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Abstract 
We present the performance evaluation of the Conserva-
tive DEVS protocol. This conservative algorithm is based 
on the classical Chandy-Misra-Bryant (CMB) synchroni-
zation mechanism, and extends the DEVS abstract simu-
lator by providing means for lookahead computation and 
null message distribution. The protocol is integrated into 
the CD++ simulation toolkit, providing a conservative 
simulator (named CCD++) for running large-scale DEVS 
and Cell-DEVS models in parallel and distributed fashion. 
Throughout the experiments, we analyze four types of 
metrics, the total execution time, the average blocked time 
per node, the average number of positive events executed 
on each node, and the average number of null messages 
per node. We show a study on three environmental Cell-
DEVS models, which shows that CCD++ provides con-
siderable speedups, showing its ability for simulating 
large and complex DEVS-based models.   
 
1. INTRODUCTION 
Parallel and distributed simulation (PADS) is a useful 
method for the Modeling and Simulation (M&S) of large 
and complex models. In particular, parallel discrete event 
simulation techniques (PDES) have become the technol-
ogy of choice to speed up large-scale discrete-event simu-
lation and to make geographically distributed simulations 
possible. Synchronization techniques for PDES systems 
generally fall into two major classes of synchronization: 
conservative, which strictly avoid causality violations  [1];  
and optimistic, which allow violations and recover from 
them  [2]. Conservative synchronization algorithms, pro-
posed by R. E. Bryant  [3], K. M. Chandy and J. Misra  [4], 
prevents the occurrence of causality errors. 
 The Discrete Event System Specification (DEVS)  [5] 
formalism is a sound M&S framework that provides a 
discrete-event approach to construct hierarchical modular 
models. The DEVS formalism has been extended to han-
dle simultaneous event execution  [6]. Parallel DEVS (P-
DEVS) allows the execution of models in parallel and dis-

tributed environments while keeping the properties of the 
DEVS, and extending it to avoid serialization constraints.  
 Cell-DEVS  [7] is an extension of DEVS to define 
cellular models, by defining every cell and coupling them 
together to form a complete cell space. This formalism al-
lows defining complex cell behavior with simple instruc-
tions. It also allows construction of n-dimensional cell 
spaces to represent complex discrete-event models. Ad-
vanced timing behavior can be represented by defining 
different delays among the cells of the cell space. Only 
the active cells are evaluated, resulting in a noticeable 
overhead. CD++  [8] is an open source M&S environment, 
which implements DEVS, Cell-DEVS, and P-DEVS by 
supporting standalone and parallel/distributed simulations 
on different platforms. A parallel optimistic simulator, 
called as PCD++  [9] was developed for high-performance 
simulation of complex DEVS and Cell-DEVS models 
based on the WARPED  [9] simulation kernel. Examples 
of other parallel DEVS M&S toolkits include DEVS-C++ 
 [11] , DEVS/CORBA  [12], DEVSCluster  [13], DEVS/P2P 
 [14] , DEVS/RMI  [15] , DEVSim++   [16], and P-
DEVSim++  [17] . The DEVS parallel simulator intro-
duced in  [18] implements asynchronous simulation algo-
rithms by combining both conservative and risk-free op-
timistic strategies (using a purely optimistic strategy). In 
 [19] a new simulation algorithm for efficient distributed 
simulation of P-DEVS models is presented. The algorithm 
makes use of Java threads and performs sequential execu-
tion among the entities on each computing node while the 
simulation is distributed over remote nodes.  We are in-
terested in CMB-based conservative simulation by using 
null messages and lookahead information to synchronize 
among participating nodes. The issues related to perform-
ance, scalability, and complexity of optimistic-based 
large-scale parallel simulations motivated us to implement 
the first purely conservative simulator for Cell-DEVS 
based on the classical CMB null message synchronization 
algorithm. The resulting simulator, namely, Conservative 
CD++ (CCD++) was introduced, and its implementation 
details were thoroughly discussed in [19]. The purpose of 
the conservative DEVS protocol is to analyze the effect of 
conservative synchronization strategies on the overall per-
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formance of the simulation. Our goal is to investigate op-
timistic versus conservative simulation of DEVS-based 
systems, so that we can provide a reference guide on 
whether to use a conservative simulator or an optimistic 
one for a particular simulation, and to find out under what 
circumstances one outperforms the other.  
 In the following sections, we will introduce extensive 
performance analysis of CCD++. By running extensive 
experimentation for three environmental Cell-DEVS 
models, we analyze four types of metrics, the total execu-
tion time, the average blocked time per node, the average 
number of positive events executed on each node, and the 
average number of null messages per node. Our goal is to 
show how the conservative mechanism of CCD++ pro-
vides considerable speedups, showing its ability for simu-
lating large and complex DEVS-based models.  
  
2. STRUCTURE OF CCD++ 
CCD++ implements the P-DEVS formalism, in which the 
system of interest is described as a composition of behav-
ioral (atomic) and structural (coupled) model components. 
The simulation is carried out by DEVS processors which 
are of two types: Simulator and Coordinator. The Simula-
tor represents an atomic DEVS model, where the Coordi-
nator is paired with a coupled model. The Simulator is in 
charge of invoking the atomic model’s transition and ex-
ternal event functions. On the other hand, the Coordinator 
has the responsibility of translating its children’s output 
events and estimating the time of the next imminent de-
pendent(s). At the beginning of the simulation, one logi-
cal process (LP) is created on each machine (physical 
process). Then, each LP will host one or more DEVS 
processors. CCD++ employs a flat structure by creating a 
Node Coordinator (NC), a Flat Coordinator (FC), and a 
set of Simulators on each node  [21]. A special coordina-
tor, called Root is created on machine 0 which interacts 
with other NCs using inter-process messaging (for remote 
NC) and intra-process messaging (for local NC). Only one 
NC is created on each machine and acts as the local con-
troller on its hosting LP. The NC is the parent coordinator 
for FC and routes remote messages received from the 
Root or from other remote NCs to the FC. The Simulators 
are the child processors of the local FC representing the 
atomic components of DEVS and Cell-DEVS models. 
The DEVS processors exchange two categories of mes-
sages: content and control. The first category includes the 
external (x) and the output (y) messages, and the second 
includes the initialization (I), collect (@), internal (*), 
and done (D) messages. External and output messages 
exchange simulation data between the models, collect and 
internal messages trigger the output and the state transi-
tion functions respectively (in atomic DEVS models), and 
done messages handles scheduling by carrying the model 
timing information. The simulation is executed in a mes-

sage-driven manner. Figure 1 illustrates CCD++ proces-
sors and the messaging among them.   

  
Figure 1. CCD++ Processors and Messages 

  
3. CONSERVATIVE SIMULATION IN CCD++ 
In  [20], we introduced a conservative DEVS algorithm 
which serves as the synchronization mechanism for the 
CCD++ simulator. The protocol is based on the Chandy-
Misra-Bryant approach with deadlock avoidance. The key 
contribution of our approach was on an automated method 
to compute lookahead, and when to suspend/resume the 
LPs. Since the conservative algorithm is implemented at 
the NC, the simulators are unaware of its existence. The 
NC plays the role of the local conservative synchronizer 
by calculating lookahead and distributing it via null mes-
sages to every participating node in the simulation.   
 
3.1. Concepts and Assumptions 
The simulation starts by the Root coordinator (on node0) 
which sends an (I, t) message to all NCs. After the ini-
tialization phase, the simulation is carried on as a se-
quence of a mandatory transition phase and an optional 
collect phase on each node. Based on the LP structure and 
the division of functionalities in CCD++, the key charac-
teristics of the simulation process (and the main assump-
tions of the conservative DEVS algorithm), are: 
1. All messages from the Simulators must go through 

the parent FC. Hence, there is no direct communica-
tion between the Simulators, even local ones. This 
implies that FCs are always aware of the timing of 
state changes at their child Simulators. 

2. Outgoing inter-LP communication happens only dur-
ing the collect phase, whereas incoming inter-LP 
communication can occur in any phase. Since the 
output functions of the imminent models are invoked 
only in the collect phases, at any given simulation 
time, all the external messages going to remote NCs 
are sent out by the end of the collect phase. On the 
other hand, an external message from a remote 
source can arrive at the destination NC in any phase.  
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3. The NC initiates every collect and transition phase. 
The conservative DEVS algorithm is invoked at the 
NC when it receives a done message from the FC. 
The done message could be in response to a (I, t), (@, 
t), or (*, t) which was previously sent to the FC. 

4. On each node, only the NC advances the simulation 
time. The NC calculates the Local Virtual Time 
(LVT) of the LP at the beginning of every collect 
phase. Local FCs and Simulators do not send mes-
sages with a timestamp different from the LVT. 

   
3.2. A Simulation Scenario in CCD++ 
In this section we present a simulation scenario based on 
the conservative mechanism of CCD++, its flat architec-
ture, and the messaging mechanism introduced in Section 
 2. As illustrated in Figure 2, only two nodes are partici-
pating. The simulation starts with message (I1) from Root 
at the NC at time 0. This initialization phase ends when 
the two local Simulators (S1 and S2) send back done mes-

sages (D5, D6) to the FC, which causes forwarding mes-
sage (D7) to the NC. Every time the NC receives a done 
message from its FC, it starts the next phase immediately. 
However, a lookahead computation and null message dis-
tribution is performed at every collect phase. After com-
puting the lookahead, the NC sends a message (null1) to 
the remote NC and blocks (shaded area). The NC remains 
blocked until all remote lookaheads (carried by remote 
null messages) are received at the LP. During suspension 
the LP can still receive messages; however these mes-
sages are only inter-LP events which are either remote x 
messages or null messages. When the NC receives all null 
messages (null2) it resumes and calculates the new LVT, 
which is equal to the state transition time that was re-
ported by the FC via done message (D7). At this time, all 
Simulators are imminent. Thus, the NC starts the first col-
lect phase by sending a collect message (@8) to the FC 
where it further distributes this message as two collect 
messages (@9, @10) to each of the Simulators. 

 
Figure 2. Sample Simulation Scenario in CCD++ 

 
 Upon receiving the collect message, imminent Simu-
lators execute their output functions and send output mes-
sages to their parent FC. S1 processes @9 first and sends 
an output message (y11) to the FC. If it must be sent to S1, 
S2 (as well as to remote Simulators), FC translates it into 
an external message and sends one copy to each local 
Simulator (x12, x13). For the remote Simulators, the FC 
then forwards the output message (y14) to the NC, which 
translates the message into an external one (x15) and sends 
it remotely to all destination NCs. Similar actions are per-
formed when the FC processes the output message (y17) 
from S2 (x18, x19, y20, x21). During these steps, the remote 
external message x22 is received at the NC which inserts it 
into the NC’s Message Bag. When the FC receives the 
corresponding done messages (D16, D23) from S1 and S2, 
it sends a done message (D24) to the NC, reporting the end 

of output operations at the local Simulators. This done 
message triggers the next phase at the NC, thus the first 
transition phase starts immediately by sending an internal 
message (*25) to the FC. This message is then forwarded 
to imminent Simulators S1 and S2 (*26,*27). Internal tran-
sitions are triggered at these Simulators followed by done 
messages emitted to the FC (D28, D29). The FC then sends 
the closest state transition time to the NC through a done 
message (D30). When processing D30, the NC performs 
lookahead computation, sends the new value through null3 
to all remote NCs, and blocks. When the only remote null 
message (null4) is received at the NC, the suspensions 
ends, and the NC calculates the new LVT. This LVT turns 
out to be equal to the timestamp of the external message 
x22 recently received from a remote NC and added to the 
NC Message Bag. Therefore, the NC sends it to the FC, 
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followed by another internal message (x31, *32). When FC 
executes *32, it flushes x31 to S1 followed by *34. External 
message x33 is added into S1’s message bag, accepting the 
value previously transmitted by x22 from a remote sender. 
After that, the internal message *34 invokes S1’s external 
transition, which consumes the value wrapped in x33. The 
resulting done message (D35) is sent to the FC. When NC 
executes D36, another lookahead computation takes place, 
null5 is sent out, and the LP is blocked. After receiving 
null6, NC calculates the new LVT. In this case there is no 
message in its NC Message Bag, and the remote looka-
head reported by null6 is larger than the closest state tran-
sition (time=100), therefore, the NC advances the local 
simulation time from 0 to 100 and sends to the FC a col-
lect message (@37) that has a send time of 0 and a receive 
time of 100, thereby starting a new cycle of simulation 
similar to that initiated by @8.  
 
4. PERFORMANCE EVALUATION 
In order to analyze the performance of CCD++, extensive 
tests were carried out on a cluster of 26 compute nodes 
(dual 3.2 GHz Intel Xeon processors, 1 GB PC2100 266 
MHz DDR RAM) running Linux WS 2.4.21 intercon-
nected through Gigabit Ethernet and communicating over 
MPICH 1.2.6.  The experiments were conducted using 
only one core per node. However, it is possible to make 
use of both cores. 
 Table 1 lists the metrics collected in the experiments 
through extensive measurements. The experimental re-
sults for each test case were averaged over 10 independ-
ent runs to strike a balance between data reliability and 
testing effort. For those test cases executed on multiple 
nodes, the results were also averaged over the participat-
ing nodes to obtain a per-node evaluation (i.e. BT, PEV, 
and NEV represent the corresponding results per one 
node). The PEV values present the total number of DEVS 
messages executed during the simulation. Note that the 
different memory management strategy that has been used 
for these experiments produced different results than 
those previously reported in  [20].  

 Table 1. Performance Metrics 
Metrics Description 

T Total execution time of the simulation (sec) 

BT Total blocked time during the simulation (sec) 

PEV Total number of positive events executed  

NEV Total number of null events executed  
 
4.1. Test Models 
Three Cell-DEVS models were used in our experiments. 
Two of them (Fire1 and Fire2) simulate forest fire propa-
gation in a two dimensional cell space based on Rother-
mel’s mathematical definition  [22]. Fire1  [23] and Fire2 
differ in the way the spread rates are calculated. The first 

model uses a predetermined rate at reduced runtime com-
putation cost, while the second one invokes the fireLib li-
brary  [24] to calculate spread rates dynamically based on 
a set of parameters such as fuel type, moisture, wind di-
rection and speed. The spread rate computations are per-
formed at the Simulators when executing (*,t) messages. 
Hence, the time for executing a (*,t) message reflects the 
computation intensity of the state transition which was 
calculated to be 112 µs for Fire1, and 748 µs for Fire2. 
 The third model, called Watershed, is a simulation of 
the environmental influence on hydrological dynamics of 
water accumulation in a three dimensional cell space  [25]. 
Although Watershed model is not as compute-intensive as 
Fire2 (577 µs state transition time), its large size (due to 
its 3D aspect) increases the communication intensity. 
 Cell-DEVS models execute a great number of simul-
taneous events at each virtual time, thus, we need a robust 
parallel simulator to handle these scenarios while keeping 
operational cost low. In the next section, we will show 
that our conservative DEVS algorithm is well-suited for 
improving simulation performance in such situations. 
 
4.2. Test results and analysis 
For all the models we used a simple partition strategy 
(evenly divide the cell space into horizontal rectangles). 
In the following tables, the best execution times (T) in 
each series are shown in bold. The Fire model was tested 
using cell spaces of 100x100, 200x200, 300x300, and 
500x500. The Watershed model was tested with 25x25x2, 
30x30x2, 50x50x2, and 100x100x2 cells. Each of these 
cases was tested on 1 to 26 nodes. The highlighted entries 
show the maximum BT value for each model’s size sce-
nario. Table 2 gives the resulting total execution time, to-
tal blocked time, as well as the number of positive and 
null events (T, TB, PEV, and NEV) for Fire1 of varied 
sizes on different numbers of nodes.  
As we can see the conservative DEVS algorithm reduces 
the execution time as the number of nodes increases until 
it reaches the best execution time (the T value in bold). 
Meaning that, for the four mentioned sizes, the smallest 
execution time is achieved at 4, 6, 12, and 14 nodes re-
spectively and after that the execution time starts to in-
crease as more nodes are engaged. Therefore, for each 
scenario, the number of nodes at the smallest execution 
time represents the threshold value where adding more 
nodes would not reduce execution time, which is due to 
the conservative overhead. For any given number of 
nodes, the execution time always increases with the size 
of the model. Moreover, the execution time rises less 
steeply when more nodes are used in the simulation. For 
example, as the model size increases from 10000 to 20000 
cells, the execution time increases sharply by nearly 
1562% (from 34.03 to 565.44 s) on 1 node, whereas it 
only rises by 1047% (from 33.24 to 381.11 s) on 8 nodes. 
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The execution time for the 100 x 100 model decreases 
from 34.03 to 29.35 s when the number of nodes climbs 
from 1 to 4, leading to a speedup of 1.16. For the 200x200 
size, a speedup of 1.52 is observed from 1 to 6 nodes 
(565.44 to 373.07 s). When larger sizes are tested (300 x 
300, and 500 x 500) speedups are higher. For the first 
case, the execution time decreases by 39% (from 2872.10 

to 1765.33 s), obtaining a speedup of 1.63 from 1 to 12 
nodes. Similarly, for the 500x500 model, the results show 
an execution time decreased by 44% from 1 to 14 nodes, 
achieving a speedup of 1.79. These results show that as 
the model’s size increases, the threshold for the number of 
nodes also increases.   

 
Table 2. Fire1 Test Results 

Size Metric 1 2 4 6 8 10 12 14 16 18 20 22 24 26
T 34.03 30.45 29.35 30.74 33.24 36.57 39.63 45.48 48.88 53.84 58.70 65.29 72.04 79.38

BT 0 5.26 8.13 10.30 12.60 15.40 18.12 21.89 25.34 29.50 33.83 39.53 45.23 51.37
PEV 480893 257710 141588 103212 84373 73300 66193 61224 57704 55048 53027 51555 50308 49423
NEV 0 8434 28880 51584 76012 101798 129282 157676 187619 218517 250267 284150 317744 353674

T 565.44 437.88 379.47 373.07 381.11 393.54 405.42 436.87 448.82 464.80 494.47 514.08 537.55 564.70
BT 0 74.32 68.22 71.96 77.06 86.28 97.94 113.33 127.08 142.68 160.51 181.82 203.81 227.25

PEV 1974693 1045294 568033 409477 330925 284391 253979 232673 217086 205298 196196 189067 183319 178711
NEV 0 36746 117476 202479 291024 382850 478378 576952 678719 783563 891688 1003337 1117362 1234774

T 2872.10 2234.75 1890.38 1812.64 1773.66 1777.89 1765.33 1865.92 1896.32 1908.25 1998.13 2027.88 2064.38 2140.48
BT 0.00 367.69 299.11 255.51 241.18 248.49 266.71 295.39 322.71 356.96 391.73 433.40 479.33 528.58

PEV 4468493 2368444 1278652 919106 739836 633439 563234 513768 477310 449441 427676 410257 396157 384612
NEV 0 86646 265151 453414 645567 843632 1046352 1253979 1466744 1684036 1906573 2133515 2365411 2602349

T 22537.10 16476.80 14209.30 13377.10 13031.00 12891.80 12793.90 12570.60 13058.20 13186.60 13526.80 13491.40 13614.30 13731.90
BT 0 2717.72 2118.52 1675.06 1427.44 1307.35 1233.48 1228.48 1247.09 1288.40 1334.66 1423.76 1512.68 1624.93

PEV 12456093 6604744 3559387 2546967 2045699 1745542 1546399 1405946 1301356 1220766 1157317 1106088 1063961 1028964
NEV 0 246446 745412 1252474 1776228 2305178 2840595 3387877 3941669 4502517 5073360 5651855 6237300 6831124

10
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20
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30
0

50
0x

50
0

 
 
 For example, the threshold for 100x100 size was 4 
nodes while it increased to 14 nodes for the 500x500 
model. However, when the number of nodes gets closer 
and closer to the threshold value, the difference among 
execution times is not significant (for example, for the 
200 x 200 model, the execution time decreases by only 
1.7% from 4 to 6 nodes, and for 500 x 500 cells it only 
decreases by 1.8 % from 12 to 14 nodes). This is because 
when a model, especially a small one, is partitioned onto 
more and more nodes, the increasing overhead involved 
in inter-LP communication and the increase in the number 
of null messages eventually degrades the performance. 
We need to consider the tradeoffs between the benefits of 
higher degree of parallelism and the associated overhead 
needs when choosing different partitioning strategies. The 
experimental results also showed that better performance 
is achieved on a larger number of nodes as the model’s 
size increases. The four different sizes we chose were 
large enough so that the shortest execution time was 
achieved on 4 or more nodes.  
 As discussed earlier, other metrics were collected as 
well. Considering the total blocked time (BT) illustrated 

by Figures 3-6, we can see that there is a relation between 
BT and the number of nodes: when more nodes partici-
pate, the BT increases mainly (because each node has to 
wait for a larger number of null messages). This is clearly 
observed for smaller sizes (100x100 and 200x200), where 
the maximum BT is observed when there are 26 nodes in 
the simulation. For larger sizes, adding more nodes re-
duces the BT because when more nodes are engaged, the 
partition on each machine is smaller, thus each computa-
tion cycle is shorter and the nodes are kept waiting for a 
smaller amount of time. However, the BT starts to in-
crease when more nodes are added beyond the threshold. 
This is when the conservative overhead and the large 
number of null messages cancel out the benefit of having 
more nodes. Aside, there are some factors that affect the 
BT value, such as memory congestion and inter-LP com-
munication delays (the case for the 500x500 model where 
maximum BT was observed when the simulation run on 2 
nodes).  A “−” mark stands for a case where the model 
cannot be divided further with the given partition scheme.
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Fire1 Model (100x100 cells) Results
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Fire1 Model (200x200 cells) Results
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Fire1 Model (300x300 cells) Results
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Fire1 Model (500x500 cells) Results
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Table 3. Speedups for Watershed Model 
Size 2 4 6 8 10 12 14 16 18 20 22 24 26

25x25x2 1.61 2.34 2.84 3.11 3.34 3.26 3.54 3.45 3.33 3.20 3.15 3.14 -
30x30x2 1.71 2.53 3.36 3.70 4.03 3.89 3.77 4.26 4.09 3.87 3.75 3.67 3.55
50x50x2 1.69 2.51 3.16 3.61 4.21 4.34 4.39 5.01 5.20 4.82 4.48 4.66 5.24

100x100x2 1.74 2.82 3.66 4.27 4.91 5.06 5.35 5.57 5.88 6.29 6.11 5.99 6.56  
 
 

Table 4. Fire2 Test Results 
Size Metric 1 2 4 6 8 10 12 14 16 18 20 22 24 26

T 90.89 84.35 76.99 78.22 79.27 83.15 86.99 90.74 93.03 99.70 104.79 112.74 116.88 124.34
BT 0 27.79 41.01 47.63 51.28 56.65 60.27 63.80 66.42 72.71 77.31 84.18 88.09 94.63

PEV 480893 257710 141588 103212 84371 73300 66188 61224 57689 55043 53021 51548 50312 49423
NEV 0 8434 28880 51584 76005 101798 129260 157676 187619 218483 250286 284192 317790 353674

T 834.40 677.12 635.73 635.97 616.64 635.72 643.95 652.21 669.24 684.58 710.11 734.30 755.05 785.13
BT 0 197.22 253.42 273.95 273.69 297.81 307.98 318.17 340.90 355.68 373.37 396.30 416.22 442.73

PEV 1974693 1045294 568033 409477 330925 284391 253979 232673 217085 205300 196196 189072 183317 178715
NEV 0 36746 117476 202479 291024 382850 478378 576952 678719 783580 891688 1003379 1117339 1234749

T 3390.48 2802.32 2462.25 2340.39 2325.42 2297 2328.21 2327.84 2428.36 2466.22 2513.26 2559.47 2607.24 2629.33
BT 0 647.521 720.498 710.726 738.583 741.036 769.957 788.527 815.489 858.521 899.877 957.888 1001.67 1027.69

PEV 4468493 2368444 1278652 919106 739836 633439 563234 513768 477310 449441 427674 410257 396157 384612
NEV 0 86646 265151 453414 645567 843632 1046352 1253979 1466744 1684036 1906554 2133515 2365411 2602349

T 23693.60 18265.80 15710.00 14771.20 14481.60 14314.50 14190.80 14140.80 14399.60 14725.30 14876.20 14717.60 15048.10 15124.90
BT 0 3605.11 3318.53 3006.09 2852.53 2692.84 2700.40 2659.93 2692.48 2748.89 2810.37 2840.01 2982.60 3081.34

PEV 12456053 6604744 3559387 2546967 2045699 1745536 1546399 1405946 1301356 1220766 1157311 1106081 1063964 1028964
NEV 0 246446 745412 1252474 1776228 2305151 2840595 3387877 3941669 4502517 5073303 5651792 6237323 6831124
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Table 5. Watershed Test Results 
Size Metric 1 2 4 6 8 10 12 14 16 18 20 22 24 26

T 711.93 442.57 304.57 250.75 229.14 213.18 218.21 201.12 206.476 214.101 222.28 226.274 226.508 -
BT 0 22.97 51.17 49.38 51.50 48.23 60.19 48.60 64.1541 78.5136 90.9462 98.9484 102.827 -

PEV 11095032 5880901 3266632 2395209 1959475 1698057 1523754 1389608 1263681 1165712 1087343 1023236 969795 -
NEV 0 7204 21612 36020 50428 64836 79244 93652 108060 122468 136876 151284 165692 -

T 1056.84 618.77 416.90 314.64 285.64 261.95 271.75 280.56 248.27 258.57 273.26 281.876 288.095 298.012
BT 0 18.76 57.42 36.97 43.89 39.99 61.27 76.37 48.79 70.41 91.86 105.885 117.03 130.344

PEV 16016947 8404934 4591724 3320654 2685074 2303762 2049569 1867996 1731768 1589822 1476254 1383346 1305904 1240391
NEV 0 7204 21612 36020 50428 64836 79244 93652 108060 122468 136876 151284 165692 180100

T 2912.06 1725.14 1158.10 921.03 805.85 692.07 671.37 663.83 581.65 559.82 603.79 649.42 624.27 556.094
BT 0 23.31 142.42 131.00 129.16 92.86 127.71 157.00 115.95 110.42 153.06 203.00 185.56 130.662

PEV 44719107 23008314 12145714 8524847 6714414 5628154 4903971 4386707 3998753 3697017 3455618 3258124 3093534 2954270
NEV 0 7204 21612 36020 50428 64836 79244 93652 108060 122468 136876 151284 165692 180100

T 11678.90 6718.45 4140.18 3194.43 2737.51 2380.20 2308.64 2183.07 2097.28 1986.97 1856.45 1911.67 1949.74 1779.19
BT 0 62.95 244.97 229.03 224.10 144.66 246.37 255.55 263.18 226.93 150.40 248.16 320.50 188.73

PEV 179576007 91067514 46806064 32052247 24675339 20249194 17298430 15190742 13609976 12380491 11396904 10592150 9921515 9354061
NEV 0 7204 21612 36020 50428 64836 79244 93652 108060 122468 136876 151284 165692 180100
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 There is a direct relation between the PEV values and 
the number of nodes. When more nodes are participating, 
the PEV values decrease because each node is given a 
smaller partition and thus less DEVS computations are 
required for each node. On the other hand, the PEV in-
creases as the model size increases. Similar rule applies 
for the NEV results, where, the more nodes are engaged, 
the more null messages are sent back and forth. In addi-
tion, when the model is larger there are more DEVS com-
putational cycles and in return, more synchronization 
phases, thus, more null messages to distribute. 
 The experimental results for the Fire2 and Watershed 
models are shown in Table 4 and Table 5 respectively. 
Similar performance was achieved for Fire2 compared to 
Fire1. For the various sizes, the smallest execution time 
was obtained at 4, 8, 10, and 14. Due to the complexity of 
the model, the execution time and the BT values are 
higher than those in Fire1. However, the behavior of the 
results can be explained in similar manner since the num-
ber of positive events and null messages as well as the 
synchronization cycles are the same in both models. One 
important note to consider is that the higher complexity of 
the evaluation rules causes the nodes to take longer time 
during each computation cycle, resulting a longer wait 
time for those nodes that are blocked waiting for the busy 
ones to distribute their new lookahead values. This behav-
ior explains why the smallest execution time for 300x300 
size was achieved on 10 nodes for Fire2, while the same 
model size had its shortest execution time on 12 nodes for 
Fire1.   
 In the Watershed model, outstanding speedups where 
achieved because the model is 3D and involves numerous 
cell updates, thus, benefited from parallel simulation very 

well. As shown on Table 4, the smallest execution time 
for the four different sizes were obtained at higher num-
ber of nodes (14, 16, 26, 26) compared to Fire1 and 
Fire2. The BT values for various sizes showed similar 
behavior, where the BT starts to drop when more nodes 
are added and after a certain point it starts to increase due 
to the tradeoffs of parallel synchronization mechanism. 
Other factors that affected the BT results are the way the 
model is partitioned and how this affects the total number 
of communications required among the cells’ neighbors.  
Table 3 presents the speedups for this model, where a 
speedup of 1.61 (on 2 nodes for the 25x25x2 size) up to 
6.56 (on 26 nodes for the 100x100x2 size) is reported.  
 
5. CONCLUSION AND FUTURE WORK 
This paper presents performance evaluation of a novel 
conservative algorithm for DEVS and Cell-DEVS models 
implemented on CD++ simulation toolkit. The resulting 
parallel simulator, namely, CCD++ is based on CMB null 
message and lookahead concept and serves as the first 
purely conservative simulator for running large-scale 
Cell-DEVS models in parallel and distributed fashion.  
Performance analysis has been conducted to evaluate the 
conservative DEVS algorithm in simulating DEVS-based 
models. We showed that CCD++ simulator markedly im-
proves execution times as the number of participating 
nodes increases. Considerable speedups were observed in 
our experiments, indicating the conservative simulator is 
well suited for simulating large and complex models. We 
are currently working on a thorough testing analysis by 
running intensive tests with larger and more complex 
models on both CCD++ and the purely optimistic simula-
tor (PCD++) to provide a reference guide on whether to 
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use a conservative simulator or an optimistic one and un-
der what circumstances one outperforms the other. 
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