










with multiple Cþþ and libraries that are created auto-
matically and the way they need to be compiled and
linked.

Since there is no separation of atomic and coupled
components, both of them need to be created at the
same time as individual Cþþ files. To overcome this
problem, DEVStone for ADEVS was coded as PERL
scripts for each model type as well as in the CDþþ
version. The scripts contain loops based on a tem-
plate for each model type and the desired width and
depth generate a component file and a component
library file, for each atomic and coupled component.
The linking among components is done in the coupled

component files and the atomic component model,
and library files are mainly used as libraries
(only the names of variables and component labels
are changed). Still, ADEVS does not provide exactly
the same functionality as CDþþ; it can read data at
runtime but it cannot use this data as an internal
parameter. This is problematic with the input of the
number of Dhrystones in the internal and external
transition functions. As a result, the number of
Dhrystones is entered in the creation of the simulator
as a library file by the PERL script. The final exter-
nal linking of the model and the creation of the sim-
ulator are done in an additional file that is also

Figure 7. Atomic model definition in ADEVS.
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created by the generator by keeping track of the outer
coupled and atomic components of the model. A
makefile script is also generated by the PERL scripts
to automate the compiling and linking of all of the
Cþþ files.

In the following sections, we show how the bench-
mark can be used to collect different metrics of interest.
Although we have discussed that DEVStone focuses on
execution time performance (in terms of total execution
time, and the number of messages involved in the sim-
ulation process), it can be used to obtain other metrics
too. Most existing benchmarks can be used with mul-
tiple purposes (for instance, in addition to studying the
execution time, a benchmark can be used to measure
the amount of memory used, the number of I/O oper-
ations executed, the amount of time spent in commu-
nications, etc.), as they provide the same set of
operations to be executed repeatedly. In the following
sections, we show how to make use of the benchmark
structure to obtain different metrics (according to the
user’s needs) which were meaningful for the simulation
environments under study.

4. Case study 1: Virtual-time simulators

As discussed earlier, DEVStone can be easily used to
compare the performance of different versions of the
same simulation software with ease. At present, there
are numerous versions of the CDþþ software, which
include a standalone CDþþ simulator (running in
single-processor simulations) and various parallel

versions (based on Parallel DEVS39) allows complex
models to be executed, which often requires high per-
formance computing power. Parallel CDþþ was built
on top of Warped,40 which provides different optimis-
tic synchronization algorithms. It also implements an
unsynchronized protocol (called NoTime), which is
used to compare the pure overhead of new algorithms.
In particular, the NoTime kernel is useful in
evaluating the performance overhead of DEVS simu-
lations, because a DEVS simulation algorithm provide
its own synchronization method (therefore, one can
run a parallel DEVS simulation, and the synchroniza-
tion provided by Warped is not needed, although
it can improve the overall performance if activated).
Therefore, we use the NoTime kernel to compute
the pure overhead introduced by the simulation
kernel.

In this section, we show how DEVStone can be
applied to characterize the overhead of different ver-
sion of a given simulation tool. In addition, allowing
one to test the usefulness of the benchmark, the exper-
iments presented here are the first systematic effort at
characterizing the performance of DEVS M&S
environments.

The first tests we present here show a basic analysis
of the overhead of three CDþþ simulators: (i) the stan-
dalone CDþþ (named as original in the various fig-
ures), (ii) a parallel CDþþ with unsynchronized
kernel (that is, a kernel using only DEVS simulation
synchronization algorithms), and (iii) parallel with opti-
mistic kernel. The idea is to compare the overhead

Figure 8. Model files generated by DEVStone for a LI model.
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generated by increasing levels of synchronization in the
kernel. We compared the execution times results with
the theoretical execution time for each type, computed
as follows:

Total theoretical time¼ ½ð#External Transitions

�Time InExternal TransitionÞ

þð#Internal Transitions�TimeInInternalTransitionÞ�

�NumberOfExt Events ToTopComponent

ð5Þ

DEVStone was used to generate different model
structures, and the models were executed using 10
external events at a constant rate. Each of these
events triggered a known number of external and inter-
nal transition functions defined by Equations (1)–(4).
Table 1 shows the parameters we used for different
the tests executed in this case, which were used to
compute the overall execution time and the number
of messages involved in the simulation (which is
an even more meaningful metric when one considers
that the models could execute in a distributed
environment).

As we can see, the user can define a wide variety of
test cases with different arguments, including model
type, structure and time spent on transition functions
(e.g. model E is of HI type, it is composed of three
levels, with six components per level). DEVStone
allows one to define these test cases with ease, and to
define different scenarios to test a given tool thor-
oughly. This table shows the variety of tests that one
can build; all of them are automated, and they are
based on the arguments used to generate the corre-
sponding DEVStone structure. Other parameters
could be used for different tests. For instance, one
could use extended model types (with loopback connec-
tions or larger number of internal connections) and
varied time for the time advance and transition func-
tions (in order to explore the differences in having com-
pletely different execution time for the internal or
external transition functions and the influence of the
function delays). Other options would include very
large models (to study cases of memory exhaustion),
and varied time advance functions (in order to study
the influence of different time advance values in the
scheduling algorithms in the simulator; in all of these
cases, preparationTime is used to trigger an internal
transition immediately after the previous one has fin-
ished its computation). These modifications can be
automated, and the method to create the models is
the same for any simulator (the idea is to follow up
the procedure to generate a DEVStone, as discussed
in Section 5, and to execute the benchmarks in the dif-
ferent simulation engines). DEVStone is generic and

these arguments can be easily changed, while keeping
a standard way of testing different versions of a given
simulator or different simulation engines. For instance,
Simulation A in Table 1 could be used for many differ-
ent simulators, and in all cases, this test should use an
LI model of three layers, each of them containing 10
submodels, and using 50ms of execution time in each of
the transition functions. This time should be generated
using the Dhrystone benchmark to provide a uniform
set of instructions on any of the simulation software
applications.

The following figures summarize the worst execu-
tion times for a large number of simulations for each
of these cases (variation between these and the best
execution cases was below 1%, as the models are
deterministic and the tests were run in dedicated
equipment; the variations are mainly due to the
operating system overhead). The experiments were
executed in a single processor, allowing us to measure
the pure overhead incurred by the different simulation
engines.

The variety of tests that can be easily executed using
DEVStone allow one to analyze different aspects of the
simulation engines with ease. As expected, the original
version provided the best execution time, whereas the
parallel unsynchronized kernel (NoTime) always out-
performed the parallel optimistic (Time Warp) version.
Figure 9(a) illustrates the execution time of LI models.
The relatively simple structure and size of Simulations
A, B and C resulted in small differences between the
theoretical and actual execution times. In Simulation
D, which contains more than 80 models, the difference
is more noticeable. The same tendency is observed in
the execution of HI and HO models, especially for
larger models.

The most relevant results for these tests are related
to the performance of the hierarchical simulation

Table 1. Simulation parameters

Simulation Model Type Depth Width dint dext

A LI 3 10 50 ms 50 ms

B LI 10 3 50 ms 50 ms

C LI 5 5 50 ms 50 ms

D LI 10 10 50 ms 50 ms

E HI 3 6 50 ms 50 ms

F HI 6 3 50 ms 50 ms

G HI 5 5 50 ms 50 ms

H HI 6 6 50 ms 50 ms

I HO 3 6 100 ms 0 ms

J HO 6 3 0 ms 100 ms

K HO 5 5 50 ms 50 ms

L HO 6 6 50 ms 50 s
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application. Although we show that a flat simulator
provides better performance (in the following sections
in this paper), we can see that the amount of over-
head for the original version (a hierarchical simulator)
is only between 1% and 3% in every case (and this
overhead is below 5.5% for the most complex problems
running on top of the Warped middleware). These
results show that a hierarchical simulation engine intro-
duces constrained overhead, while providing ease for
modeling.

From this point, unless stated otherwise, the analysis
is focused only on the original CDþþ (equivalent
results are observed in the other versions).

The different DEVStone tests also permit one to
determine the impact of structure on the overall perfor-
mance. For instance, Simulations C (LI), G (HI), and
K (HO) have 5� 5 components each; and the same
workload in the internal and external transitions.
Nevertheless, we can see an increase in the over-
head: 1.25% for Simulation C, 2.2% for Simulation
G, and 2.4% for Simulation K. This is due to the
more complex internal structures that the HI and HO
models have.

DEVStone also allowed us to easily generate and run
models with a large number of components (approxi-
mately 10,000 models), which resulted in higher over-
head ratios, as seen in Table 2.

Running extensive tests through DEVStone allowed
us to find the results presented in Table 2. As we can

see, there are a large number of internal messages inter-
changed, which causes the overhead. This version of
CDþþ uses a hierarchical modeling method, and a
hierarchical simulation algorithm as presented by
Kim et al.41 This algorithm creates a one-to-one corre-
spondence between DEVS models and execution
engines called processors: simulators execute atomic
models, and coordinators execute coupled models
(as previously shown in Figure 1). Following this
idea, Figure 10(a) shows a two-level model; the
top-level (Coupled Model #1) model includes three
atomic (#1–3) and one coupled model (Coupled
Model #2); this coupled model is composed of two
atomic models (#4 and #5). Figure 10(b) illustrates
the processor hierarchy built to run this model
(Coordinator #1 schedules the activity of Coupled
Model #1; Coordinator #2 is in charge of Coupled
Model #2, and every Atomic model is associated with
a Simulator). As we can see, every time the Root
Coordinator needs to send an external event to
Simulators #4 and #5, it must send a message to
Coordinator #1 first. The same occurs when Model #5
sends an output to Model #3.

The number of these intermediate coordinators can
be arbitrarily large depending on the model, as seen in
Table 2 (which also shows the number of messages
DEVStone generated in order to process a single exter-
nal event). For instance, models R and S have identical
structure, but the internal interconnections of their
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Figure 9. Execution times of different models using different simulation engines with (a) LI, (b) HI, and (c) HO.
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components results in a remarkable difference in the
number of messages involved (the same happens when
we compare models T and U). These results provided a
hint to optimize the simulation technique: reducing
intermediate coordinators by flattening the simulation
hierarchy as suggested by Kim.41 The idea is to create a
flat coordinator that triggers dint, dext, and �(s) func-
tions for each atomic component, transforming the
hierarchical model into a flat structure by mapping
the ports for all atomic and coupled components in
the hierarchy. Component links are handled by the
flat coordinator, which forwards the events as needed.

Finally, it must handle the interaction with the Root
Coordinator, as seen in Figure 11.

We applied DEVStone to study this new version of
CDþþ. Table 3 shows the execution results for the
same parameters presented in Table 2. As simulators
and coordinators disappeared, and one flat coordinator
is created regardless of the number of components, the
resulting overhead has been reduced from 10% to close
to 5%.

Regardless of the type of model (LI or HO) and their
structure, the simpler simulator hierarchy and fewer
messages exchanged during the simulation reduced

Table 2. Simulated models using the hierarchical simulation approach

Model

Simulation parameter R S T U

Number of components per level 100 components 100 components 150 components 150 components

Hierarchy depth 100 levels 100 levels 75 levels 75 levels

Model type LI HO LI HO

Number of atomic components 9,802 9,802 11,027 11,027

Number of simulators 9,802 9,802 11,027 11,027

Number of coupled components 99 99 74 74

Number of coordinators 99 99 74 74

Number of root coordinators 1 1 1 1

Number of messages exchanged per single external event 79,220 3,484,718 89,416 2,958,468

Execution overhead 9.96% 10.84% 9.42% 10.27%

Coupled Model # 1 (TOP)

Atomic
Model # 1

Atomic
Model # 2

Atomic
Model # 3

Coupled Model # 2

Atomic
Model # 4

Atomic
Model # 5

Coordinator # 1

Coordinator # 2 Simulator # 1 Simulator # 2 Simulator # 3

Simulator # 4 Simulator # 5

Root Coordinator(a) (b)

Figure 10. (a) Sample model structure and (b) associated processor hierarchy.

Root Coordinator

Flattened Coordinator

Atomic data #1 Atomic data #2 Atomic data #3 Atomic data #4 Atomic data #5

Figure 11. Flat simulator approach for Figure 10.

Wainer et al. 569



the overhead; a 38.3% for small LI models, up to
47.7% for larger LI or HO models with the same
number of components (7� 5 and 7� 9 models).

In order to analyze the performance degradation
purely due to overhead in the simulation engine, we
executed several examples with empty transition func-
tions (such as that presented in Figure 8(c)). In these
experiments, the execution time solely depends on the
message exchange.

Figure 12 shows the pure improvement due to the
new flat simulator. The figure presents the performance
obtaining by changing the width of an LI model with a
fixed depth of 8; and the performance of HO models
with variable depth and fixed width of 8. Regardless of
the model’s width and depth, the flat simulator reduces
the execution time by 52.4–54.7%. For HO models, the
improvement in performance becomes more noticeable
when the depth of the model increases, as the impact of
the intermediate coordinators that are eliminated from

the hierarchy results in fewer messages being
exchanged, and more efficient simulation.

DEVStone allowed us to execute numerous tests
such as these, and we could find the same trend in all
synthetic models; the flat technique reduces the over-
head incurred by the hierarchical approach by between
40% and 58%, as a result of the reduction of the
number of exchanged messages.

5. Case study 2: Real-time simulators

CDþþ was recently extended to allow real-time execu-
tion.21 In real-time systems such as this one, correctness
depends not only on computation results, but also on
the time at which the results are produced.42 A correct
answer after its deadline is regarded as an unsuccessful
response. The real-time CDþþ extension allows the
execution of events triggered by the real-time clock,
and it provides numerous I/O device drivers in order
to enable interaction between the models and their sur-
rounding environment.

The virtual-time simulation discussed in the previous
section provided us with encouraging results in terms of
the overheads involved for real-time execution.
Nevertheless, overhead can be a serious impediment
in actual implementations of systems with real-time
constraints. Therefore, this new version of the simula-
tion needed a completely new set of tests in order to be
able to determine the performance of the new real-time
engine. DEVStone allowed us to automate the genera-
tion of those tests with ease, allowing us to study the
performance of the real-time simulator thoroughly17 by
analyzing different synthetic models and their execution
in real-time. The idea was to generate DEVStone tests,
and use them to execute virtual-time and real-time sim-
ulations, computing again the execution time and the
number of messages involved. Then, we compared the
time required to process a single event in virtual-time
against the worst-case response in real-time. This is
computed as the time the simulator takes from the
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Figure 12. Execution time comparison for hierarchical and flat simulators: (a) LI with variable width; (b) HO with variable depth.

Table 3. Simulated models using the flat simulation approach

Model

Simulation parameter R S T U

Number of components per level 100 100 150 150

Hierarchy depth 100 100 75 75

Model type LI HO LI HO

Number of atomic components 9,802 9,802 11,027 11,027

Number of simulators 0 0 0 0

Number of coupled components 99 99 74 74

Number of coordinators 0 0 0 0

Number of root coordinators 1 1 1 1

Number of flat coordinators 1 1 1 1

Number of messages exchanged

per single external event

4 9,804 77 11,029

Execution overhead 4.51% 5.64% 4.38% 5.21%
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moment an external input is received until a response is
obtained (analyzing end-to-end deadlines, in which an
input is received in an external input port, and an
output is expected in a given external output port).
Again, using the synthetic structure of the model gen-
erated by DEVStone helps in determining the worst-
case response time, as one can follow the path of exe-
cution of the messages in the runtime system, and the
total execution time (theoretical and real) of a given
model. This example shows how to use DEVStone to
compute a different meaningful metric when needed:
the worst-case execution time represents a meaningful
measure since real-time systems deal with predictable
responses in critical applications (and average compute
times are not a valid mechanism for comparing the
desired objectives). We present the execution results
for different stress tests in which external input mes-
sages are injected and the output of the model is com-
pared with a predefined deadline. (For instance, in
Figure 10(a), we compute the time from the moment
when an event is received in a given input port, until the
corresponding output, defined by the user, is seen in the
corresponding output port.) RT-CDþþ allows the user
to define the model’s deadline (which can coincide or
not with the time advance function), being able to auto-
mate the testing of the success ratio (i.e. the number of
missed deadlines versus the total number of input
events received from the environment).

DEVStone was used to automate the generation of
synthetic models to measure the ability of RT-CDþþ
to execute those models (using different structures and
very demanding situations). The real-time simulations
received a fixed number of external events generated at
a constant rate, and each model was expected to deliver
responses to those inputs before a given deadline.
Each input produces a single output, and we measure
the real-time required to compute each output. The
success ratio and the worst-case response times were
computed as

Percentage of success

¼
ðnumber of events�number ofmissed deadlinesÞ �100

number of events

ð5Þ

Worst� case response time ¼ maxðr1, r2, . . . , rNÞ ð6Þ

where ri is the response time for the ith event, and N is
the number of events received.

DEVStone was used to build large LI and HO
models (with 25–50 components) under a simulation
scenario in which external events arrive at high frequen-
cies with strict deadlines. The idea is to increase the
complexity of the model, while not changing the input

event frequency or their deadlines, trying to find out the
cases where the simulator is unable to meet its dead-
lines. The simulator was highly overloaded, having
external events arrive every 30ms and deadlines (di)
set at 60ms after the arrival of an external event (ei),
as shown in Figure 13.

The model can respond at any time between the
occurrence of the arrival of a new event (which triggers
an external transition), and the response should be
received 60ms after that. This includes the consump-
tion of the time advance function, triggering of the
output function, computing of the output function
and generation of the output in the corresponding
output port). RT-CDþþ has been modified to allow
the user to define such deadlines and record whether
the deadline has been missed or not. If the simulation
algorithms are inefficient, this would imply missing a
large number of deadlines, and this is the main objec-
tive of the study.

DEVStone was used to characterize the performance
of this new simulator thoroughly. Figure 14 presents
some tests that show that it is possible to execute LI
models with up to 35 components and different shapes
with a 100% success ratio (and minimum worst-case
response time). Under these conditions, when simulat-
ing a LI model with 40 active components in its struc-
ture, we obtained 89% and 100% success (executing
wide models was more efficient than the deep models
with the same number of components). In contrast,
only 12% and 18% of the deadlines were met for the
equivalent HO.

As we know the DEVStone structure with precision,
we can use Equations (1) and (3) to compute the
number of transition functions triggered for each
model type. For LI models of this size, each external
event triggers 80 transition functions, whereas 240 are
triggered in the equivalent HO models. This larger
number results in greater overhead, and a larger
number of messages to be exchanged (which explains
the low success ratio for complex model types).

Most of the experiments presented up to now have
studied the execution time for different models, focus-
ing on structure, size, and complexity. DEVStone can
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Figure 13. Event arrival and deadlines.
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be used for an alternative analysis focusing on the per-
formance of the target environment. DEVStone was
used to study the effect of different inter-arrival periods
(i.e. the frequency of event arrivals) on the execution
performance. We generated different DEVStone cou-
pled models, and then triggered external events arriving
at different paces (20–180ms). For instance,
Figure 14(b) shows one of those experiments, where
we analyze the success ratio for 8� 8 HO models
receiving 100 events with deadlines set at 1000ms. As
we can see in the figure, when the inter-event period is
reduced significantly, the success ratio is worse (because
small inter-event times do not allow the simulator to
process all of the messages for event ek and the next
event ekþ 1 arrives before that, 10 unprocessed messages
accumulate, and there is an evident degradation of
performance).

Finally, Figure 14(c) shows the real-time perfor-
mance of the flat versus the hierarchical simulator for
an HO model with variable depth (various tests were
generated in a similar fashion; this figure shows the
result for width¼ 9). In this scenario, the flat simulator
meets all of the deadlines for up to the 13� 9 HO model
(97 components). In contrast, the hierarchical approach
had an inferior percentage of success (87%) and
showed worse response times, even for smaller models
(7� 9; 49 components). For larger models, the differ-
ence between hierarchical and flat simulators becomes
more noticeable.

DEVStone models allowed us to test these varied
cases with ease, showing that the flat technique

outperforms the hierarchical, reducing the incurred
overhead by up to 50% and therefore providing
improved response times and a better success rate. A
main cause for this is the reduced number of messages
exchanged in the flat simulation mechanism.

6. Case study 3: Comparing ADEVS
and CDþþ

DEVStone was applied to compare the performance of
the ADEVS and CDþþ simulator. This is the first
attempt at a documented effort comparing two DEVS
simulators, which has been possible thanks to the basic
idea of this flexible and reconfigurable benchmark. The
two simulators were compared using similar block
structures, fixing the different parameters in order to
be able to obtain similar metrics. CDþþ was compiled
with GCC 2.95.3, and ADEVS used the GNU
Compiler version 3.4.2; both without debugging infor-
mation and default compile-and-link options. In this
case, we computed the execution time for each of the
cases.

DEVStone allowed us to find some non-documented
limitations in both tools, namely:

. ADEVS depth cannot be greater than 195 levels (due
to a limit of the GCC compiler, which finds too
many nested loops inside the executable). CDþþ
does not seem to have a limit on the depth (we exe-
cuted 4000 levels and 3 components per level were
read by the CDþþ simulator without problems).

0

20

40

60

80

100

25 30 35 40 45 50
Number of components in the model

%
 o

f s
uc

ce
ss

Variable depth
LI models
Variable width
LI models
Variable depth
HO models
Variable width
HO models

0
10
20
30
40
50
60
70
80
90

100

20 40 60 80 100 120 140 160 180
Inter-event period (ms)

%
 o

f s
uc

ce
ss

 

(a)
(b)

0
10
20
30
40
50
60
70
80
90

100

6 7 8 9 10 11 12 13 14 15
Depth

Hierarchical
simulation

Flattened
simulation

%
 o

f s
uc

ce
ss

(c)

Figure 14. Comparison of model execution with variable depth and width. (a) Percentage of success for varied models. (b) Success

ratio for varied inter-arrival periods. (c) Success ratio for hierarchical/flat simulators.

572 Simulation: Transactions of the Society for Modeling and Simulation International 87(7)



. CDþþ uses a construction to define the components
of a single level (the width of the level), and all of the
components can be defined on a single text line. For
widths of more than 1839 components inside each
level, the simulator generates a message that the
components are too large. The script described in
Section 3, which is used to generate the coupled
model automatically, was thus modified to split the
components in multiple lines of 1500 atomic blocks.

. The minimum depth and minimum width for any
model generated by DEVStone for CDþþ or
ADEVS is 2.

. For extreme cases (i.e. models of 195� 1839 compo-
nents), it is possible to initialize the simulation, but it
is not possible to run the simulation to any time
longer than 0 s, due to memory limitations (the pro-
cess is killed by the Out-Of-Memory kernel service).
It seems that, whenever the simulator requests mas-
sive amounts of memory to the operating system
(beyond the available physical memory and some
of the virtual memory), the OS decides to terminate
process as a potentially harmful.

Considering that CDþþ builds models dynamically,
and ADEVS uses a library to generate a compiled ver-
sion of the model, we were first interested in studying

the performance of both simulators during the transient
initialization period. To do so, we used DEVStone to
measure the initialization time in both CDþþ and
ADEVS (showing how the benchmark is flexible
enough to analyze yet another interesting performance
metric without special modifications). To do so, we
considered the worst-case scenario for both simulators
when executing a model that is 195 levels deep and
contains 1839 components on each level. The simula-
tion results for LI models are presented in Figure 15
and Table 4. We considered the initialization time only,
i.e. simulation time is Tsim¼ 0. From the graph, it is
obvious that ADEVS outperforms CDþþ in terms of
initialization speed. This is because in CDþþ, the sim-
ulator and the model are two completely separated enti-
ties (the compilation of the simulator takes only a
couple of minutes and can be used for any model; in
our case the simulator was compiled only once and
reused for all the simulations in this paper). On the
other hand, ADEVS needs to be recompiled every
time a model (atomic or coupled) changes. Therefore,
for small to medium sized models, even minor fixes
required recompilation, whose time surpassed the sim-
ulation time. Subsequently, we used DEVStone to
understand these differences better, combining
DEVStone with a profiler.

Table 4. Profiler output for the simulation of LI models

Time

(%)

Cumulative

(s)

Self

(s) Calls

Self

K/call

Total

K/call Name

29.09 4,633.2 4,633.2 1,427,848 0 0 ProcessorAdmin::processor (basic_string<. . .> const &)

17.91 7,486.26 2,853.06 450,903,011 0 0 basic_string<. . .>::compare (basic_ string<. . .> const

&,unsigned int, unsigned int) const

15.86 10,012.31 2,526.05 162,000,611 0 0 basic_string<. . .>::rep(void)const

9.59 11,539.19 1,526.88 3,307,266,338 0 0 basic_string<. . .>::length(void) const

7.91 12,798.64 1,259.45 989,592,590 0 0 basic_string<. . .>::data(void) const

7.57 14,004.23 1,205.59 String_char_traits<char>::compare (char const *, char

const *, unsigned int)

6.85 15,095.7 1,091.47 287,281,638 0 0 Processor::description(void) const

5.05 15,899.58 803.88 1,065,955,666 0 0 basic_string<. . .>::Rep::data(void)

δint = 1.0 (ms)

δext = 0.1 (ms)

Tsim=

depth = 195

width = 1839
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LI model Initialization time - max. depth & width
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Figure 15. DEVStone initialization time LI model.
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According to the initial result of the profile, a large
part of the initialization time (20.09% of it) is spent
inside the processor block. Another important source
of delay is the comparison of symbols (done by Cþþ
libraries while loading the model into memory). Based
on these results, we did a more thorough analysis using
DEVStone combined with GNU profiler, who provides
a Call Graph that indicates functions inside the pro-
gram and the relative time that the computer takes run-
ning those functions. While running DEVStone, we
obtained the results shown in Table 5.

According to the output of the profiler, CDþþ
spends most of the time looking at and comparing the
new and incoming symbols, or model names, which
explains the initialization overhead. Most of the work-
load is spent in library functions that are specific to the
compiler, which are used for symbol parsing, look-up,
and compare. This is heavily dependent on the libraries

used to compile CDþþ (and better performance can be
obtained by simply porting the CDþþ simulator to a
newer version of GNU Cþþ or better libraries).

As ADEVS takes time compiling very deep models,
it would be useful to compare the performance of both
simulators using a model with maximum depth and
minimum width. An event file was created that provides
10 external events evenly spaced every 0.250 (s) and the
results of the first simulation with such files are shown
in Figure 16.

In this case, CDþþ proves to be faster than
ADEVS, mainly because in CDþþ the models are
loaded in memory on demand, and processed accord-
ingly. In the first scenario (where the internal transition
function time equals the external transition function)
ADEVS takes almost 50% more time. This is because
ADEVS (a) loads the entire model-simulator to
memory, (b) runs the simulation, and (c) flushes the

Table 5. Call graph of the CDþþ simulator

Index Time (%) Self (s) Children (s) Times called Function name

0.00 81,691.17 1/1 Main [1]

[2] 98.5 0.00 81,691.17 1 MainSimulator::run(void) [2]

. . . . . . . . . . . .

[4] 85.4 2,853.06 67,920.51 450,903,011 Basic_string<. . .>::compare(basic_string<. . .>
const &, unsigned int, unsigned int) const [4]

1,496.24 50,534.74 3,240,893,692/3,307,266,338 Basic_string<. . .>::length(void) const [7]

. . . . . . . . . . . .

51,569.68 0 3,307,266,338/162,000,611 Basic_string<. . .>::length(void) const [7]

[5] 83.8 69,496.80 0 162,000,611 Basic_string<. . .>::rep(void) const [5]

. . . . . . . . . . . .

1,496.24 50,534.74 3,240,893,692/3,307,266,338 Basic_string<. . .>::compare(basic_string<. . .>
const &, unsigned int, unsigned int) const [4]

[7] 64.1 1,526.88 51,569.68 330,7266,338 Basic_string<. . .>::length(void) const [7]

51,569.68 0 3,307,266,338/162,000,611 Basic_string<. . .>::rep(void) const [5]

2,316.60 23,254.22 713,924/1,427,848 MainSimulator::loadLinks(Coupled &, Ini &) [9]

2,316.60 23,254.22 713,924/1,427,848 Coupled::addInfluence(basic_string<. . .> const &,

basic_string<. . .> const &, basic_string<. . .>
const &, basic_string<. . .> const &) [11]

[10] 61.7 4,633.20 46,508.43 1,427,848 ProcessorAdmin::processor(basic_string<. . .>
const &) [10]

1,817.76 43,273.98 287,282,416/450,903,011 Basic_string<. . .>::compare(basic_string<. . .>
const &, unsigned int, unsigned int) const [4]

. . . . . . . . . . . .

0.12 25,768.79 356,962/356,962 MainSimulator::loadLinks(Coupled &, Ini &) [9]

[11] 31.1 0.12 25,768.79 356,962 Coupled::addInfluence(basic_string<. . .> const &,

basic_string<. . .> const &, basic_string<. . .>
const &, basic_string<. . .> const &) [11]

2,316.60 23,254.22 713,924/1,427,848 ProcessorAdmin::processor(basic_string<. . .>
const &) [10]

. . . . . .
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program from RAM. Reading and writing the whole
file to and from the harddrive explains the increase in
simulation time. Checking memory usage while running
DEVStone showed that ADEVS takes up to 99% of the
available memory right from the beginning while
CDþþ increases the memory usage incrementally.

DEVStone provides a feasible methodology to ana-
lyze the performance of these different simulators and
to study their performance thoroughly. A large number
of simulations were executed with different models of
similar values for every model. We were able to run
numerous tests based on changing four main

parameters: the model type, variations in the width of
the model, variations in the depth of the model, and
variations in the real-time running internal and external
transition functions.

By changing the width of the model, we can focus
our analysis on the time that the simulator spends send-
ing messages back and forth to atomic blocks within
each level.

In Figure 17 we can see that ADEVS clearly outper-
forms CDþþ by a significant margin for large
models (and this difference is larger when the internal
and external transition times are equal). One cause

Simulation Parameters 

Depth Width δint δext δint δext δint δext

1 2 3

195 2 0.1ms 0.1ms 0.1ms 1ms 1ms 0.1ms

Figure 16. Comparing ADEVS and CDþþ setup times (rounded to seconds).

width vs time - equal d

0

10
20

30

40

50
60

70

80

100 200 300 400 500 600
Width

ti
m

e 
(s

)

CD++
ADEVS
Theoretical

width vs time - dint <dext

0

20

40

60

80

100

120

140

100 200 300 400 500 600
Width

ti
m

e 
(s

)

CD++
ADEVS
Theoretical

Simulation Parameters 

Depth Width δint δext δint δext δint δext

1 2 3 

10 100-600 0.1ms 0.1ms 0.1ms 1ms 1ms 0.1ms 

Figure 17. CDþþ vs. ADEVS. LI models: (a) dint¼ dext; (b) dint< dext.

Wainer et al. 575



for this is that CDþþ uses a temporary file to store
intermediate results, whereas ADEVS stores them in
memory.

We also executed a similar experiment in which
we changed the depth of the levels and kept the width
constant. The same three different sets of internal
and external transition functions were used. For vari-
able depth HI models with constant width the follow-
ing simulation parameters used were as shown in
Figure 18.

In Figure 18 we can see that when the times spent in
transition functions are equal ADEVS executes faster
than CDþþ (as we saw before). Nevertheless, whenever
the time spent in internal transitions is larger than the

external transition, CDþþ surpasses the performance
of ADEVS.

For HOmod models, the parameters need to be
changed, due to the exponential growth of messages
between coupled components, however the time given
to each transition function is kept equal. Following the
previous test scenarios the test was repeated varying the
depth this time, the parameters of the simulation were
as shown in Figure 19.

In this last test, CDþþ and ADEVS present a very
close performance for models where the internal tran-
sition function is greater than the external transition
function. For the rest of the cases ADEVS performs
better than CDþþ, although depending on the model
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Figure 18. CDþþ vs. ADEVS. HI models: (a) dint¼ dext; (b) dint> dext.
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and complexity of it. Along with this trend, CDþþ
offers equivalent performance for models that consume
equal time in the transition functions as well as models
that have larger loads in the external transition func-
tion. The main reason for this difference is that CDþþ
searches the model coupling every time a message is
routed. This is flexible and it allows dynamic changes;
it also permits having a smaller data structure in
memory; nevertheless, the parsing tree used for this
coupling causes the simulation to run slower than
ADEVS, where the coupling is fixed (and resolved at
compile time; any changes in the model requires a com-
plete recompilation of the model). Therefore, in this
particular case, ADEVS outperforms CDþþ, which
pays the cost of the internal interpreted language for
coupled model and Cell-DEVS definition (two facilities
that ADEVS does not count with).

A summary of the conclusions gathered through the
realization of the comparative benchmarking analysis is
given as follows:

. Based on the results obtained by DEVStone we dem-
onstrated that the benchmark proves to be flexible
enough to create and analyze different scenarios and
compare different implementations of DEVS-based
simulators.

. It is possible to classify simulators by their perfor-
mance, for example, CDþþ shows better perfor-
mance than ADEVS when it comes to models that
deal with intensive code in the internal transition
function.

. ADEVS takes advantage of the tight integration of
the model and the simulator at run time, although
the price is paid at compilation time; it also offers
less flexibility compared to CDþþ when it comes to
model development and modification.

The DEVStone benchmark allows us to have a per-
formance-measuring tool that allows us to compare dif-
ferent types of implementations of the DEVS
formalism. Future developers of CDþþ can measure
the performance of their upgraded version versus the
original or even the performance of CDþþ against
ADEVS. There is no doubt that the particular imple-
mentations of the DEVStone benchmark for both
CDþþ and ADEVS can be improved for code effi-
ciency or for simulation performance depending on
what the end-user requires.

7. Conclusions

Evaluating the performance of a simulation tool is typ-
ically a tedious and complex process, which requires the
execution of a wide variety of models with different
characteristics. Our main goal was to provide a means

of evaluating the efficiency of existing simulation
engines with focus on DEVS-based tools, and facilitat-
ing a qualitative and objective comparison of different
tools.

To do so, we defined and developed DEVStone, a
synthetic model generator that supports the process of
evaluating the performance of simulation engines.
DEVStone relies on executing a collection of models
with different characteristics. In order to emulate sev-
eral degrees of complexity in their structures, we iden-
tified four types of models that correspond to three
interconnection patterns. In addition, each atomic com-
ponent usually executes code in its transition functions;
we proposed the use of Dhrystone code to mimic the
task to be performed by these components. DEVStone
makes it possible to: (i) create models with different
sizes, shapes, and behavior; (ii) generate an arbitrarily
large number of such models; and (iii) execute those
models using the simulator(s) under study. After defin-
ing a DEVStone atomic model, the remaining tasks can
be done automatically.

Our framework provides a common metric to com-
pare the results that were obtained using the different
simulation tools, and also enables an analysis of the
efficiency of successive versions of the same simulator,
such as upgrades or fixes. We used the CDþþ toolkit to
show how to apply the proposed benchmark; also, we
performed a comparison benchmark against ADEVS.
Although we restricted our case study to the existing
CDþþ and ADEVS simulation engines, the same ideas
may hold for other DEVS-based simulators. Using
DEVStone, we showed that hierarchical simulation
techniques are able to simulate models with low over-
head, even for models with complex structure. By
means of the proposed framework, the performance
of both virtual-time and real-time hierarchical simula-
tors was shown to be satisfactory. Moreover, the results
demonstrated that the flat simulation technique could
improve the efficiency in some cases, especially when
the model structure is particularly large or complex.
Regardless of the size and complexity of the models,
the flat simulator outperformed the hierarchical one.
In general, the charts illustrate that the overhead
incurred by the flat simulator is reduced by up to
about 55% of the overhead incurred by the hierarchical
approach. In any of these cases, the hierarchical struc-
ture of the DEVS models is maintained unchanged (and
only the simulation engines are improved to generate
speedups in the simulation).

DEVStone thus provides a systematic way to assess
the performance of a simulation engine, reducing the
time required to measure its efficiency. It is possible to
analyze the efficiency of any DEVS simulator with rela-
tion to the size, the behavior, and the structure of the
model under execution. An example with the ADEVS
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simulator was presented. A precise performance char-
acterization of a simulator allows modelers to consider
the actual overhead of the tool based on solid results,
and then analyze the feasibility of executing timed
models with specific timing constraints.

The results presented here show how the bench-
mark can be used for studying this kind of application
(and there is a variety of different modifications
and improvements that users can introduce based
on the ideas presented here). The main contributions
and scope of this proposal can be summarized
as follows:

(i) Prior to this work, there were no synthetic bench-
marks for studying M&S software. This is the first
successful attempt in defining and implementing
one, and in showing how to use it in different
contexts.

(ii) This is the first objective- and application-indepen-
dent mechanism proposed to evaluate M&S envi-
ronments, which can be employed in different
contexts (providing a fair method for comparing
simulation engines).

(iii) The benchmark is flexible and can be easily
adapted, as has been shown throughout the article.
DEVStone also provides numerous mechanisms
for testing different options, and the user can
easily modify it to create the next generation of
synthetic benchmarks for M&S with ease. This
opens a new field in the community, which
should decide what other important things should
be included in such a benchmark (some ideas are
discussed at the end of this section).

(iv) DEVStone was used to execute very complex sim-
ulations (some of the most complex simulations
included over 350,000 components). The atomic
model’s behavior is synthetic and based on the exe-
cution of complex Dhrystone code, instead of
simple sets of instructions that could be optimized
by a compiler. Finally, the models can be com-
bined into a variety of coupling schemes. The
tests can include varied parameters for each of
the components in an automated fashion.

(v) These complex simulations were used to carry out
the first existing comparative analysis between dif-
ferent DEVS M&S tools.

The use of DEVStone allowed us to address the mis-
conception that hierarchical M&S environments (such
as those used for defining DEVS models) can have per-
formance issues derived from the hierarchical structure
of the models involved in the simulation. Although
DEVStone provides a flexible and generic method, the
scope is limited to the kind of models presented in this
work (for instance, DEVStone has not been built with

the aim of testing the performance of tools for cellular
automata, Petri nets, FSM, etc.). Nevertheless, the
benchmark is defined using a flexible approach, allow-
ing the users to focus on the aspects they need to
improve, opening the doors for other similar research
in related areas. An expert in a given field could use the
basic ideas and design to adapt the benchmark to their
own kind of environment. For instance, in the case of
modeling hierarchical applications, the user can use
DEVStone to test different implementations easily,
and then use the most adequate for their needs. The
model structure defined provide a mechanism to
easily automate the model creation, and the computa-
tion of the theoretical results; this structure could be
modified and expanded with ease (as we did with the
HOmod models; HOmod models did not exist in earlier
versions of the benchmark, and including this new kind
of model was done in a straightforward manner). These
ideas could be used to define more complex scenarios
(for instance, to define cases with feedback in the cou-
plings by including such definitions in the coupled
models). It could also be expanded to contain various
kinds of atomic models (for instance, other models with
a larger number of input/output ports, others with
varied time advance functions, etc.). In any case, the
benchmark should be standardized and expended by a
community of users. The benchmark should be comple-
mented by a combination of sample models to be
used as a standardized performance measure. This arti-
cle provides the grounds for the formation of such
a community.
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