement the rollback operations. To do so, an LP maintains three major data structures: an input 

queue of arrived messages, an output queue of negative copies of sent messages, and a state queue 

of the LP’s states. The global control mechanism is concerned with such global issues as space 

management, I/O operations, and termination detection. It requires a distributed computation in-

volving all of the processes in the system. The central concept of the global control mechanism is 

the Global Virtual Time (GVT), which serves as a floor for the virtual time of any future rollback 

that might occur. Any event occurred prior to GVT cannot be rolled back and may be safely 

committed. Therefore, the historical events kept in the input and output queues whose time stamp 

is less than the GVT value can be discarded. Similarly, all but the last saved state older than GVT 

can be reclaimed for each process. Furthermore, I/O operations with virtual time less than GVT 

can be irrevocably committed with safety. Destroying information older than GVT is done via an 

operation known as fossil collection. GVT computation and fossil collection are crucial compo-

nents of the global control mechanism to reclaim memory and to commit I/O operations. 

Over the years, many algorithmic and data structure based optimizations have appeared in the 

literature to improve the efficiency of the original Time Warp protocol (see, e.g., [13-16]). The 

WARPED simulation kernel [17] is a configurable middleware that implements the Time Warp 

protocol and a variety of optimization algorithms. It relies on the Message Passing Interface (MPI) 

for high-performance communications on both massively parallel machines and on workstation 

clusters. Although the Time Warp protocol has been discussed in a great number of studies, its 



  

applicability to simulating DEVS models is only rarely explored in the PADS literature (but see, 

e.g., [18-20]). The optimistic PCD++ engine, has been developed to allow optimistic simulation 

of complex and large-scale DEVS and Cell-DEVS models on top of the WARPED kernel [8, 9], as 

shown in Figure 3. 
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Figure 3. Layered architecture of the optimistic PCD++ simulator 

3.1. Introduction to optimistic simulation in PCD++ 

The MPI layer and the operating system provide the communication infrastructure. The WARPED 

kernel offers services for creating different types of Time Warp LPs. The PCD++ simulator de-

fines two loosely coupled frameworks: the modeling framework and the simulation framework. 

The former consists of a hierarchy of classes rooted at Model to define the behavior of the DEVS 

and Cell-DEVS models; the latter defines a hierarchy of classes rooted at Processor, which, in 

turn, derives from the abstract LP definition in the WARPED kernel, to implement the simulation 

mechanisms. That is, the PCD++ processors are concrete implementations of LPs to realize the 

abstract DEVS simulators. 

The Optimistic PCD++ employs a flattened structure consisting of four types of DEVS processors: 

Simulator, Flat Coordinator (FC), Node Coordinator (NC), and Root [8]. Introducing the FC and 

NC eliminates the need for intermediary coordinators in the DEVS processor hierarchy and, hence, 

minimizes communication overhead. Parallelism is achieved by partitioning the LPs onto multiple 

nodes. PCD++ processors exchange messages that can be classified into two categories: content 

and control messages. The former includes External (x, t) and Output message (y, t), which encode 

the data transmitted between the model components; the latter includes the Initialization (I, t), 

Collect (@, t), Internal (*, t), and Done message (D, t), which are used to implement a high-level 

control flow in line with the P-DEVS formalism.  



  

 

Figure 4. Optimistic PCD++ processor structure on two nodes 

Figure 4 shows the PCD++ structure of the LPs involving two nodes. A single Root coordinator is 

created on Node0 to start the simulation and to interact with the environment. The simulation is 

managed by a set of NCs running asynchronously on different nodes in a decentralized manner. 

The FC synchronizes its child Simulators and is responsible for routing messages between the 

child Simulators and the parent NC using the model coupling information. Specifically, the FC 

keeps track of the imminent Simulators (i.e., those Simulators that have state transitions scheduled 

at present simulation time) and triggers state transitions at these imminent child Simulators by 

forwarding control messages received from the NC to them. In addition, when the FC receives a (y, 

t) from a child Simulator, it searches the model coupling information to find the ultimate destina-

tions of the output message. A destination is ultimate if it is an input port on an atomic model or an 

output port on the topmost coupled model. If the (y, t) is sent eventually to remote Simulators or to 

the environment, the FC simply forwards the (y, t) to the parent NC. Otherwise, the FC translates 

the (y, t) into a (x, t) using the Zi,j translation function and directly forwards the (x, t) to the local 

receivers, which are recorded in a synchronize set for later state transitions. A Simulator executes 

the DEVS functions defined in its associated atomic model upon the arrival of control messages 

from the FC. 

The message-processing algorithms originally proposed in [8] have been redesigned in [9] to allow 

for a more appropriate division of functionalities among the PCD++ processors and to address a 

variety of issues in parallel optimistic simulations. The major portion of the redesign effort focused 

on the message-processing algorithms for the NC. In the following, we summarize the main as-

pects of the new algorithms with an emphasis on the role of the NCs in the optimistic simulation.  

The NC acts as the local central controller on its hosting node and the endpoint of inter-node MPI 

communication. It performs a number of important operations, including: 

1. Performing inter-LP communications. A structure called NC Message Bag is used to 

contain the received external messages from other remote NCs. The time of the NC Mes-



  

sage Bag is defined as the minimum time stamp among the messages contained in it, while 

an empty bag has a time of infinity.  

2. Handling external events from the environment. The NC uses a structure called Event List 

to hold these external events. The current position in the Event List is referred by an 

event-pointer defined in the NC’s state. 

3. Driving the simulation on the hosting node. The NC advances the local simulation time to 

the minimum among: the time stamp of the external event pointed by the event-pointer, the 

time of the NC Message Bag, and the closest state transition time given in the (D, t) coming 

from the FC. 

4. Managing the flow of control messages in line with the P-DEVS formalism. The NC uses a 

next-message-type flag to keep track of the type of the control message (either @ or *) that 

should be sent in the next simulation cycle. 

Like the FC, the NC checks the destination of each received (y, t) message. If the (y, t) is sent to the 

environment, the NC directly forwards it to the Root coordinator. Furthermore, the NC finds out 

the remote nodes on which the ultimate receiving Simulators based on the model coupling and 

partition information. It then translates the (y, t) into a (x, t) and sends it to the remote NC on each 

of those nodes. On the receiving end, the (x, t) will be eventually delivered to the destination 

Simulators located on that node. When the NC receives a (D, t) from the FC, the NC calculates the 

next simulation time (referred to as min-time), if the next-message-type is @. If the min-time is 

larger than the user-specified stop time, the NC sets a dormant flag and exits. Otherwise, it sends 

any external messages scheduled at min-time, to the FC. Then, it sends a control message to the FC 

and resets the next-message-type accordingly, the next-message-type is set to * after NC sends a 

(@, t) to the FC (in which case the output functions of the imminent Simulators will be invoked 

when the (@, t) arrives). The imminent Simulators perform internal transitions immediately after 

the output operations. Thus, the NC triggers the internal transitions by sending a (*, t) to the FC in 

the next simulation cycle. On the other hand, if there is no imminent Simulator, the NC sends a (*, 

t) whenever external messages are flushed to the FC to trigger the external transitions in the re-

ceiving Simulators. 

In an optimistic simulation, some LPs may have processed all their local events while waiting for 

other LPs. The lagging-behind LPs may send messages to the waiting LPs and reactivate them. 

The dormant state is used by the NC where all events scheduled on the local node have been 



  

processed. The NC exits the dormant state and reactivates the simulation on the hosting node upon 

the arrival of external messages from other remote NCs. In this case, the NC spontaneously flushes 

the received external messages with the minimum time stamp in its NC Message Bag to the FC. It 

also sends a (*, t) to the FC to trigger the appropriate state transitions at the receiving Simulators. 

3.2. Message-passing organization 

Based on the message-processing algorithms just presented, we show a sample message-passing 

scenario using an event precedence graph, where a vertex (black dot) represents a message, and an 

edge (black arrow) represents the action of sending a message with the message type placed 

nearby. A line with a solid arrowhead denotes a (synchronous) intra-node message and a line with 

a stick arrowhead denotes an (asynchronous) inter-node message. A lifeline (dashed line) is drawn 

for each PCD++ processor. The execution sequence of messages is marked by the numbers fol-

lowing the message type.  
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Figure 5. An example message-passing scenario on a node 

Figure 5 illustrates the flow of messages on a node with four LPs: a NC, a FC, and two Simulators 

(S1 and S2). As we can see, the execution of messages on a node at any simulation time can be 

decomposed into at most three distinct phases: initialization phase (I), collect phase (C), and 

transition phase (T), as demarcated by the (D, t) message in bold black arrows received by the NC. 

Only one initialization phase exists at the beginning of the simulation, including the messages in 

the range of [I1, D7]. The collect phase at simulation time t starts with a (@, t) sent from the NC to 

the FC and ends with the following (D, t) received by the NC. For example, the collect phase at 

time 0 comprises messages in range [@8, D14]. This phase is optional, it happens if there are im-



  

minent Simulators on the node at that time. Finally, the transition phase at simulation time t begins 

with the first (*, t) sent from the NC to the FC and ends at the last (D, t) received by the NC at time 

t. In the diagram, messages in the range of [*15, D32] belong to the transition phase at time 0. The 

transition phase is mandatory for each simulation time and may contain multiple rounds of com-

putations (each starting with (x, t) followed by a (*, t) sent from the NC to the FC and ends with a 

(D, t) to the NC). In the example, the transition phase at time 0 has three rounds: R0 with messages 

in range [*15, D19], R1 with messages in [x20, D26], and R2 with messages in [x27, D32]. During each 

round, state transitions are performed incrementally with additional external messages and/or for 

potentially extra Simulators. Hereinafter, we will denote a transition phase of (n+1) rounds as 

[R0…Rn]. 

I C T [R0 … Rn] C T [R0 … Rn] T [R0 … Rn] ... C T [R0 … Rn]

WCTS-0 WCTS-t1 WCTS-t2 WCTS-tn

          initialization phase collect phase transition phaseI C T
wallclock time

 

Figure 6. WCTS representation of the simulation process on a node 

To have a better understanding of the simulation process on each node, a high-level abstraction, 

called as wall clock time slice (WCTS), was introduced in [9]. A WCTS at virtual time t, stands for 

the execution of the events scheduled at time t on all the LPs mapped on a node. Figure 6 illustrates 

the WCTS representation of the simulation process on a node. Several properties of the WCTS are 

given as follows [9]. 

1. The simulation on a node starts with WCTS-0, the only WCTS that has all three phases. 

2. WCTS’s are linked together by messages sent from NC to FC (shown as black arrows in 

Figure 6). At the end of each WCTS, the NC calculates the next simulation time and sends 

out messages that will be executed by the local LPs at this new virtual time, initiating the 

next WCTS on the node. The linking messages between two adjacent WCTS’s have send 

time equal to the virtual time of the previous WCTS and receive time equal to that of the 

next, all other messages executed within a WCTS have the same send and receive time. 

3. The completion of the simulation on a node is identified with a WCTS that sends out no 

linking messages (e.g. WCTS-tn in Figure 6). The whole simulation finishes when all 

participating nodes have completed their portions of the simulation. 

4. WCTS’s are atomic computation units during rollback operations. That is, the events ex-

ecuted within a WCTS are either committed as a whole (when GVT advances beyond the 



  

WCTS) or cancelled altogether during. In the latter case, the simulation resumes after the 

rollbacks from unprocessed messages sent out from the previous WCTS (with virtual time 

less than the current rollback time). 

3.3. Cell-DEVS algorithms for optimistic execution 

P-DEVS utilizes a message bag to store all simultaneous events scheduled for an atomic model so 

that all of them are available when the state transition at simulation time t is executed. This is 

necessary since all these simultaneous events created as (x, t) messages must be included in the 

computation to produce the correct state transition. Without explicit synchronization between the 

LPs, however, this requirement may not be satisfied in the optimistic simulation. Since the NC 

triggers state transitions speculatively based only on local information currently available on the 

hosting node, the state transitions at the atomic models may only involve (x, t) messages (those 

actually received by the Simulators). After the state transitions occurred at the Simulators, addi-

tional (x, t) messages may arrive, invalidating the results of the previous (speculative) state tran-

sitions. As shown in Figure 5, for instance, x23 arrives after the state transition triggered by *16 has 

occurred at Simulator S1. This (x, t) message will be sent to the Simulator in the following round 

(R2 in Figure 5) and, thus, involved in the additional state transition at S1 (x29 and *30).  

Since the state transitions are performed incrementally at the Simulators in the transition phases, 

the algorithms need to be adapted to this asynchronous state transition paradigm to obtain the 

same results as in a sequential simulation. A brief description of the new computation model under 

the asynchronous state transition paradigm is given as follows (detailed algorithms can be found in 

[9]). 

1. Applying preemptive semantics to the state transition logic. For a transition phase with 

(n+1) rounds of computations, the state transitions in all but the last round (Rn) are based 

on incomplete information and, hence, false transitions. Only Rn has the best chance to 

perform the correct transition, which is the case if the WCTS is not rolled back later on in 

the simulation. Since the state transition in a later round involves additional external 

messages, it has a better chance to perform the correct computation and, thus, generate the 

correct results. Therefore, the state transition logic should be implemented so that the 

computation of the later round preempts that of the previous round. In the end, the poten-

tially correct results obtained in Rn preempt those erroneously generated in Rn-1, and the 

simulation advances to the next virtual time. Both the value and state of the cell must 



  

follow this preemptive logic during the multi-round state transitions. To do so, each cell 

needs to record its previous value and previous state passed in from the previous virtual 

time at the beginning of R0 for each WCTS. For time 0, the previous value and state are the 

cell’s initial value and state defined by the modeler. Except the R0 at time 0, the entry point 

of R0 is identified by a change in the simulation time. Hence, a cell can record its previous 

value and state once a time change is detected at the beginning of the state transition al-

gorithm. For time 0, this task is performed in the initialization phase. 

2. Handling user-defined state variables. User-defined state variables may be involved in the 

evaluation of local rules defined for the cells. With the multi-round transition phase, this 

computation becomes more complex. During each round, a potentially different rule is 

evaluated and the state variables referenced in the rule are computed. Consequently, po-

tentially wrong values are assigned to the variables and passed to the next round. The 

computation errors accumulate, and finally, wrong values are passed to the simulation at 

the next virtual time. To ensure correct computation of the state variables, a cell needs to 

record the values of the user-defined state variables at the beginning of each R0. These 

recorded values are inherited from the potentially correct computation of Rn of the previous 

WCTS. During the following rounds at a specific simulation time, the state variables are 

first restored to the recorded values. Only after this restoration operation, a new computa-

tion is performed. Therefore, the cell always uses potentially correct values as the basis for 

a new computation. 

3. Handling external events. In CD++, the port-in transition function (for evaluating external 

events received from external models) is given a higher priority than the local transition 

rules. Under the new asynchronous state transition paradigm, the computation results of 

the port-in transition function may be overwritten by the local transition rules in later 

rounds. To preserve the effect of external events throughout the multi-round transition 

phase, an event-flag is set so that no further changes can be done to the cell’s value in the 

following rounds at this time. The influence of the external event is spread out in the cell 

space as expected, and afterward the cell’s value is again under control of its local transi-

tion rules. 

3.4. Enhancements to optimistic PCD++ and the WARPED kernel 

In order to carry out optimistic simulations, several other issues need to be handled. This section 



  

covers the essential enhancements to the PCD++ and the WARPED kernel to ensure correct and 

efficient execution of simulations. 

3.4.1. Rollbacks at virtual time 0 

During rollbacks, the state of an LP is restored to a previously saved copy with virtual time strictly 

less than the rollback time. However, the problem of handling rollbacks at virtual time 0 is left 

unsolved in the WARPED kernel. If an LP receives a straggler message with time stamp 0, the state 

restoration operation will fail (negative virtual time is not found in the state queue). In optimistic 

PCD++, this problem is solved by explicitly synchronizing the LPs at an appropriate stage with an 

MPI Barrier so that no straggler message with time stamp 0 will ever be received by any LP in the 

simulation. The best place to implement the MPI Barrier is after the collect phase in WCTS-0, as 

illustrated in Figure 7. 

I C T [R0 … Rn] C T [R0 … Rn] T [R0 … Rn] ... C T [R0 … Rn]

WCTS-0 WCTS-t1

WCTS-t2 WCTS-tn

I C T [R0 … Rn] T [R0 … Rn]

WCTS-0 WCTS-t1

MPI Barrier

LP0

LP1

 

Figure 7. Using an MPI Barrier to avoid rollbacks at virtual time 0 in optimistic PCD++ 

The underlying assumption of this approach is that all inter-node communication happens in the 

collect phase. Hence, messages with time stamp 0 are sent to remote LPs only in the collect phase 

of WCTS-0. The LPs are synchronized by a MPI Barrier at the end of this collect phase so that 

these messages can be received by their destinations before the simulation time advances beyond 

time 0. Therefore, no straggler with timestamp 0 will be received by any LP afterwards. Once the 

LPs exit from the barrier, they can safely continue optimistic execution based on the standard 

rollback mechanism. The states saved for the events executed at virtual time zero provide the 

necessary cushion for later rollbacks on the processes. The cost of this approach is small, since the 

length of the synchronized execution is small when compared with the whole simulation. 

3.4.2. User-controlled state-saving (UCSS) mechanism 

WARPED implements the copy state-saving (CSS) strategy using state managers (of type 

StateManager), which save the state of an LP after executing each event. The periodic state-saving 

(PSS) strategy is realized using state managers (of type InfreqStateManager) that save LP’s state 

infrequently every a number of events. Simulator developers can choose to use either type of state 

managers at compile time. Once selected, all the LPs will use the same type of state managers 



  

throughout the simulation. This rigid mechanism has two disadvantages. (1) It ignores the fact that 

simulator developers may have the knowledge as to how to save states more efficiently to reduce 

the state-saving overhead. (2) It eliminates the possibility that different LPs may use different 

types of state managers to fulfill their specific needs at runtime. To overcome these shortcomings, 

a two-level user-controlled state-saving (UCSS) mechanism was introduced in [9] to provide a 

more flexible and efficient mechanism. 
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Figure 8. UCSS mechanism integrated with CSS and PSS strategies 

As shown in Figure 8, a flag called skip-state-saving is defined in each LP. The CSS policy only 

takes effect when the flag is false; otherwise, no state is saved after executing the current event. 

The flag is reset to false so that a new state-saving decision can be made for the next event. When 

the PSS strategy is used, an additional flag called do-state-saving with a lower priority is defined, 

if this flag is set to true by an LP, the state manager will save the state after every event (just like 

CSS).  

Therefore, simulator developers have the full power to choose the best possible combination of 

state-saving strategies at runtime. 

3.4.3. Messaging anomalies 

In PCD++, the NC calculates the next simulation time (min-time) based on the time of its NC 

Message Bag. However, external messages with time stamp less than the min-time may arrive after 

the calculation, invalidating the previous computation. In this case, the NC’s speculative calcula-

tion of the min-time leads to messaging anomalies that cannot be recovered by the kernel rollback 

mechanism alone. Messaging anomalies will be detected when the control returns to the NC in the 

transition phase at the next (wrong) simulation time. Once found, the NC needs to perform cleanup 

operations to restore the simulation to the status before the previous wrong computation. An 

example scenario is shown in Figure 9. 
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Figure 9. Example scenario of messaging anomalies 

Suppose that, when the last done message (D1) is executed by the NC at the end of WCTS-ta, there 

is no external message in its NC Message Bag and the closest state transition time carried in D1 is 

tb. Hence, the NC calculates the min-time as tb, and sends a collect message (@5) with send time ta 

and receive time tb to the FC, initiating WCTS-tb on the node. Meanwhile, external messages x2, x3, 

x4, and x6 (with time stamps less than tb) arrive at the NC, invalidating the previously computed 

min-time tb. Thus, the linking messages between WCTS-ta and WCTS-tb (e.g. @5) are proven to be 

false messages. During the execution of D17 at the end of R0 in WCTS-tb, the NC calculates the 

min-time again based on its present NC Message Bag, which now contains the lagging external 

messages. The resulting min-time is ta, the timestamp of x2. Hence, the NC sends an external 

message (x18) with send time tb and receive time ta (tb> ta) to the FC. Since x18 is a straggler mes-

sage for the FC, rollbacks propagate from the FC to the other processors immediately. Nonethe-

less, these rollbacks violate two assumptions made by WARPED: First, the rollback on FC is trig-

gered by an abnormal straggler message (x18) with a send time greater than its receive time. Since 

the events are ordered by their send times in the output queues, this abnormal straggler message is 

misplaced in the NC’s output queue, resulting in causality errors later on in the simulation. Sec-

ondly, the rollbacks occur right in the middle of executing the done message (D17) by the NC. 

Therefore, the rollbacks are not transparent to the NC anymore. 

Messaging anomalies can be classified into two categories. (1) anomaly with empty NC Message 

Bag: In Figure 10(a), if there are lagging external messages with time stamp ta (e.g., x(ta)) inserted 

into the NC Message Bag, the abnormal straggler message sent to the FC will have a time stamp of 

ta. Hence, the LPs are rolled back to the end of WCTS-tpre, the WCTS before WCTS-ta. In this case, 

all the lagging external messages are removed from the NC Message Bag and no erroneous data is 

left in the state queues. (2) anomaly with non-empty NC Message Bag: In Figure 10(b), if there is 

no lagging external message with time stamp ta arrived at the NC, the abnormal straggler message 



  

will have a time stamp of t1 (t1 > ta). Hence, the LPs are rolled back to the end of WCTS-ta, and the 

lagging external messages remain in the NC Message Bag after the kernel rollbacks. 
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Figure 10. Two possible types of messaging anomalies in optimistic PCD++ 

To recover from potential messaging anomalies, the NC’s message-processing performs addi-

tional cleanup operations after the completion of kernel rollbacks under abnormal situations [9]. 

The cleanup operations remove any remaining erroneous data generated during the anomalies 

from the input, output, and state queues. Only after the cleanup the control is passed to the WARPED 

kernel so that the simulation on the node can resume forward execution. 

3.5. Optimization strategies 

Two optimization strategies have been integrated with the optimistic PCD++ simulator; the 

message type-based state-saving (MTSS) which reduces the number of states saved in the simu-

lation, and the one log file per node strategy to break the bottleneck caused by file I/O operations 

[9]. 

3.5.1. Message Type-based State Saving (MTSS) 

During rollbacks, the state of a PCD++ processor is always restored to the last one saved at the end 

of a WCTS with virtual time strictly less than the rollback time. Hence, it is sufficient for a pro-

cessor to save its state only after processing the last event in each WCTS for rollback purposes. 

The state-saving operation can be safely skipped after executing all the other events. The last event 



  

in a WCTS is processed at the end of Rn in the transition phase. Although the actual number of 

rounds in a transition phase cannot be determined in advance, we can at least identify the type of 

the messages executed at the end of the transition phases by a given processor. For the NC and FC, 

it must be a (D, t), and for the Simulators, it should be a (*, t). Since the Root coordinator only 

processes output messages, it still saves state for each event. The resultant state-saving strategy is 

called as message type-based state-saving (MTSS), a specific type of UCSS. Considering that 

there are a large number of messages executed in each WCTS, and that they are dominated by 

external and output messages, MTSS can reduce the number of states saved in the simulation 

significantly. Consequently, the rollback overhead is reduced as fewer states need to be removed 

from the state queues during rollbacks. MTSS is risk-free in the sense that there is no penalty for 

saving fewer states, and it can be easily implemented using the UCSS mechanism. A PCD++ 

processor simply sets the skip-state-saving flag to true in all but the algorithm for the required type 

of messages. For example, a Simulator will set the flag to true in its algorithms for processing (I, t), 

(@, t), and (x, t) messages. The flag is left unchanged for (*, t) since the Simulator needs to save 

state for these messages. 

3.5.2. One Log File per Node 

The PCD++ simulator provides message logging facility for debugging, simulation monitoring 

and visualization purposes. However, file I/O operation is a well-known performance bottleneck 

in parallel simulation, especially when the files are accessed via a Network File System (NFS). 

This is particularly severe for Time Warp since a file queue must be maintained in the kernel for 

each opened file (containing uncommitted data) and all the file queues are involved in rollback 

operations. To remove the bottleneck the one log file per node strategy was implemented [9]. Only 

one file queue is created for the NC on each node, which is shared among all the local LPs.  

The advantages of this strategy are summarized as follows.  

1. The required number of file descriptors for logging purposes is upper-bounded by the 

number of nodes involved in the parallel simulation, rather than increasing linearly with 

the size of the model. 

2. The simulation bootstrap time is reduced considerably due to the decrease in the number of 

files opened in this process. 

3. The rollback operations are accelerated since only one file queue needs to be maintained in 

the kernel. 



  

4. The communication overhead is reduced as well since the data concentrated in a single file 

queue is flushed to the file system in bigger chunks, and less frequently, over the network. 

4. Hybrid Optimistic Algorithms 

The Near-perfect state information (NPSI) protocols proposed by Srinivasan [21] are a new class 

of synchronization for parallel discrete event simulation which outperforms Time Warp, both 

temporally and spatially. NPSI-based protocols dynamically control the rate at which processes 

exploit parallelism achieving a more efficient parallel simulation. In optimistic protocols such as 

Time Warp, logical processes execute events aggressively assuming freedom from errors. Thus, 

the aggressive event execution would include risk which is the potential at which erroneous results 

propagate to other LPs [23]. The NPSI protocols aim at controlling both aggressiveness and risk of 

optimism adaptively by computing an error potential (EP). The EP of a process is defined as a 

function of the states of other LPs participating in the simulation. It works as an elastic force which 

sometimes blocks and sometimes frees the progress of the LP. 

The optimism implemented by Time Warp protocol incurs three time costs: state saving, rollback, 

and memory management [21]. Furthermore, by restricting optimism time cost gets introduced; 

the lost opportunity cost is defined as the potential loss in performance when an LP is suspended 

while it was safe for it to continue. Thus, protocols that control optimism define the cost function 

as follows: 

Total cost = state saving cost + rollback cost + memory management cost + lost opportunity cost. 

Since the time cost of state saving can be a function of the size of the state and the frequency rate at 

which it is saved, the Total cost function can be rewritten by omitting the sate saving cost as: 

Total cost = rollback cost + memory management cost + lost opportunity cost. 

By limiting optimism the first two costs can be reduced but the lost opportunity cost would in-

crease in return, as illustrated in Figure 11. 
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Figure 11. Tradeoff introduced by limiting optimism [21] 



  

The best performance is attained when the controlled optimism eliminates both rollback and 

memory management cost and in return adds zero lost opportunity cost [21]. Optimism limiting 

protocols can thus achieve a good balance by precisely identifying incorrect computations and 

avoiding their propagation. This can be done by providing each LP with perfect state information 

about other LPs, but due to various latencies in computing distributed snapshots, it is impossible to 

obtain this information. The NPSI mechanism approximates perfect state information by using a 

dynamic feedback system that operates asynchronously with respect to LPs, providing them with 

near-perfect state information at low-cost.  

NPSI controls aggressiveness and risk of LPs by dynamically computing near-perfect sate in-

formation.  

In order to control the optimism of PCD++, we have modified WARPED to implement a NPSI 

mechanism based on the number of rollbacks. The idea is to reduce the number of rollbacks by 

suspending the simulation object within LP that has large number of rollbacks and therefore 

blocking it from flooding the net with anti-messages. However, the LP will still be able to receive 

input events and they will be inserted into the corresponding message bags. After a predefined 

duration, the suspend simulation object is released and will go on simulating. We have imple-

mented two new protocols, namely Local Rollback Frequency Model (LRFM) and Global Roll-

back Frequency Model (GRFM) [22] to limit the optimism of PCD++ simulator.  

The main concept is to associate each LP with an EP to control the optimism of the LP. During the 

simulation run, the value of each EP is kept updated by evaluating a function M1 which uses state 

information that is received from the feedback system. Then, a second function M2 dynamically 

translates every update of the EP in delays of execution events. 

4.1. Local Rollback Frequency Model 

The Local Rollback Frequency Model (LRFM) protocol is based on local information of the 

logical processes; the simulation object within a LP will be suspended or allowed to continue only 

based on the number of rollbacks it had. First, M1 and M2 functions must be defined: 

Function M1: The EP is the number of rollbacks that the object had from a time T1 until the 

current time T2, having that T2 - T1 ≤ T, where T is the interval after which the local number of 

rollbacks of the simulation object gets reset to zero. 

Function M2: If the number of rollbacks at the interval T is greater than a specified value, then the 

object is suspended. The LP where the object resides on will still be able to receive incoming 



  

events, but the events are not processed until the object is given permission to resume. However, if 

the number of rollbacks is less than the predefined value, the object simulates, using optimistic 

behavior. 

To implement this protocol each LP has to be informed about two values: max_rollback, and pe-

riod, where max_rollback is the maximum number of rollbacks allowed before, and period is the 

duration of suspension. The algorithm is presented in Figure 12. 

1. In each LP, at the beginning predefine:

max_rollbacks and period

2. In each simulation object, at the simulation start: 

previous_time  = 0

3. In each object, when the LP is scheduled to run: 

actual_time = Warped.TotalSimulationlTime ()

if (actual_time - previous_time >= period)

simulateNextEvent()

previous_time  = actual_time

rollbacks = 0 

else 

if  (rollbacks < max_rollbacks) 

simulateNextEvent()

/* else, SUSPEND the simulation object */

 

Figure 12. LRFM algorithm 

We can identify the following three scenarios: 

1. The LRFM period has expired, therefore the simulation object starts a new period, its 

number of rollbacks gets reset to zero, and it is given permission to continue. 

2. The LRFM period has not yet expired, if the number of rollbacks of the simulation object is 

less than the allowable range (i.e. max_rollbacks), the simulation object continues. 

3. The LRFM period has not yet expired, but the number of rollbacks within the simulation 

object has exceeded max_rollbacks, thus the simulation object gets suspended for the en-

tire duration of the current LRFM period. 

In order for an LP to be able to simulate objects that mustn't be delayed, we have modified the 

scheduler policy to choose the next object to simulate. It chooses the first object of the input event 

list (i.e., the ones with the lowest timestamp) only if the rollbacks count does not exceed 

max_rollbacks; else, the scheduler checks the next object until it finds an object in condition to be 

simulated or until it reaches the end of the list. 



  

4.2. Global Rollback Frequency Model  

In the Global Rollback Frequency Model (GRFM) protocol each simulation object uses global 

information in such a way that among all the simulation objects residing on all LPs, the one with 

largest number of rollbacks must be suspended for the duration of time defined at the beginning of 

the simulation. Therefore, at each simulation cycle all the LPs must broadcast the information 

regarding the rollback counts of all of their simulation objects. As in LRFM, M1 and M2 functions 

must first be defined: 

Function M1: The EP is the number of rollbacks that the object had minus the maximum number 

of rollbacks of the other simulation objects (both local and remote) participating in the simulation, 

from a time T1 until the current time T2, with T2 - T1 ≤ T, where T is the interval after which the 

local number of rollbacks of the simulation object gets reset to zero. 

Function M2: If the number of rollbacks at the interval T is greater than the number of rollbacks of 

the other simulation objects, then the object is suspended. The LP where the object resides on will 

still be able to receive incoming events, but the events are not processed until the simulation object 

resumes. However, if the number of rollbacks of the simulation object is less than the predefined 

value, then the object simulates the usual optimistic behavior.  

This algorithm is presented in Figure 13. As we can see, there are three different scenarios: 

1. The GRFM period has expired, therefore the simulation object starts a new period, its 

number of rollbacks gets reset to zero, and it is given permission to continue. 

2. The GRFM period has not yet expired; if the number of rollbacks of the simulation object 

is less than the allowable range, the simulation object continues its normal execution. 

3. The GRFM period has not yet expired, but the number of rollbacks within the simulation 

object has exceeded max_rollbacks, thus the simulation object is suspended for the entire 

duration of the current GRFM period. 



  

1. In each LP, at the beginning predefine: period

2. In each simulation object, at the beginning predefine:

        previous_time  = 0 

        max_rollbacks = 0

3. In each simulation object, when the LP is scheduled to run:

       actual_time = Warped.TotalSimulationlTime ()

if (actual_time - previous_time >= period)

   simulateNextEvent()

  previous_time  = actual_time

  rollbacks = 0 

else 

  if  (rollbacks < max_rollbacks) 

        simulateNextEvent()

/* else, SUSPEND the simulation object */

4. For i from 1 until the number of LPs

if (i is NOT this LP id)

send to LP i the number of rollbacks of the objects of the LP id

Subroutine that receives the number of rollbacks from other LP:

For j from 1 until the numbers received

If (rollbacks[j] > max_rollbacks)

max_rollbacks = rollbacks[j]

 

Figure  13. GRFM algorithm 

The main difference of GRFM and LRFM is the way max_rollbacks is initialized. In LRFM, the 

maximum allowable rollbacks is predefined by the user at run time, while in GRFM the maximum 

allowable rollbacks is set to the largest number of rollbacks of all participating simulation objects. 

That is, whenever a simulation objects is scheduled to execute, it must send the number of roll-

backs it had so far to all other simulation objects, both local and remote ones. As a result, at any 

time max_rollbacks is the largest number of rollbacks among all the existing simulation objects. 

5. Lightweight Time Warp Protocol 

As mentioned earlier, the operational overhead incurred in a Time Warp based optimistic simu-

lation constitutes the primary bottleneck that may degrade system performance. Broadly speaking, 

Time Warp has two forms of operational overhead: time overhead and space overhead. The former 

consists of the CPU time required to perform the local and global mechanisms, while the latter is 

the result of historical data stored by each LP in its input, output, and state queues. Several tech-

nical challenges must be addressed to tackle the issues related to performance, scalability, and 

increased complexity of Time Warp based large-scale parallel simulation systems, including the 

following: 

1. With a large number of LPs loaded on each available node, memory resources can quickly 



  

be exhausted due to the excessive amount of space required for saving past events and 

states. Consequently, the simulator is forced to reclaim the storage space of historical data 

with frequent GVT computation and fossil collection, an operation that itself is an im-

portant contributor to the overall operational overhead. Advanced algorithms such as 

pruneback [24], cancelback [25], and artificial rollback [26] attempt to recover from a 

memory stall at the expense of additional computation and communication overhead. It is 

desired to have a protocol that can support large-scale optimistic simulation even when 

memory resources are tight, while at the same time reducing the overhead of GVT com-

putation and fossil collection to the minimum (doing it only when absolutely necessary). 

2. One potential performance hazard in large-scale optimistic simulation is that the cost of 

rollbacks increases dramatically simply because a massive number of LPs are involved in 

the rollback operation on each node. Prolonged rollbacks not only result in poor system 

performance, but also increase the probability of rollback echoes [1], an unstable situation 

where simulation time does not progress. Therefore, it is imperative to fashion a new ap-

proach that can dramatically reduce the rollback cost without introducing if additional 

runtime overhead. 

3. Different implementations of the event sets in Time Warp have been the focus of research 

for several years (see, e.g., [27-30]). A primary motivation behind these efforts is to im-

prove the efficiency of queue operations as the number of stored events increases in 

large-scale and fine-grained simulations. In addition to using advanced data structures, the 

simulation performance would also be improved if we could keep the event queue rela-

tively short throughout the simulation, an alternative approach that warrants close exam-

ination. 

4. Dynamic load balancing has been recognized as a critical factor in achieving optimal 

performance in both general-purpose parallel applications and large-scale PADS systems 

where the workload on different nodes and the communication patterns between them are 

in constant fluctuation (see, e.g., [31-34]). Algorithms for dynamic load balancing usually 

rely on metrics whose values are valid only for a short period. This problem is especially 

severe in optimistic simulations since a potentially unbounded number of uncommitted 

events and states associated with an LP need to be transferred to a different node before the 

invalidation of the metric values. Only a few studies address specifically the issue of fa-



  

cilitating load migration in Time Warp systems. For example, Reiher and Jefferson pro-

posed a mechanism to split an LP into phases to reduce the amount of data that must be 

migrated [35]. More recently, Li and Tropper devised a method that allows for recon-

structing events from the differences between adjacent states so that only the state queue 

needs to be transferred between processors [36]. However, this approach works only for 

systems with fine event granularity and small state size such as VLSI circuits. An agile 

load migration scheme is needed to reduce the communication overhead in Time Warp 

based large-scale parallel simulation systems. 

5. The way how simultaneous events are handled has serious implication on both simulation 

correctness and performance. To ensure correct simulation results, P-DEVS introduces 

(partial) causal dependency among simultaneous events, requiring a control flow to en-

force an orderly event execution at each virtual time. From a performance perspective, 

however, this expanded execution of simultaneous events could increase the overhead for 

state-saving, rollback, and fossil collection, an issue that has not yet been addressed by 

existing TW-based DEVS systems. 

To address these problems in a systematic way, a novel protocol, known as Lightweight Time 

Warp (LTW), has been proposed for high-performance optimistic simulation of large-scale DEVS 

and Cell-DEVS models [37]. LTW is able to set free the majority of the LPs from the heavy 

machinery of the Time Warp mechanism, while the overall simulation still runs optimistically, 

driven by only a few fully-fledged Time Warp LPs. Although the following discussion is centered 

on realizing the LTW protocol in optimistic PCD++, the basic concepts also apply to a broad range 

of PADS systems under certain conditions and with appropriate control over the LPs.  

The roles of the various LPs under LTW are as follows [37]. 

1. The NC is the only LP that executes based on the standard Time Warp mechanism. 

2. The FC, becomes a mixed-mode LP that serves as an interface between full-fledged and 

lightweight LPs. 

3. The Simulators are turned into lightweight LPs, free from the burdens of maintaining 

historical data in their input, output, and state queues.  

5.1. A brief review of the simulation process in optimistic PCD++ 

As introduced in Section 3, on each node, the optimistic PCD++ simulator creates only one NC 

and FC, whereas many Simulators coexist in a typical large-scale simulation. Hence, a substantial 



  

reduction in the operational overhead at the Simulators would result in a significant improvement 

in the overall system performance. Note that even though the LPs are grouped together on each 

node, their LVT values may differ. Thus, the key characteristics of the simulation process can be 

summarized as follows. 

1. Simulators only communicate with their parent FC (i.e. no direct communication between 

the Simulators). Thus, their states can change only as the result of executing events coming 

from the FC. The FC has full knowledge of the timing of state changes at its child Simu-

lators.  

2. Rollbacks on a node begin either at the NC (as a result of straggler or anti-messages arrived 

from other remote NCs), or at the FC (in the case of messaging anomalies). In both cases, 

rollbacks propagate from the FC to its child Simulators on a node. Thus, the FC knows 

when the rollbacks will occur at the Simulators. Besides, a WCTS is an atomic computa-

tion unit for the FC and Simulators during rollbacks. 

3. The advance of the simulation time on each node is controlled entirely by the NC. The FC 

and the Simulators do not advance their LVTs voluntarily, nor do they send messages 

across WCTS boundaries.  

Based on these assumptions, we now discuss LTW protocol main parts: a rule-based dual-queue 

event scheduling mechanism, an aggregated state-saving scheme, and a lightweight rollback 

mechanism (while the detailed algorithms can be found in [37]). 

5.2. Rule-based dual-queue event scheduling mechanism 

Under Time Warp, the input queue is persistent, in the sense that the events remain in the queue 

until being fossil collected when the GVT advances beyond their time stamps. However, keeping 

this not only consumes lots of memory, but also increases the cost of queue operations. LTW 

solves this problem by introducing an additional volatile input queue that is used to hold tempo-

rarily the simultaneous events exchanged between the FC and its child Simulators within each 

phase of a WCTS. On the contrary, the persistent input queue is used only by the NC and FC to 

contain the events sent between them. A key observation is that, during a rollback, the incorrect 

events previously exchanged between the FC and its child Simulators are essentially annihilated 

with each other (due to the atomicity of the WCTS). Therefore, it is safe to exclude these events 

from the persistent queue. An example message flow between the LPs mapped on a node under 

this dual-queue arrangement is illustrated in Figure 14. 



  

From the Time Warp perspective, the simulation process only involves a small fraction of the total 

events executed by the LPs, as shown in Figure 15. Comparing both figures, we can see that the 

events executed by the FC and the Simulators within each phase of a WCTS can be considered as 

being collapsed into a single aggregated event. Note that the linking messages between adjacent 

WCTS’s (e.g., x23 and *24) are still kept in the persistent queue, allowing the simulation to resume 

forward execution after rollbacks. 

 

Figure 14. Message flow between the LPs using both persistent and volatile event queues 

 

Figure 15. Message flow between the LPs from the Time Warp perspective 

The volatile input queue has two appealing properties that allow us to reduce the memory footprint 

and the cost of queue operations significantly: 

1. Events in the queue are discarded and their memory reclaimed immediately after execution, 

(reducing the memory footprint of the system).  

2. Events in the queue always have the same time stamp. They are inserted into the queue as 

the simulation moves into each phase of a WCTS, and removed as the execution proceeds. 

At the end of each phase, the queue becomes empty. This means that a simple FIFO queue 

suffices, and queue operations can be performed efficiently in O(1) time. 

Consequently, the persistent queue becomes shorter, allowing for more efficient operations as 



  

well. For those events in the volatile queue, their counterpart anti-messages are no longer saved in 

the output queues of the sending LPs, further reducing memory consumption and speeding up the 

forward execution of the simulation. Similarly, message annihilations are not required to cancel 

these events during rollbacks, minimizing the rollback overhead and enhancing the stability and 

performance of the system. In addition, this also facilitates fossil collection due to the significant 

reduction in the number of past events and anti-messages stored in the persistent input and output 

queues, which, in turn, allows for more frequent GVT computation and fossil collection. 

A rule-based event scheduling scheme has been proposed to schedule the execution of events from 

both queues [37]. This scheme is implemented on each node by a scheduler that maintains two 

pointers, called as p-ptr and v-ptr, to reference the next available events in the queues respectively. 

The persistent queue contains events sorted in Lowest Time Stamp First (LTSF) order, including 

unprocessed events and those processed but not yet been fossil collected. On the other hand, the 

volatile queue only holds simultaneous events not yet processed in the current phase of a WCTS, 

as illustrated in Figure 16. 

 

Figure 16. Rule-based Dual-queue event scheduling 

The p-ptr pointer may need to be updated when the persistent queue is modified (event insertion 

and/or annihilation) to ensure that it always points to the first unprocessed event with the minimum 

time stamp, whereas the v-ptr pointer simply points to the event at the front of the volatile queue. 

At each event selection point, the scheduler compares the two events based on a set of predefined 

rules and chooses one of them as the next event to be executed in the current cycle, allowing the 

scheduler to adjust the priorities of the input queues dynamically on an event-by-event basis. The 

scheduling rules are executed in the order of appearance in the list. 

1. Idle condition. The simulation becomes idle if the volatile queue is empty and the per-

sistent queue does not contain events with time stamps before or at the simulation stop 

time. The simulation may be reactivated later upon the arrival of messages from other 

nodes.  

2. Simulation progress. If the volatile queue becomes empty the scheduler selects the next 



  

persistent event with a time stamp earlier than the simulation stop time. The NC can 1) 

advance simulation time on the node, or 2) resume forward execution from unprocessed 

persistent events after a rollback, or 3) reactivate the simulation from the idle state upon the 

arrival of remote messages, which are inserted into the persistent queue. 

3. Aggressive inter-node communication. During a collect phase, the NC may send mes-

sages to remote nodes. As these are potentially straggler messages at the receiving end, a 

delay in their delivery could postpone rollbacks at the destination, degrades performance. 

Thus, the scheduler grants higher priority to the persistent events events with the same time 

stamp in order to process inter-node messages immediately. 

4. LTSF execution. In all other cases, the next volatile event is selected to execute, enforcing 

a Least-Time-Stamp-First execution on the node.  

Note that an event selected from the volatile queue is removed (it will be deleted by the receiving 

LP after execution), whereas an event chosen from the persistent queue is simply marked as pro-

cessed and the p-ptr is moved to the next available event. 

5.3. Aggregated state management and an optimal risk-free state-saving strategy 

In a Time Warp system, each LP maintains its own state queue in order to restore to state variables 

during rollbacks. This approach allows for wide generality and straightforward implementation. 

However, it has several disadvantages. The historical states are scattered among the individual 

LPs, prohibiting efficient batch operations from being applied to the state queues. Also, state 

restorations are triggered entirely by straggler and/or anti-messages, stressing on the underlying 

communication infrastructure. LTW allows the Simulators to delegate the responsibility of state 

management to the FC. As a result, the Simulators are turned into truly lightweight LPs, totally 

isolated from the complex data structures required by Time Warp. 

In this new state management scheme, the FC employs an aggregated state manager that maintains 

the state queue for the FC itself, but also those used by the child Simulators. As illustrated in 

Figure 17, the state queue for a Simulator uses a dirty bit to identify the Simulators whose states 

have been modified during the computation of the current WCTS. The state-saving operation is 

carried out only when the FC detects that the events previously sent to the Simulators have been 

processed, and is performed only for those Simulators with dirty bits set to true. Note that no dirty 

bit is associated with the state queue for the FC itself since the FC is always involved in the 

computation of each WCTS. 



  

 

Figure 17. Aggregated state manager for the FC 

With this aggregated state management scheme, we now introduce an optimal risk-free 

state-saving strategy. As discussed in Section 3, the optimistic PCD++ simulator utilizes a Mes-

sage Type-based State-Saving (MTSS) strategy that allows to save states only after executing 

certain types of events. Specifically, the NC and FC save states only after processing (D, t) mes-

sages, while the Simulators save state only after executing (*, t) messages. Using the MTSS 

strategy, a transition phase may have multiple rounds of computation, thus, an LP could still save 

many states in each WCTS. During rollbacks, an optimal state-saving strategy should save only a 

single state at the end of each WCTS. The following strategy satisfies this condition and it is 

risk-free (no penalty is incurred as the result of saving fewer states). 

 

Figure 18. Introducing a state-saving phase at the end of each WCTS 

As shown in Figure 18, a state-saving phase is added to the end of each WCTS. Before advancing 

the simulation time, the NC instructs the FC to save states for the current WCTS. At this moment, 

all events belonging to the current WCTS have been processed by the FC and the Simulators and, 

thus, the saved states will reflect the latest values of the state variables in the LPs. Only when the 

state-saving phase completes, can the NC send linking messages to the FC to initiate the next 

WCTS for the new simulation time. The state of the NC itself is saved after processing (D, t) 

messages, just like in the MTSS strategy. 

5.4. Lightweight rollback mechanism 

As the Simulators are turned into lightweight LPs, they are neither expected nor allowed to carry 

out rollbacks on their own in LTW. Instead, the Simulators must rely on the FC to recover from 

causality errors. As rollbacks always propagate from the FC to the Simulators on each node, the 

FC has the full knowledge of when to perform rollbacks for its child Simulators. One of the most 

elegant features of LTW is that the incorrect input events previously executed by the Simulators 



  

have already been deleted in the volatile queue during forward execution. As a result, a great 

amount of CPU time that would otherwise be wasted on message annihilation can be saved, 

leading to an accelerated rollback and significant improvement in performance overall.  

The rollback of the FC itself is still triggered by straggler and/or anti-messages from the NC. The 

lightweight rollback mechanism must restore properly the state at the Simulators. One difficulty is 

that Simulators execute asynchronously and may not have the same LVT. Only the states of the 

Simulators involved in incorrect computations need to be restored during rollbacks. To solve this 

problem, the FC uses an array of latest state change time (LCT) to keep track of the time when the 

Simulators modify their states. The LCT is updated whenever the FC sends a (*, t) to a Simulator. 

If a rollback occurs, the FC cancels speculative interactions with the NC (based on the standard 

Time Warp mechanism). It then invokes the scheduler to delete all volatile events with a time 

stamp greater than or equal to the rollback time. Finally, the FC instructs the aggregated state 

manager to recover the state for each Simulator whose LCT is greater than or equal to the rollback 

time. After the state restoration, the LCT is updated to the LVT of the recovered state. 

In this way, LTW can perform rollbacks much more efficiently than the standard Time Warp 

mechanism due to, the reduction of message annihilations in the persistent input queue. Moreover, 

all the Simulators can be rolled back without sending any anti-messages, reducing overhead. 

5.5. LTW implications 

Though largely a local control protocol, LTW also has an impact on several aspects of the TW 

global control mechanism. First, fossil collection on each node is accelerated, not only because the 

fossil data in the persistent queues are minimized, but also because most of the states are managed 

in a centralized manner, allowing for efficient batch operations. Secondly, agile process migration 

is possible since only the state queues need to be transferred to move lightweight LPs for dynamic 

load balancing. The appropriate decision points for process migration would be at the end of each 

state-saving phase when all the volatile events have been executed (and deleted) and the states of 

the LPs have been saved.  

Additionally, LTW can be seamlessly integrated with other TW optimizations to further improve 

performance. For instance, various state-saving and cancellation strategies can be applied to the 

TW domain directly. LTW can be considered as complementary to Local Time Warp [38]: the 

former is a purely optimistic approach to reducing operational cost within each local simulation 

space, while the latter is a locally optimistic approach to mitigating cascaded rollbacks in the 



  

global space. It is easy to combine both approaches in a consistent way.  

Though only a single LTW domain is considered here, the protocol can be readily extended to 

support hybrid systems that require multiple LTW domains coexisting on each node to implement 

domain-specific formalisms. Besides, the basic concepts derived from the LTW protocol could 

also apply to a wide range of TW systems through carefully choosing the level of event granularity 

and imposing an appropriate control over the LPs. 

6. Performance Analysis of LTW 

We studied the performance of PCD++ quantitatively. Our experiments were carried out on a 

cluster of HP PROLIANT DL servers that consists of 32 compute nodes (dual 3.2GHz Intel Xeon 

processors, 1GB PC2100 266MHz DDR RAM) running Linux WS 2.4.21 interconnected through 

Gigabit Ethernet and communicating over MPICH 1.2.6.  

The performance of optimistic PCD++ was tested with Cell-DEVS models with different char-

acteristics, including a model for forest fire propagation [39] and a 3-D watershed model repre-

senting a hydrology system [40],[43]. The fire propagation model computes the ratio of spread and 

intensity of fire in forest based on specific environmental and vegetation conditions. The water-

shed model represents the water flow and accumulation depending on the characteristics vegeta-

tion, surface waters, soil, ground water, and bedrock. The watershed model was coded as a 3-D 

Cell-DEVS model to simulate the accumulation of water under the presence of constant rain.  

Conservative PCD++ was analyzed by running the above mentioned fire model as well as another 

CELL-DEVS model on Synapsin-Vesicle Reaction [41]. We have modeled the reserve pool of 

synaptic vesicles in a presynaptic nerve terminal, predicting the number of synaptic vesicles re-

leased from the reserve pool as a function of time under the influence of action potentials at dif-

fering frequencies. Time series amounts for the components are obtained using rule-based meth-

ods [42]. Creating this model in PCD++ allows spatial description of synapsin-vesicle interactions 

and PCD++ makes it possible to have graphical representations which are comparable to the real 

scene observed in electron microscopes.  

Performance metrics were collected during the simulations to gauge the performance and profile 

the simulation system. These metrics fall into two categories based on their intended purposes: 

namely performance measurement and system profiling. The former group includes three values 

collected to measure execution time, memory consumption, and CPU utilization. The latter group 

consists of a variety of values at runtime to profile the simulation system, including the number of 



  

states saved during the simulation, the time spent on state-saving operations, and the bootstrap 

time for simulation initialization. We use two different speedups measuring the overall speedup 

reflects how much faster the simulation runs on multiple machines than it does on a single one (as 

perceived by the users), whereas the algorithm speedup is calculated from the actual running time 

(i.e., without considering the simulation bootstrap time, to assess the performance of the parallel 

algorithms alone). 
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Figure 19. A simple partition strategy for Cell-DEVS models 

A simple partition strategy was adopted for all the models in the following tests. It evenly divides 

the cell space into horizontal rectangles, as illustrated in Figure 19 for a 30×30 model partitioned 

over 3 nodes. Using different partition strategies could have a big impact on the performance of the 

simulation. Since the workload on the nodes is unpredictable and keeps changing during the 

simulation, it is hard, if not impossible, to predict the best partition strategy for a given model 

before the simulation. This problem can be alleviated by using some dynamic load-balancing 

techniques in the simulation algorithms. 

 

6.1. Performance analysis of the conservative PCD++ 

The Synapsin-Vesicle Reaction model consists of 676 cells arranged in a 26x26 mesh with a total 

execution time of 3.7621 seconds when run on the standalone single-processor CD++. Figure 20 

represents the execution time resulting from running the model with the conservative parallel 

simulator on 1 to 8 nodes.  
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Figure 20. Synapsin-vesicle model execution time on conservative parallel simulator 

As seen on the graph, the conservative simulator improves the total execution time significantly 

when more than 2 nodes are available. As the number of participating nodes increases, the speed 

up factor decreases. The main reason is communication overhead among the participating LPs 

which leads in a noticeable time added to the duration of the model execution.  

The Fire Propagation model consists of 900 cells arranged in a 30x30 mesh with a total execution 

time of 6.2145 seconds when run on standalone CD++. Figure 21 represents the execution time 

resulting from running the model with the conservative simulator on 1 to 8 nodes. 
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Figure 21. Fire propagation model execution time with the conservative parallel simulator 

As seen on the graph, the parallel simulator improved the execution time of the model. The con-

servative simulator presented the best results on 4 nodes, while still all other scenarios with more 

than one node have lower execution results with respect to simulation on single node. 

6.2. Performance analysis of optimistic PCD++ 

In this section, we evaluate the performance of optimistic PCD++ under the standard Time Warp 

protocol and the PCD++ optimization strategies discussed in Section 3. 



  

6.2.1. Effect of the one log file per node strategy 

The fire propagation model (900 cells arranged in a 30×30 mesh) was executed on 1 and 4 nodes 

with and without using the strategy during a period of 5 hours. The resulting execution time (T) 

and bootstrap time (BT) are illustrated in Figure 22, where the BT for 4 nodes is the arithmetic 

average of the BT values collected on these nodes. 
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Figure 22. Execution and bootstrap time before and after one log file per node strategy on 1 and 4 nodes 

As we can see BT is greater than the actual running time (when the strategy is turned off), clearly 

indicating that the bootstrap operation is a bottleneck. When the strategy is turned on, the bootstrap 

time is reduced by 99.1% on 1 node and by 96.47% on 4 nodes. Further, the running time is de-

creased by 72.08% on 1 node and by 73.02% on 4 nodes due to more efficient communication, I/O, 

and rollback operations. 
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Figure 23. CPU usage before and after one log file per node strategy on 1 node 

The CPU usage (%CPU) monitored in our experiments also suggests that the file I/O operation is a 

major barrier in the bootstrap phase. The CPU usage collected before and after applying the one 

log file per node strategy on a single node is shown in Figure 23. Again, when the strategy is turned 

off, the CPU essentially remains idle in the first 23 seconds (corresponding to the observed BT), 



  

during which a majority of time has been dedicated to I/O operations for creating the log files at the 

NFS server over the network. At the end of the simulation, the logged data is flushed to the 

physical files, resulting in intensive I/O operations again. As expected, the CPU rests idle in the 

last 12 or so seconds. On the other hand, the computation is condensed when the strategy is applied 

to the simulator. As a result, the CPU is utilized much more efficiently with the one log file per 

node strategy. A similar pattern was observed in simulations running on multiple nodes.  

Other observations are described below: 

1. The bootstrap time tends to increase when more nodes are used to do the simulation. For 

example, the BT increased from 0.2121 seconds on 1 node to 0.8614 seconds on 4 nodes in 

our experiments. The reason is that the number of log files increases with the number of 

nodes, causing higher delays in communication and file I/O operations at the NFS server.  

2. The bootstrap time also tends to increase somewhat along with the size of the model be-

cause of the additional operations for memory allocation and object initialization in the 

main memory. However, this is a relatively moderate increase when compared with the 

previous case. 

3. Even though the bootstrap time is reduced significantly with the one log file per node 

strategy, it still constitutes an overhead that cannot be ignored when we measure the real 

effect of the parallel algorithms. In the experiments, it accounts for 3.9% and even 24.84% 

of the total execution time on 1 and 4 nodes respectively. 

6.2.2. Effect of the message type-based state-saving strategy 

The fire propagation model was used to evaluate the performance improvement derived from the 

MTSS strategy. Besides the standard Time Warp algorithms, the one log file per node strategy is 

also applied to the simulator in the following experiments. 
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Figure 24. States saved and state-saving time before and after MTSS strategy on 1 and 4 nodes 

The model was executed on 1 and 4 nodes (respectively) with and without the MTSS strategy 



  

(respectively). The number of states saved in the simulation (SS) and the time spent on 

state-saving operations (ST) are shown in Figure 24. Here, the data for 4 nodes is the average of the 

corresponding values collected on the nodes. Owing to the MTSS strategy, the number of states 

saved during the simulation is reduced by 49.29% and 47.74% on 1 and 4 nodes respectively. 

Accordingly, the time spent on state-saving operations is decreased by 29.9% and 27.76%. 
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Figure 25. Running and bootstrap time before and after MTSS strategy on 1 and 4 nodes 

The corresponding running time and bootstrap times are shown in Figure 25. While the bootstrap 

time remains nearly unchanged, the actual running time is reduced by 17.64% and 7.63% on 1 and 

4 nodes respectively because fewer states are saved and potentially removed from the queues. 
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Figure 26. Average and maximum memory consumption before and after MTSS strategy 

The most noticeable effect of the MTSS strategy is the decrease in memory consumption. Figure 

26 shows the time-weighted average and maximum memory consumption with and without the 

strategy for the fire propagation model on 1 and 4 nodes. The time-weighted average was calcu-

lated using an interval of 1 second. For 4 nodes, the data was also averaged over the nodes. The 

average memory consumption declines by 26% in both cases, while the peak memory consump-

tion decreases by 25.13% and 27.44% on 1 and 4 nodes respectively. 



  

6.2.3. Performance of the optimistic PCD++ 

The metrics used for evaluating the performance of the optimistic PCD++ simulator included the 

execution time and speedup. We analyze the execution results of the Cell-DEVS models with the 

standard Time Warp algorithms. In addition, the one log file per node and MTSS strategies were 

applied to the simulator in the experiments. 
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Figure 27. A comparison of the conservative and optimistic PCD++ using the fire model 

We compare the performance of conservative and optimistic PCD++ using the fire propagation 

model executed on a set of compute nodes. Figure 27 shows the total execution time for the fire 

propagation simulation with different sizes, including 20×20 (400 cells), 25×25 (625 cells), 30×30 

(900 cells) and 35×35 (1225 cells).  

In all cases, the optimistic simulator markedly outperforms the conservative one. There are three 

major contributing factors: 

1. Optimistic PCD++ has been optimized with the one log file per node strategy. Hence, its 

bootstrap time is substantially less than that of the conservative. Although the data logged 

during the simulations is the same for both simulators, the number of log files generated by 

PCD++ is only a small fraction of that created by the conservative simulator. This factor 

accounts for much of the difference in the execution time on a single node.  

2. Time Warp avoids, for the most part, the serialization of execution that is inherent in the 

conservative algorithms, and hence exploit higher degree of concurrency. 

3. The non-hierarchical approach adopted in optimistic PCD++ outperforms the hierarchical 

one of the conservative simulator. The flattened structure reduces the communication 

overhead and allows more efficient message exchanges between the PCD++ processors. 

The total execution time and running time of the fire model executed on 1 up to 4 nodes are listed 

in Table 1. 



  

Table 1. Execution time and running time for fire model of various sizes on a set of nodes 

Total Execution Time (sec) Running Time (sec) 

Number 

of nodes 
20×20 25×25 30×30 35×35 

Number 

of nodes 
20×20 25×25 30×30 35×35 

1 2.0733 3.2949 5.0442 7.8702 1 1.9515 3.1273 4.3566 7.6428 

2 1.9719 2.7959 3.5232 4.7138 2 1.4232 2.1225 2.8838 3.9952 

3 1.8787 2.5237 3.1573 3.9667 3 1.3574 1.8953 2.5237 3.2959 

4 1.9254 2.6091 3.0922 3.8138 4 1.4296 1.8656 2.3314 3.0224 

 

For any given number of nodes, the execution time always increases with the size of the model. 

Moreover, the execution time rises less steeply when more nodes are used to do the simulation. For 

example, as the model size increases from 400 to 1225 cells, the execution time ascends sharply by 

nearly 280% (from 2.0733 to 7.8702 seconds) on 1 node, whereas it merely rises by 98% (from 

1.9254 to 3.8138 seconds) on 4 nodes. On the other hand, for a fixed model size, the execution 

time tends to, but not always, decrease when more nodes are utilized. The execution time for the 

20×20 model decreases from 2.0733 to 1.8787 seconds when the number of nodes climbs from 1 to 

3. However, when the number of nodes increases further, the downward trend in execution time is 

reversed. It increases slightly from 1.8787 to 1.9254 seconds as the number of nodes rises from 3 

to 4. When a model, especially a small one, is partitioned onto more nodes, the increasing over-

head involved in inter-LP communication and potential rollbacks may eventually degrade per-

formance. Hence, a trade-off between the benefits of higher degree of parallelism and the con-

comitant overhead costs needs to be reached when we consider different partition strategies. 

From the table, we can also find that better performance can be achieved on a larger number of 

nodes as the model size increases. The shortest execution time is achieved on 3 nodes for the 

20×20 and 25×25 models, while it is obtained on 4 nodes for the other two larger models. It is clear 

that we should use more nodes to simulate larger and more complex models where intensive 

computation is the dominant factor in determining the system performance. 

Based on the collected execution and running time, the overall and algorithm speedups are shown 

in Figure 28. 
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Figure 28. Overall and algorithm speedups for fire model of various sizes on a set of nodes 

As we can see, higher speedups can be obtained with larger models. In addition, the algorithm 

speedup is always higher than its counterpart overall speedup, an evidence showing that the Time 

Warp optimistic algorithms are major contributors to the overall performance improvement.  

Table 2. Execution time and running time for the 15×15×2 watershed model on a set of nodes 

Number of nodes 1 2 3 4 5 

Total Execution Time (sec) 16.8036 11.7930 8.3285 7.3205 6.1538 

Running Time (sec) 16.6668 11.1522 7.7191 6.8140 5.6743 

A more computation-intensive 3-D watershed model of size 15×15×2 (450 cells) was tested to 

evaluate the performance of optimistic PCD++ for simulating complex physical system. Table 2 

shows the total execution time and running time. The best performance is achieved on 5 nodes 

with execution and running time of 6.1538 and 5.6743 seconds respectively. 
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Figure 29. Overall and algorithm speedups for the 15×15×2 watershed model 

The resulting speedup is illustrated in Figure 29. The best overall and algorithm speedups achieved 

for the 15×15×2 watershed model are 2.7306 and 2.9373 respectively, higher than those obtained 

with the fire model. 



  

6.3. Effect of hybrid optimistic algorithms 

To analyze the impact of the LRFM and GRFM Time Warp-based protocols on the performance of 

the optimistic PCD++ simulator, the same models were also run using LRFM- and GRFM-based 

optimistic simulators. Different models with distinguishable functionality, complexity, and size 

were selected for the experiments to better judge the capability of the simulators. The Synap-

sin-Vesicle Reaction model presented in Section 6.1 is presented in Figure 30 which represents the 

execution time resulting from running the model with four different simulators on 1 to 8 nodes. 
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Figure 30. Synapsin-vesicle model execution time on 4 different simulators 

We can see that the optimistic and LRFM-based simulators produce very close results on 1 to 8 

nodes. Also, the GRFM-based simulator has similar results for 1, 2, 3, and 5 nodes. However, the 

performance is degraded when 4, 6, 7, and 8 nodes are participating due to the increase of number 

of remote messages that are sent back and forth. On the other hand, the conservative simulator 

shows different behavior as the number of nodes increases. As the number of computing nodes 

increases, the GRFM-based simulator has the lowest performance among other ones. The main 

reason is communication overhead among the participating LPs which leads in a noticeable time 

added to the duration of the model execution. 

Figure 31 represents the speedups of the model execution times with respect to execution on one 

node for each particular simulator. 
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Figure 31. Synapsin-vesicle model speedups with regards to execution on one node 

 

6.3.2. Fire Propagation Model 

This model uses 900 cells arranged in a 30x30 mesh with a total execution time of 6.2145 seconds 

when run on standalone CD++. Figure 32 represents the execution time resulting from running the 

model with four different simulators on 1 to 8 nodes. 
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Figure 32. Fire propagation model execution time on 4 different simulators 

As seen on the graph, the parallel simulator significantly improved the execution time of the 

simulation. The three optimistic simulators produced very similar results on 1 to 7 nodes and the 

optimistic simulators outperforms the conservative one. For the optimistic simulators the best 

results were achieved on 5 nodes, while the conservative one had its lowest execution time on 4 

nodes since the number of remote messages and the suspension duration of the simulation objects 

were at their best on 4 nodes. 

6.4. Comparing Time Warp and Lightweight Time Warp 

As analyzed in Section 5, LTW can effectively improve system performance in various ways 



  

(including reduced memory consumption, lowered operational overhead, and accelerated queue 

operations). In this section, we present a comparison of the optimistic PCD++ performance under 

the standard Time Warp and Lightweight Time Warp protocols. 

6.4.1. Experiment platform and metrics 

Both TW and LTW protocols have been implemented in optimistic PCD++. A stress test was 

carried out on a cluster of 28 HP Proliant DL140 servers (dual 3.2GHz Intel Xeon processors, 1GB 

266MHz RAM with 2GB disk swap space) running on Linux WS 2.4.21 and communicating over 

Gigabit Ethernet using MPICH 1.2.7. Note that severe memory swapping may occur if memory 

usage approaches the upper limit of 1GB on a node. Table 3 lists the metrics collected in the ex-

periments through extensive instrumentation and measurement. The experimental results for each 

test case were averaged over 10 independent runs to strike a balance between data reliability and 

testing effort. For those cases executed on multiple nodes, the results were averaged over the 

participating nodes to obtain a per-node evaluation. The queue lengths (i.e., PQLen and VQLen) 

were averaged over samples collected every 20 event insertions. 

Table 3. Performance metrics 

Metrics Description 

T Total execution time of the simulation (sec) 

MEM Maximum memory consumption (MB) 

PEE Number of events executed in persistent queue 

VEE Number of events executed in volatile queue 

PQLen Average length of the persistent input queue 

VQLen Average length of the volatile input queue 

SS Total number of states saved 

OPT-SK Number of states reduced by the optimal strategy 

FCT Average time spent on a single fossil collection (ms) 

PriRB Number of primary rollbacks 

SecRB Number of secondary rollbacks 

RB Total number of rollbacks (i.e., PriRB + SecRB) 

EI Number of events imploded in persistent queue 

ER Number of events unprocessed in persistent queue 

6.4.2. Environmental models 

Three Cell-DEVS models with varied characteristics were validated and tested. Two of them 

simulate stationary wildfire propagation over 50 hours in a 2D cell space based on the Rothermel 

model. However, they differ in the way the spread rates are calculated. The first fire model, re-

ferred to as Fire1, uses predetermined rates at reduced runtime computation cost. The second fire 

model, referred to as Fire2, invokes the fireLib library [44] to calculate spread rates dynami-

cally, with higher runtime computation density, based on a set of parameters such as fuel type, 



  

moisture, wind direction and speed. The time for executing a (*, t) message at the Simulators, 

which reflects the computation intensity of the state transitions, was calibrated at 112 and 748 µs 

for Fire1 and Fire2 respectively.  

The other model, called as Watershed, simulates the environmental influence on hydrological 

dynamics of water accumulation over 30 minutes in a 3D cell space. Though it is not as com-

pute-intensive as Fire2 (577 µs state transition time), a larger neighborhood of 10 cells on different 

layers of the cell space is defined with increased communication intensity. 

Unlike cellular automata models, which evaluate all the cells synchronously at discrete time steps, 

these Cell-DEVS models define the cell spaces as discrete-event models where each cell is an 

independent atomic model executed by a Simulator allowing efficient asynchronous execution 

without losing accuracy. These Cell-DEVS models execute a great number of simultaneous events 

at each virtual time, increasing the operational cost of TW simulation. In the next section, we will 

show that LTW is well-suited for improving simulation performance in such situations. 

6.4.3. Test results and analysis 

The comparative evaluation was conducted under the same configurations. Both protocols used 

aggressive cancellation and copy state-saving optimized with Message Type-based State Saving 

(MTSS). In addition, the optimal risk-free state-saving strategy introduced in Section 5 was ena-

bled for LTW. In all test cases, message logging activities were turned off to minimize the impact 

of file I/O operations on system performance. Also, the corresponding test cases used the same 

partition scheme to divide the cell space (horizontal rectangles evenly distributed among nodes).  

In the following tables, a “×” mark indicates a failed test case due to memory exhaustion, while a 

shaded entry attributes the poor performance to severe memory swapping activities. A “−” mark 

stands for a case that was not tested because either the performance trend is already clear in the 

series, or the model cannot be divided further with the given partition scheme. The best execution 

time is highlighted in each series. The results (T and MEM) of a sequential simulator are also 

provided as a reference for evaluating the absolute performance of both protocols. 

Table 4. Total execution time and maximum memory usage for Fire1 

Size Sequential Prot. Metric 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 

5
0
×

5
0

 

 5.54 (T) 

 29.11 (MEM)  

TW 
T × 9.08 5.87 5.26 5.01 5.39 5.49 5.55 5.95 − − − − − − 

MEM × 813.57 220.42 109.94 61.79 43.73 34.84 26.37 22.22 − − − − − − 

LTW 
T 5.78 3.61 3.02 2.98 2.78 3.01 3.23 3.25 3.54 − − − − − − 

MEM 63.53 65.83 27.42 20.58 14.25 13.24 11.98 9.95 9.31 − − − − − − 

1
0

0
×

1
0

0
 

 56.07 (T) 

110.59 (MEM)   

TW 
T × × 2749.13 484.91 40.09 35.66 34.46 32.35 33.51 32.53 32.44 33.4 35.0 35.19 35.96 

MEM × × 2279.42 1492.31 882.82 576.61 410.19 307.79 244.6 197.97 162.92 137.77 121.47 103.03 91.75 

LTW 
T 78.21 43.84 31.62 24.35 23.58 22.61 22.26 21.62 21.86 21.88 22.03 22.2 22.0 22.46 21.76 

MEM 405.5 373.25 271.62 160.26 110.94 82.65 66.75 55.65 48.18 43.55 38.92 36.22 34.05 32.3 29.94 



  

1
5
0

×
1
5
0

 
 260.65 (T) 

242.69 (MEM) 

TW 
T × × × × × 1516.48 893.43 572.83 314.03 202.71 141.46 140.98 142.63 142.01 143.18 

MEM × × × × × 2309.12 1935.02 1449.83 1131.65 906.07 744.91 623.9 527.05 460.76 404.44 

LTW 
T 1489.77 517.92 394.56 122.44 112.93 110.63 111.7 109.67 107.02 107.23 105.27 107.1 106.75 104.88 104.74 

MEM 1418.85 1294.08 986.62 660.31 415.01 296.96 230.4 186.68 161.7 137.22 123.85 105.07 96.8 90.88 85.09 

2
0
0

×
2
0
0

 

815.43 (T) 

432.13 (MEM) 

TW 
T × × × × × × × × × × 4324.31 1236.26 1065.79 881.61 737.14 

MEM × × × × × × × × × × 1848.93 1560.7 1528.73 1188.06 1058.7 

LTW 
T 12571.7 6894.36 1425.16 920.86 646.56 350.58 334.77 331.2 333.12 326.7 327.56 327.46 322.93 330.03 327.24 

MEM 1679.36 1644.54 1393.66 1229.82 1145.6 805.17 582.49 431.18 393.15 291.49 244.01 209.52 235.47 186.1 188.68 

Table 4 gives the resulting total execution time and maximum memory usage (T and MEM) for 

Fire1 of varied sizes on different number of nodes. It is clearly shown that LTW outperforms TW 

counterpart in all successful cases. First, the maximum memory usage on each node is reduced by 

45% up to 92%, making it possible to execute the model using a smaller number of nodes, with 

significantly lower simulation cost. Secondly, the total execution time is decreased by 24% up to 

60% among those test cases with sufficient memory, and this improvement is achieved with a 

much smaller memory footprint at the same time. 

Table 5. 100×100 Fire1 on 14 nodes 

Metrics TW LTW LTW vs. TW 

PEE 96685.07 10597.71  

VEE 0 67214.07  

PQLen 24798.12 2636.95 ↓ 89.37% 

VQLen 0 121.89  

SS 52819.64 22675.14 ↓ 57.07% 

OPT-SK 0 18445.36  

FCT 488.14 84.15 ↓ 82.76% 

PriRB 613.14 604.00 ↓  1.49% 

SecRB 11922.07 981.14 ↓ 91.77% 

RB 12535.21 1585.14 ↓ 87.35% 

EI 61751.93 5826.36 ↓ 90.56% 

ER 48118.79 5790.93 ↓ 87.97% 

To find out the reason that causes the differences, other metrics were compared. As an example, in 

Table 5 we present a comparison of the 100×100 Fire1 on 14 nodes. The introduction of the vol-

atile input queue reduces the average length of the persistent input queue by 89.37%, reducing the 

overhead of queue operations and memory consumption. On the other hand, the volatile queue is 

kept short throughout the simulation (average length of 121.89 events), despite the fact that 

86.38% input events executed on each node have been turned into volatile under LTW. 

Owning to the optimal risk-free state-saving strategy (which reduces the number of state-saving by 

44.86% on top of MTSS), the total number of states saved in LTW is 57.07% fewer than in TW, 

resulting in less memory usage as well. As expected, the time for each fossil collection decreased 

from 488.14 ms to 84.15 ms (a reduction of 82.76%).  

When comparing rollback performance, LTW shows a big advantage over TW. The number of 

secondary rollbacks is reduced by 91.77%, showing that rollback propagation is effectively con-



  

tained within the TW domain on each node. Moreover, the number of primary rollbacks reduced 

by 1.49%. This combined with the fact that the total number of events executed on each node (i.e., 

PPE + VEE) decreased by 19.52%, suggests a more stable system with less speculative computa-

tion. Consequently, the numbers of events imploded and unprocessed in the persistent queue also 

declined around 90%, further accelerating the rollback operations. 

Table 6. Total execution time and maximum memory usage for Fire2 

Size Sequential Prot. Metric 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 

5
0
×

5
0

 

19.29 (T) 

29.52 (MEM) 

TW 
T × 20.89 13.93 12.19 10.91 10.41 10.8 10.64 10.84 10.55 11.31 12.51 12.76 13.39 13.44 

MEM × 800.26 226.82 108.41 65.37 46.29 34.54 28.13 23.23 20.19 18.19 16.31 14.81 13.72 12.85 

LTW 
T 20.26 14.23 10.38 9.69 9.46 8.84 9.01 8.51 8.64 8.4 8.32 9.28 9.34 9.51 10.27 

MEM 81.24 66.92 34.99 22.6 17.77 14.65 13.02 11.76 10.83 10.17 9.63 9.29 8.99 8.73 8.49 

1
0
0

×
1
0
0

 

119.95 (T) 

109.57 (MEM) 

TW 
T × × 3284.37 460.32 68.67 54.63 52.03 48.92 48.58 46.96 46.37 47.53 48.69 49.39 49.97 

MEM × × 2159.1 1319.08 658.14 576.72 411.14 310.95 240.42 198.4 163.47 149.65 112.23 99.94 83.78 

LTW 
T 206.16 114.98 60.09 54.37 51.22 44.11 41.61 40.37 38.87 37.55 35.54 36.83 36.23 36.46 36.48 

MEM 314.37 285.18 248.32 137.73 102.24 81.63 65.57 54.35 48.91 45.62 42.6 38.42 35.75 33.84 32.03 

1
5

0
×

1
5

0
 

414.25 (T) 

243.71 (MEM) 

TW 
T × × × × × 4448.08 2487.95 651.06 394.92 244.97 167.25 164.79 167.42 165.64 168.88 

MEM × × × × × 1817.71 1375.23 1399.3 1086.72 905.96 744.91 562.55 532.14 425.91 399.51 

LTW 
T 1592.43 493.61 223.65 178.2 174.63 165.84 168.66 167.14 140.67 140.21 137.0 134.3 136.11 133.1 134.01 

MEM 1210.37 924.16 641.79 586.92 385.41 269.62 205.4 172.18 139.44 122.16 112.93 104.22 94.47 89.39 85.79 

2
0

0
×

2
0

0
 

1033.61 (T) 

424.96 (MEM) 

TW 
T × × × × × × × × × 12112.7 3206.02 1501.28 1202.48 900.05 764.21 

MEM × × × × × × × × × 1943.55 1785.9 1618.94 1522.69 1475.58 1243.95 

LTW 
T 11707.5 3363.07 1339.92 1173.69 562.68 414.52 412.92 412.89 381.1 376.58 417.44 373.11 372.6 370.04 371.56 

MEM 1661.95 1562.62 1267.71 1292.97 885.61 438.81 363.5 313.96 289.68 274.55 240.98 227.23 208.62 192.61 173.08 

Table 7. Total execution time and maximum memory usage for Watershed 

Size Sequential Prot. Metric 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 

1
5
×

1
5

×
2

 

258.27 (T) 

43.99(MEM) 

TW 
T × × 2059.62 899.49 84.97 87.06 86.59 88.76 − − − − − − − 

MEM × × 1718.02 997.21 691.2 536.37 422.49 333.53 − − − − − − − 

LTW 
T 262.99 171.18 112.69 100.54 79.45 82.27 82.08 82.59 − − − − − − − 

MEM 45.66 27.91 148.48 121.54 128.96 113.14 101.29 90.39 − − − − − − − 

2
0
×

2
0

×
2

 

471.86 (T) 

72.67 (MEM) 

TW 
T × × × × 2451.7 857.3 757.65 724.55 638.97 676.42 − − − − − 

MEM × × × × 1618.94 1180.67 967.51 778.53 643.52 535.21 − − − − − 

LTW 
T 473.81 268.87 181.94 155.09 140.14 104.77 108.52 109.58 110.35 112.87 − − − − − 

MEM 76.02 40.04 164.35 136.36 130.82 149.81 137.24 129.85 115.87 111.99 − − − − − 

2
5

×
2

5
×

2
 

735.39 (T) 

115.48 (MEM) 

TW 
T × × × × × × × 2002.73 1948.95 1922.21 1705.19 1597.08 1585.6 − − 

MEM × × × × × × × 1519.54 1434.77 1262.59 1063.03 774.38 663.21 − − 

LTW 
T 748.49 469.65 306.25 257.18 195.16 176.19 172.39 136.18 136.37 142.69 143.86 139.54 141.85 − − 

MEM 119.8 70.46 164.86 128.68 131.07 132.81 132.27 153.82 141.87 128.25 114.39 113.95 103.44 − − 

3
0
×

3
0

×
2

 

1041.39 (T) 

168.46 (MEM) 

TW 
T × × × × × × × × 5381.55 4475.37 3133.72 3130.89 2920.06 2765.2 2784.83 

MEM × × × × × × × × 2192.96 1867.83 1602.25 1388.87 1206.87 1055.31 924.49 

LTW 
T 1098.11 616.28 390.68 293.33 237.82 208.26 204.82 198.27 169.12 168.45 168.01 165.54 165.64 166.55 162.43 

MEM 174.08 89.69 163.07 164.18 151.55 171.62 148.91 138.31 117.57 139.45 156.5 149.91 130.2 122.69 114.69 

 

The experimental results for the Fire2 and Watershed models are shown in Table 6 and Table 7 

respectively. Again, LTW reduces maximum memory consumption by approximately 34% up to 

92% for Fire2 and by 73% up to 93% for Watershed. The reduction in memory usage is more 

prominent for Watershed largely because, with a higher number of simultaneous events exchanged 

between the LPs at each virtual time, a larger percentage of states are reduced with the optimal 

state-saving strategy. 

For those cases with sufficient memory, the total execution time decreased by 13% up to 32% for 

Fire2 and by 5% up to 91% for Watershed. A general trend reflected in the experimental results is 



  

that the reduction in execution time and memory usage is greater for models with larger sizes, 

indicating an improved scalability. 

Other metric values for the 100×100 Fire2 on 20 nodes and 20×20×2 Watershed on 18 nodes are 

given in Table 8 and Table 9 respectively. As we can see, a similar pattern can be observed re-

garding the improvement of the metrics, suggesting that LTW is suitable for simulating models 

with varied computation and communication characteristics. 

Table 8. 100×100 Fire2 on 20 nodes 

Metrics TW LTW LTW vs. TW 

PEE 68346.55 11658.75  

VEE 0 56057.00  

PQLen 17533.37 2149.91 ↓ 87.74% 

VQLen 0 75.31  

SS 33833.00 17565.40 ↓ 48.08% 

OPT-SK 0 15591.10  

FCT 245.12 58.36 ↓ 76.19% 

PriRB 769.95 740.55 ↓  3.82% 

SecRB 12794.35 2036.45 ↓ 84.08% 

RB 13564.30 2777.00 ↓ 79.53% 

EI 46877.55 7197.90 ↓ 84.65% 

ER 29512.45 6651.60 ↓ 77.46% 

Table 9. 20×20×2 Watershed on 18 nodes 

Metrics TW LTW LTW vs. TW 

PEE 1253641.94 361457.78  

VEE 0 856256.00  

PQLen 334016.67 77790.62 ↓ 76.71% 

VQLen 0 26.04  

SS 371273.33 73186.94 ↓ 80.29% 

OPT-SK 0 288247.50  

FCT 61313.67 395.63 ↓ 99.35% 

PriRB 173.50 159.94 ↓  7.81% 

SecRB 22816.67 2165.33 ↓ 90.51% 

RB 22990.17 2325.28 ↓ 89.89% 

EI 625210.33 175521.11 ↓ 71.93% 

ER 569337.94 172280.33 ↓ 69.74% 

 

In terms of absolute performance, LTW attain higher and more consistent speedup than TW. In 

some scenarios, the performance of a TW simulation is even worse than the sequential execution 

(e.g., 50×50 Fire1 on 2 and 4 nodes; 20×20×2 Watershed on 14, 16, and 18 nodes) mainly due to 

the excessive communication and operational overhead. However, such scenarios do not arise in 

the LTW cases tested. 



  

7. Summary 

In this chapter we presented and analyzed the performance of our two existing parallel CD++ 

simulators, namely the Conservative PCD++ simulator and Optimistic PCD++ simulator with a 

focus on the last one. We looked at the design and implementation of these PCD++ simulators and 

compared their structures as well as functionalities in parallel and distributed simulations. The 

hierarchical structure of the conservative PCD++ simulator was compared against the flattened 

structure of the optimistic PCD++ simulator. We illustrated the migration from a hierarchical 

structure to a flattened structure as two major modifications; the departure from conserva-

tive-based simulator to an optimistic-based simulator, and flattening the structure. Then we 

showed how the optimistic PCD++ simulator deals with the communication overhead by a flat 

structure. 

Aiming at improving the performance of the optimistic simulator, we modified the WARPED kernel 

to handle rollbacks in a more efficient way. We presented new algorithms that we have imple-

mented in WARPED kernel: The Near-perfect State Information protocol and the Local Rollback 

Frequency Model (LRFM), and the Global Rollback Frequency Model (GFRM). We run a variety 

of tests to analyze the performance of our existing PCD++ simulators; the optimistic and the 

conservative as well as our LRFM and GRFM Time Warp-based protocols. The main goal of these 

tests was to show the maximum capability of the two mentioned PCD++ simulators in terms of 

handling the number of nodes driving the simulation, complexity of the model, and the size of the 

model. 

A novel optimistic synchronization protocol, referred to as Lightweight Time Warp (LTW), has 

been proposed and its performance compared to the standard Time Warp. LTW offers a novel 

approach that systematically addresses several important issues of TW-based systems (especially 

for DEVS-based simulations that require a large number of simultaneous events to be executed at 

each virtual time). It allows purely optimistic simulation to be driven by only a few full-fledged 

TW LPs, preserving the dynamics of the TW mechanism, while at the same time, accelerating the 

execution in each local simulation space significantly. Both TW and LTW have been implemented 

in optimistic PCD++. The experimental results demonstrated that LTW outperforms TW in var-

ious aspects, including shortened execution time, reduced memory usage, lowered operational 

cost, and enhanced system stability and scalability. We are currently working on integrating LTW 

with other TW optimizations to further improve performance. By taking advantages of the LTW 



  

protocol, we are also investigating dynamic process creation, deletion, and migration schemes to 

support more efficient load balancing as well as runtime structure changes in optimistic DEVS 

systems. 
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