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Abstract 
We present three conservative synchronization mechanisms 
for parallel DEVS and Cell-DEVS. The protocols are based 
on the classical Chandy-Misra-Bryant null message mecha-
nism with deadlock avoidance. Our protocols provide a 
novel DEVS-based conservative approach that is deadlock-
free, and extracts the lookahead information from the 
model’s specification. The protocols are integrated into the 
CD++ simulation toolkit, providing a conservative simulator 
(named CCD++) for running large-scale DEVS and Cell-
DEVS models in parallel and distributed fashion. We pro-
vide a comparative study of these protocols by investigating 
different performance metrics including: total execution 
time, blocked time, memory consumption, total number of 
positive and null event, as well as null message ratio, show-
ing how CCD++ provides considerable speedups, and its 
ability for simulating large DEVS-based models.   
 
1. INTRODUCTION 
Discrete-event modeling and simulation (M&S) has been 
used to study complex systems in a broad array of domains. 
Among the existing simulation techniques, DEVS (Discrete 
Event System Specification)  [1] formalism provides a dis-
crete-event M&S approach that allows construction of hier-
archical models in a modular manner. DEVS is a sound 
formal framework based on generic dynamic systems con-
cepts that allows model reuse, and reduction in development 
and testing time due to its hierarchical approach in con-
structing models. The Cell-DEVS  [2] formalism expands 
DEVS to describe n-dimensional cell spaces as discrete 
event models, where each cell is represented as a DEVS 
model with explicit timing constructions.   
 Parallel and distributed computing has become the 
technology of choice to speed up large-scale simulations 
and to allow geographically distributed simulations. Parallel 
DEVS (P-DEVS) introduced a mechanism for handling si-
multaneous events, allowing for efficient execution of paral-
lel models  [3]. Both Cell-DEVS and P-DEVS have been 
implemented in CD++  [4], a M&S environment pro-
grammed in C++. Several versions of the tool have been 
built in order to run large-scale simulations in parallel and 

distributed fashion. PCD++  [5] is one of them, which allows 
optimistic simulation of DEVS and Cell-DEVS models 
based on the WARPED kernel  [6]. In  [7] we introduced a 
Conservative DEVS protocol, and built CCD++, the first 
purely conservative simulator for Cell-DEVS. The protocol 
is based on the classical Chandy-Misra-Bryant (CMB) [8-9] 
null message mechanism with deadlock avoidance. We refer 
to this protocol as the Lower-Bound Time Stamp mecha-
nism (LBTS), the way used to compute the next global vir-
tual time. To reduce the number of null messages, we later 
proposed the Global Lookahead Management (GLM) proto-
col  [10], which maintains a central lookahead manager 
(LM) to identify the global minimum lookahead of the sys-
tem.  
 We are interested in analyzing different conservative 
protocols in simulating large-scale DEVS-based models. 
Here, we first introduce a new conservative protocol, the 
CMB Conservative DEVS, which is similar to LBTS and it 
differs in the null message distribution strategy. Then, we 
provide a thorough performance analysis of the three con-
servative protocols (LBTS, GLM, and CMB) by conducting 
a variety of simulations. We provide a comparative study of 
these protocols by investigating different performance met-
rics including: total execution time, blocked time, memory 
consumption, total number of positive and null event, as 
well as null message ratio, showing how CCD++ provides 
considerable speedups, and its ability for simulating large 
DEVS-based models.   
 
2. RELATED WORK  
There are a number of parallel DEVS M&S toolkits includ-
ing: DEVS-C++  [11], DEVS/CORBA  [12] , DEVSCluster 
 [13] , DEVS/P2P  [14] , and DEVS/RMI  [15]. Aside, much 
work has been done using the synchronization mechanisms 
offered by HLA  [16]. DEVS-HLA simulators have been re-
ported in [17-19]. In  [20], a new simulation algorithm for 
efficient distributed simulation of P-DEVS models is pre-
sented. The algorithm makes use of Java threads and per-
forms sequential execution among the entities on each com-
puting node while the simulation is distributed over remote 
nodes.  We are interested in CMB-based conservative simu-
lation by using null messages and lookahead information to 
synchronize among participating nodes.   



 The Optimistic DEVS protocol  [5], and its extension, 
the Lightweight Time Warp protocol  [21], were the first 
pure optimistic mechanisms allowing parallel execution of 
Cell-DEVS systems. Although these two protocols try to re-
duce the overhead of the optimistic algorithm, issues such as 
numerous memory consumption and large number of state 
savings and rollbacks remain. This is especially apparent 
when the number of participating nodes increases; resulting 
in cascaded rollbacks. In order to analyze the limitations of 
the optimistic DEVS protocols and the parallel execution of 
DEVS and Cell-DEVS, we developed DEVS-based conser-
vative protocols. The first one was the Conservative DEVS 
(LBTS) protocol  [7] based on the idea of lower-bound time-
stamp and the classical null message protocol of Chandy-
Misra-Bryant. To reduce the number of null messages, we 
later proposed the Global Lookahead Management (GLM) 
protocol  [10], which maintains a centralized synchronizer 
that deals with null message distribution and global time 
advancement. Here, we propose another conservative proto-
col based on the classical CMB synchronization named 
DEVS CMB. This protocol differs from our original LBTS 
in the way null messages are distributed among neighboring 
nodes. The goal is to reduce the number of null messages 
compared to our LBTS protocol.     
3. CONSERVATIVE SIMULATION IN CCD++ 
CCD++ is the first purely conservative simulator for run-
ning Cell-DEVS simulations in parallel and distributed fash-
ion. The simulator is built on top of the WARPED kernel 
 [6], which provides services for defining processes (simula-
tion objects), scheduling, memory, file, event, communica-
tion, and time management. Simulation objects on a physi-
cal processor are grouped into a Logical Process (LP), and 
communicate through Message Passing Interface (MPI). 
 To reduce communication overhead, CCD++ adopts a 
flat structure that creates a Node Coordinator (NC), a Flat 
Coordinator (FC), and a set of Simulators on each node. 
Doing so eliminates intermediary coordinators in the LP hi-
erarchy, reducing communication costs. The NC is a local 
central controller and the final destination of inter-node 
messages, whereas the FC routes messages between its child 
Simulators and the parent NC, as seen in Figure 1. 
 

 
Figure 1. LP structure on two nodes 

 Six types of events are defined to execute the simula-
tion in a message-driven fashion: External (x, t) and output 
(y, t) messages encode the input and output data; initializa-

tion (I, t), collect (@, t), internal (*, t), and done (D, t) con-
trol the execution of events at each virtual time  [7]. 
 Our conservative protocols (LBTS, GLM, and CMB) 
are implemented at the NC. Processes communicate only 
through messaging with their neighbors; there are no shared 
variables and no central process for message routing or 
scheduling. Although each LP has its own Local Virtual 
Time (LVT), no events are received at virtual past time. 
Synchronization is maintained through null messages carry-
ing on lookahead information. The NC on each node is the 
central synchronizer for driving the simulation on that node. 
The focus on each of the protocols is on computing the loo-
kahead values and distributing them via null messages, and 
deciding when to suspend or resume the LP. The NC is re-
sponsible for lookahead calculation, null message distribu-
tion, suspending the LP, receiving null messages from other 
LPs while the LP is blocked, and resuming the LP when all 
remote null messages are received. The NC drives the simu-
lation at the LP, while FC, Simulator, etc. are unaware of 
the underlying synchronization mechanism. 
 Although our conservative protocols exploit similar 
parallelism level as in the classical P-DEVS simulation pro-
tocol, however, unlike P-DEVS, we do not have a global 
synchronizer advancing the global time. Moreover, our pro-
tocols require smaller number of messages when calculating 
the next time advance of the simulation  [7]. In P-DEVS pro-
tocol there is a global coordinator asking all atomic compo-
nents to send their next state change values. Although, P-
DEVS is a risk-free optimistic protocol (not even local roll-
backs occur), but it only exploits parallelism in the simulta-
neous occurrence of internal events among many compo-
nents. 
4. CONSERVATIVE PROTOCOLS FOR DEVS 
In this section, we provide a brief overview of each of our 
conservative protocols, highlighting their differences. 
4.1. The LBTS Protocol 
In LBTS  [7], processes communicate only through mes-
sages with their neighbors; there are no shared variables and 
no central process for message routing or process schedul-
ing. Although each LP has its own Local Virtual Time 
(LVT), no event is received at the virtual past time. The null 
messages carry lookahead information. The protocol is 
deadlock-free, as null message cycles cannot occur. At the 
start of every synchronization phase, each LP computes its 
lookahead value, which is dynamically extracted from the 
model specifications, and forwards it to all other LPs. Then 
the LP suspends and waits for all remote null messages to 
arrive from other LPs. Once all null messages are received 
from all LPs participating in the simulation, it resumes and 
first computes its new LVT based on the lookahead values it 
received via the remote null messages. This lookahead and 
LVT computation are described in details in  [7]. As we can 
see, the LVT of every LP at any time is equal to the Lower-



Bound Time Stamp of any unprocessed event among all 
LPs. The major issue of this protocol is the numerous 
amounts of null messages that must be distributed at the 
start of each synchronization phase. Each LP not only sends 
null messages to its direct neighbors, but also to every other 
LP to ensure correct computation of the LBTS value. This 
issue motivated us to revise the null message distribution 
mechanism by proposing two new protocols, the GLM and 
the CMB protocols which are discussed next. 
4.2. The GLM Protocol 
The Global Lookahead Management (GLM) protocol  [10] 
uses the idea of safe processing intervals from the Conserva-
tive Time Window  [22] algorithm and maintains global syn-
chronization in a fashion similar to the Distributed Snapshot 
technique  [23]. GLM reduces the number of null messages 
by organizing the conservative execution in such a way that 
every LP reports its lookahead only to the global manager 
rather than to every LP. A central lookahead manager (LM) 
is in charge of receiving every LP’s lookahead, identifying 
the global minimum lookahead of the system, and broad-
casting it via null messages to all LPs. The sole function of 
the LM is to detect the suspension phase, and to initiate the 
resume phase by broadcasting the global minimum looka-
head.  The simulation is divided into cycles of two phases:  
(i) Parallel Phase: LPs run simulation until suspension. 
(ii) Broadcast Phase: LM broadcasts global minimum loo-

kahead, allowing LPs to advance their LVTs. 
 The key characteristic of GLM is that it is asynchro-
nous and the central LM is not expected to be a bottleneck 
since the only message transmissions involving it take place 
at the end of Parallel phase and Broadcast phase. In fact, 
the LM does not carry out any computation and it is only 
invoked when all LPs are blocked and the simulation is sus-
pended, not introducing any overhead. 
4.3. The CMB Protocol 
This protocol we introduce here is a variation of LBTS to 
reduce the number of null messages. The protocol changes 
the way conservative synchronization is maintained by fo-
cusing on null message distribution only among neighboring 
LPs. An LP only forwards null messages to its direct 
neighbors as defined by the DEVS translation function. Un-
der this scheme, at the start of every synchronization phase, 
the LP computes its lookahead similarly to the way it is cal-
culated in LBTS, but the null message is only sent to its 
neighbors. Then the LP blocks and waits for its neighboring 
LPs to send their lookahead value via null messages. Once 
all neighbor null messages are received, the LP computes its 
new LVT based on the received lookahead values, and starts 
another lookahead computation and null message distribu-
tion round. This process continues until no smaller looka-
head value can be received from neighbor LPs later in time. 
Once the LP has received the smallest possible lookahead 
value, it computes the new LVT and resumes the simulation. 
With the CMB protocol, the overall number of null mes-

sages is reduced, but the multiple lookahead computation 
and null message redistribution could have a negative effect 
on the simulation performance. These effects will be dis-
cussed thoroughly in the Performance Evaluation section. 
4.4. Comparison of the Conservative Protocols 
Figure 2 illustrates the null message distribution strategy for 
the three conservative protocols. As we can see, they share 
the following common features and characteristics: 
1. They are implemented at the NC; the other DEVS proc-

essors are unaware of the underlying synchronization 
mechanism. The NC is the local controller and drives 
the simulation on that node. It is responsible for looka-
head and LVT computation, LP suspension and re-
sumption, and null message distribution and reception. 

2. Lookahead and LVT computations are performed dy-
namically based on the model’s data. The computation 
formulas are the same for all the three protocols. 

3. Lookahead computation is performed after each LVT 
computation; hence, it is updated and distributed among 
all remote LPs every time before the LP is suspended. 
This strategy ensures that the lookahead value of an LP 
represents the latest LVT update as there is at least one 
lookahead computation per LVT update. Unlike other 
conservative algorithms, the modeler does not need to 
specify the lookahead, which is dynamically extracted 
by the protocols.   

4. Null message distribution occurs before LP suspension, 
thus, deadlock is strictly avoided. NC only suspends the 
LP after performing a lookahead computation and 
propagating it to destination LPs via null messages. 

 
Figure 2. Null message distribution of the protocols 

 
5. PERFORMANCE EVALUATION 
To obtain a comparative study of our conservative proto-
cols, we implemented LBTS, GLM, and CMB in CCD++, 
and conducted extensive tests with each protocol. Tests 
were carried out on a cluster of 12 compute nodes (dual 3.2 
GHz Intel Xeon processors, 1 GB PC2100 266 MHz DDR 



RAM) running Linux WS 2.4.21 interconnected through 
Gigabit Ethernet and MPICH 1.2.6. Table 1 lists the metrics 
collected in the experiments. The experimental results for 
each test case were averaged over 10 independent runs to 
strike a balance between data reliability and testing effort. 
For the test cases on multiple nodes, the results were also 
averaged over the participating nodes to obtain a per-node 
evaluation (i.e. BT, MEM, PEV, and NEV represent the cor-
responding results per one node).  

We used three different Cell-DEVS models in our ex-
periments. The first model, called Fire, simulates forest fire 
propagation in a two dimensional cell space based on 
Rothermel’s definition  [24]. The second model, named Wa-
tershed, is a simulation of the environmental influence on 
hydrological dynamics of water accumulation in a three di-
mensional cell space  [25]. The third model, called Synth, is 
a synthetic model consisting of a grid where cells are ini-
tially set to zero and throughout the simulation, they toggle 

between the value of 0 and 1. Each cell has eight neighbors, 
which leads to high communications. The purpose of this 
model is to analyze parallelism with communication-
intensive models. The Fire model is computation-intensive 
compared to Watershed model, which consists of a 3D cell 
space that makes it a good candidate for analyzing commu-
nication-intensive simulations. 

Table 1. Performance metrics 
Metrics Description 

T Total execution time of the simulation (sec) 

BT Total blocked time during the simulation (sec) 

MEM Maximum memory consumption (MB) 

PEV Total number of positive events executed  

NEV Total number of null events executed  

NMR Null message ratio (NEV / PEV) 
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Figure 3. Fire model T and BT results 
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Figure 4. Fire model memory consumption results 



 Figure 3 illustrates the T and BT results for Fire model. 
The LBTS and GLM protocols reduce the execution time 
when more nodes are participating. However, this is only 
true until a certain point, where after that adding more nodes 
do not reduce the execution time. This is due to the over-
head of the protocol, where increased number of null mes-
sages and blocking times start to have a negative impact on 
the overall performance. In terms of the BT, GLM produced 
the smallest results in all cases, while CMB resulted in the 
largest blocked time values. Although CMB produces less 
null messages, it ends up with larger total number of null 
messages and blocked periods compared to LBTS protocol 
(because its strategy consists of multiple rounds of null 
message distribution). Memory consumption per node is re-
duced in the same manner for all different sizes (we only 
present the results for two sizes due to space limitation) as 
seen in Figure 4. The maximum memory consumption per 
node drops considerably as more nodes are engaged for all 
the three protocols. 
 The results of the Watershed model are given in Figure 
5. Since the model is communication-intensive we can see 
that for all the protocols, the execution time drops as more 
nodes are engaged. The performance improves even with 
small sizes (compared to Fire). GLM provides the best per-
formance in all cases, and the worst performance is for 
CMB. In most cases, only the BT of CMB is larger than the 

T of GLM and LBTS. In all cases, CMB takes longer with 2 
nodes compared to 1 node. The large overhead of the proto-
col overcomes the benefits of parallelism. However, as the 
number of processors increases, the execution time and the 
blocked period of CMB starts to drop. For BT, the tests 
show that, similar to the Fire model, GLM has the lowest 
blocked time; then comes LBTS, and finally CMB. For the 
Watershed model, execution time and BT reduction rate for 
various sizes of the model were very close. The three proto-
cols have the same performance gain regardless of the size 
of the model, which is merely due to the numerous events 
that are distributed throughout the simulation (this 3D 
model includes a large number of neighbors that must be 
updated more often). The MEM results are given in Figure 
6. As in the Fire model, memory consumption per node 
drops as the number of machines increases. All the three 
protocols resulted in very close MEM values, showing that 
the three protocols perform the same in terms of memory 
consumption.  
 The T, BT, and MEM for the Synth model are shown in 
Figure 7. This model allows analyzing the performance of 
each of the protocols when full parallelism takes place. As 
can be observed from the execution results, for all the proto-
cols, the simulations have benefited from the full parallelism 
such that the performance continuous to improve as the 
number of nodes increases.  
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Figure 5. Watershed model T and BT results 

 For GLM and LBTS, the BT value is considerably low 
compared to the T value in each case. The BT values are 
still too high with the CMB protocol compared to the other 
two protocols. As in previous models, the GLM resulted in 

best performance, while the CMB protocol has the worst re-
sults in every scenario. However, due to the nature of the 
model, the results are overall better than those obtained 
from the Watershed or Fire model. As shown by the mem-



ory consumption graph (for the 400x400 size) memory us-
age per node improves remarkably with the increase of 
number of machines. The memory consumption is the same 

for all protocols, and for all the three different sizes of the 
model, however we only presented the graph of the 400x400 
size due to space limitations. 
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Figure 6. Watershed model memory consumption results 

 We are also interested in investigating the results of the 
three protocols in terms of the total number of null messages 
and the null message ratio. Figure 8 shows the NMR (i.e. 
NEV/PEV) results for various sizes of the Fire model. 
Looking at the GLM graphs, we see that this protocol pro-
duces the smallest NMR in all cases. The CMB protocol, 
compared to the LBTS protocol, produces smaller NMR 
values after a certain number of participating nodes, which 
is 4, 6, 6, and 8 nodes for 100x100, 200x200, 300x300, and 
500x500 sizes respectively. This behavior is explained by 
the fact that as the number of machines increases, the syn-
chronization overhead associated with CMB gets smaller 

than that of produced by the LBTS protocol. Meaning, with 
smaller number of machines, the total null messages pro-
duced by the LBTS protocol are less than the number of null 
message distribution rounds in CMB, thus resulting in lower 
NMR compared to the CMB protocol. On the other hand, 
when more nodes are participating, the total number of null 
messages that are distributed by the LBTS protocol are 
much higher than those produced by the CMB protocol, al-
though the CMB protocol causes more synchronization 
rounds per each synchronization phase when more nodes are 
engaged.  
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Figure 7. Synth model T, BT, and MEM results 

 As expected, the GLM protocol results in the smallest 
number of null messages (average NEV per node) in all 
cases. Similar to the NMR results, the CMB outperforms the 

LBTS protocol after a certain point, while with smaller 
number of machines it shows worse results compared to 
LBTS. The NMR results for the Watershed model are illus-



trated in Figure 9. Similar to Fire model, the best results are 
obtained with GLM, and the CMB protocol outperforms the 

LBTS when more nodes are used. 
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Figure 8. Fire model NMR results  
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Figure 9. Watershed model NMR results 

6. CONCLUSIONS  
We presented a comparative study of three conservative 
synchronization protocols (LBTS, CMB, and GLM) for 
DEVS and Cell-DEVS applications. The protocols differ in 

the strategy of null message distribution. The goal is to ana-
lyze the effect of different conservative synchronization 
mechanism on the overall performance of the simulation. 
We conducted thorough experiments using communication-



intensive and computation-intensive Cell-DEVS models to 
analyze different metrics such as total execution time, 
blocked time, memory consumption, total number of posi-
tive and null event, as well as null message ratio. The results 
showed that the GLM protocol outperformed the other two 
protocols at every scenario. In most cases, CMB outper-
formed LBTS when small number of nodes were participat-
ing. However, as the number of processors increased, LBTS 
produced better results compared to CMB. We are currently 
working on a thorough testing analysis by conducting sensi-
tivity analyses using larger and more complex models on 
both CCD++ with different conservative protocols and the 
purely optimistic simulator (PCD++)  [5] to provide a refer-
ence guide on whether to use a conservative simulator or an 
optimistic one and under what circumstances one outper-
forms the other.  
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