
Music Generation Using Cellular Models

Heather Morris Gabriel A. Wainer

Carleton University Centre for Visualization and Simulation (VSim)
1125 Colonel By. Drive

Ottawa, ON. K1S-5B6 Canada
hmorris@connect.carleton.ca; gwainer@sce.carleton.ca

ABSTRACT
Music is an art form that is created by people who draw

inspiration from a variety of sources. However, the basis of

music is an organization of sound frequencies, timed in a

certain manner. Using the basic principles of music, it is

possible to develop a mechanism for the automatic

generation of music. The goal of this research project is to

explore the mapping of cellular models into musical

combinations, using music theory. To accomplish this task

we developed a mapping tool for the automated creation of

music using cellular models. In particular, the main focus is

determining patterns embedded in the Game of Life. A

music modulation model is developed in order to model the

chord level of the musical composition. A two layered

mapping technique shows that the musical composition can

become achieved.

1. INTRODUCTION
Music is often thought to be created from a person by

external influences. These influences give the composer the

power to create beautiful sounding music from deep within

their soul. The emotion inherent to music leads to the belief

that only humans are capable of creating beautiful

compositions. However, the basis of music is an

organization of sound frequencies, timed in a certain

manner. Also, there is a certain range and discrete values of

frequencies used in the creation of music. This implies that

there are a discrete number of frequencies that can be used.

Since music is also time based, it can be extrapolated that a

model can be developed or the musical system, which

determines the frequencies to be played. This model can be

described as a discrete event system because of the

organization of frequencies.

The goal of this research is to explore a different

mechanism for the creation of music. The idea is to explore

the mapping of cellular models into musical combinations,

using music theory. A mapping tool is developed for the

automated creation of music using cellular models. Various

existing cellular models have shown to form interesting

patterns [1], and, in some cases, they have similar patterns

to those of musical structures. In this article we focus on

determining patterns embedded in the Game of Life, as

proposed by Conway [2]. A complex mapping technique is

defined and subsequently used to extract the layers of

musical composition. This mapping technique uses a top-

bottom approach, where the highest musical structure will

determine the lower structures.

In the following sections we discuss the background for the

project in terms of modeling and simulation, and music

theory; then, we present the mapping mechanism, and we

discuss the implementation using varied tools. A few

examples of music and their cellular models will be posted

at http://www.youtube.com/arslab.

2. BACKGROUND

2.1 Introduction to Cellular Models
There are different formalisms to define cellular models. In

particular, a Cellular Automaton (CA) is a time based,

discrete event model that uses a cell space or a grid. This

cell space gives the model spatial sense. The global

transition function contains a set of rules which are

executed. Each cell on the grid contains a transition

function that will determine the next state of the cell, taking

into account the current state of the cell and the state of

certain cells around it. The group of cells that influence the

next state of the cell are said to be part of the cells

neighborhood. When evaluating the cell’s state change the

states of the cells in the neighborhood are also considered.

Neighbor cells can be close or far, and use different shapes.

Figure 1 Shows some common neighborhoods used.

Moore’s neighborhood includes the origin and the eight

cells surrounding it; Von Neumann’s uses the cells above,

below, and to both sides. Hexagonal neighborhoods are

very popular because they provide higher isotropy, the

capacity to represent equivalent behavior in every possible

direction. However, square meshes are popular due to the

ease of mapping and visualization.

Figure 1: Moore’s, Von Neumann, Hexagonal

CA can be formally specified using the following notation

CA=<S,n,C,N,T,τ,q.Zo
+
>

where S is the alphabet used to represent the state for each

cell; n is the dimension for the cell space; C is the state set

for the cell space; N is the neighborhood set; T is the global

transition function; τ is the local computing function; q.Zo
+

is the discrete time base for the cellular automata.

CA are n-dimensional cell spaces that progress in time on

discrete time steps, where the state of the cell can be taken

from the alphabet of states in S. The state of the cell space

changes by executing the global transition function. The

global transition function is affected by the local computing

function changing the states of the neighboring cells. These

functions are computed synchronously and in parallel for

every cell in the cell space.

2.2 The Cell-DEVS Formalism
The use of discrete-time for CA has been discussed
thoroughly in literature [3]. The use of a discrete time base
also constrains the model precision. Cell-DEVS [4] solves
these problems by using DEVS [3] to create a cell space in
which each cell is defined as an atomic model. The goal is
to build discrete-event cell spaces, improve their definition
by making the timing specification more expressive, and
allow the combination of the cellular models with discrete-
event models in a straightforward fashion. In music,
different instruments can be playing at different timescales,
which makes the timing management complex for CA.
Also, modern musical forms use asynchronous rhythms,
which are complex to define using a time-based approach.

In Cell-DEVS, each cell of a cellular model is defined as an
atomic DEVS model. Cell-DEVS atomic models use N
inputs to compute the future state S using the function .
The new value of the cell is transmitted to the neighbors
after the consumption of the delay function. Delay defines
the kind of delay, and d its duration.

Figure 2: Informal Definition of Cell-DEVS [4].

Once the atomic cell model is defined, a number of cells
can be put together to form a coupled model, built as an
array of atomic cells. A Cell-DEVS coupled model is

defined as an array of atomic cells with size {t1 x...x tn}.
Each cell in the space is connected to the cells defined by
the neighborhood N. The border B cells can use a different
behavior than the remaining cells. The Z function allows
one to define the internal and external coupling of cells in
the model. Xlist and Ylist are input/output coupling lists and
are used to interchange data with other models.

The CD++ tool [4] was developed based on the definitions
of the DEVS and Cell-DEVS formalisms. Models can be
described using a built-in specification language, which
provides a set of primitives to define the size of the cell-
space, the type of borders, a cell’s interface with other
DEVS models and a cell’s behavior. The computing
function is defined using a set of precondition and post
condition rules, offset by a delay. If the precondition is
satisfied, the cell takes on the value of the post condition
after the given delay. (If the precondition is false, the next
rule in the list will be checked until there are no more rules.

2.3 The Game of Life
The game of life is a solitaire-like game that was proposed

by the mathematician John Conway. The game was

originally intended to simulate the rise and fall of a society

of organisms. The game is played on a grid, where a cell on

the grid is either alive or dead. A cell stays alive if it has

two or three neighbors that are alive. The cell dies from

overpopulation if there are four or more neighbors alive,

and die from isolation if there are one or less neighbors

alive. A new cell is born if there are exactly three

neighboring alive cells, using Moore’s neighborhood.

There are four possible outcomes to the Game of Life. First,

the cells in the space will all die, which means that the

population has become extinct. Second, the population will

grow indefinitely. Third, the population reaches a steady

state, such that there is no change over time. Fourth, there is

a repeated pattern in the cells with a known period.

Figure 3: The Game of Life Implemented in CD++

Figure 3 shows the implementation in CD++: we can see

from the neighbors that Moore’s neighborhood is used, and

that the precondition/post condition rules are the ones

defined earlier. For instance, the first rule says that if the

origin cell (0,0) is alive, and there are 3 or 4 living

neighbors, determined by the truecount function, the cell

remains alive. This information is spread to the neighboring

cells after 10 time units. The last rule is executed if no other

rule is valid.

2.4 Musical Notation
Music is the organization of audio frequencies in a time-

based system. In western music there is a defined set of

frequencies that are used in musical composition. The

frequencies are based on a logarithmic scale where the note

is said to be an octave higher than the previous note if it has

a frequency that is ten times larger. An octave is then

parsed into twelve half tones along the logarithmic scale.

Each note within the scale has a corresponding octave such

that the frequency pattern is repeated. This allows for a

repeated notation language, which associates letters to the

note. A note an octave higher than another note will also

have the same letter. The letters used are the A through G

[5].

Music is displayed using a graphical notation. There are

five parallel lines used to indicate which notes should be

played. The spaces between the lines are also used. The

frequencies can be scaled on these five lines by a clef,

which is a tool that indicates the mapping of the desired

notes to the lines. For example, when a treble clef is

indicated at the start, the lines starting from bottom to top

indicate the notes E,G,B,D.F. If a bass clef is indicated the

notes are G,B,D,F,A. It is also important to know the octave

in which these notes are associated. Since the naming

convention is repeated these notes can belong to any

octave. It should also be noted that the frequency of the

note increases with ascending lines, so the line on top has

the highest frequency.

2.5 Mapping Cellular Models to Music
The results of an executable cell space can be used to map

audio frequencies. That is, the frequencies that are mapped

onto the space correspond to the frequencies used in

musical compositions. Two mapping techniques are

investigated; Camus and a system developed by Paul

Reiners.

Camus was developed by Eduardo Miranda as a mapping

tool for music composition. It uses a Cartesian space

approach in order to represent musical triples [6]. A music

triple is a set of three notes which will be called <A,N,D>.

The Cartesian space is a two dimensional space in which

the horizontal coordinate represents the distance between

the notes A and N and the vertical coordinate represents the

distance between N and D. The distance between the notes

is represented by half tones.

To begin the composition, the cell space is initiated with a

starting condition. The cell space is then checked and the

live cells are analyzed to create the musical triplets. Each

live cell is given a base value on which the other two notes

in the triplet can be based upon. The cell space then goes to

the next state following some rules from the Game of Life

and the space is checked again for live cells to play.

Camus considers the whole cell space when determining

which frequencies to be played. Some mapping techniques

only use a section of the cell space. For instance, a mapping

technique proposed by Paul Reiners is a Row-to-Binary

approach [7]. This technique takes a row in the cellular

model, and converts the cells true or false sequence into a

binary number, where true is a one and false is a zero. This

binary number can then be directly converted to a

frequency, and then played.

The mapping techniques can be layered such that the

current state from one of the model influences the audio

mapping on the second. In these mapping techniques there

is a model that is used for each layer of the hierarchy of the

musical structure.

2.6 Musical Structures and Hierarchy
Music is comprised of several layers that are a part of a

hierarchical structure. The notes compose the lowest tier

structure. Notes are organized in a scale, which contains

seven different notes within an octave. There are two

different types of scales, major and minor scales. The type

of scale dictates the notes that are played within that scale.

From each note on the scale there is an associated three

note chord. An example of a scale with the three note

chords on each note can be seen in Figure 4.

Figure 4: Chords Based of a C Scale

Organizing the chords from the scale into a certain

sequence results in a phrase. A phrase is a sequence of

notes that follow a chord progression. There are several

musical styles that group phrases in certain orders. For

example, the rondo forms a phrase order that is ABACA.

This means that the A phrase is repeated with different

phrases B and C in between. There is also the minuet form

which has the phrases ordered as ABACDC, where the first

phrase is repeated after the second phrase and so on.

Phrases can also be expanded to contain more than one line

of music. An example is when two different instruments are

playing. This will comprise the score with the layering of

different phrases.

2.7 jMusic Framework
When mapping a cellular model to the musical structure,

there is a need for the creation of audio files that could be

played in a computer. This is accomplished by using an

open source library created by Andrew Sorensen and

Andrew Brown, called the jMusic Framework [9]. The

jMusic framework is open source and allows music

programs to be written in Java. It uses the Java sound API

to create the audio file. The framework is built upon a

similar structure as musical composition. There are notes

that make up phrases, phrases that make up parts, then parts

that make up scores.

There are many functions and classes within jMusic that are

particularly useful. The note class is an array of values

which represent the notes from classical western music.

These values in the array can be written as the midi

specifications of the notes, using values from zero to one

hundred and twenty seven. The notes in the array are

organized in a fashion that there is an associated pitch and

length of the note. The phrase class contains the sequence

of notes with their associated duration. The phrase class

can contain more than one of the note classes. If there is a

note class added to the phrase class, the new notes get

added to the end of the phrase. Similarly there is a part

class that contains phrases, and a score class that contains

parts.

A built-in function is used to create midi audio files from

the score class. The instrumentation can also be determined

from a selection of different instruments such as piano,

trumpet, and clarinet.

3. MODEL DEFINITIONS
In this section various methods used to define the models to

automate the music creation are discussed. In the first

section, the techniques used for mapping layers are defined.

In the second section, the model used for chord progression

is described. In the third section, the method for mapping

the cell space for chord modulation is presented. The

implementation of the model is in CD++.

3.1 Layered Mapping Techniques
The technique used in the music composition simulation is

a two layered mapping technique. One layer determines the

notes that are played, while the other determines the phrase

level with the chord progression that is present in the piece.

The model that determines the level of the notes is a

cellular model of the Game of Life although the cell space

chosen and the rules used to define the cell space behavior

can be changed by simply choosing a different set of rules.

Certain cells within the cell space are assigned different

notes, so when the cell is activated, the corresponding note

is played.

The second model is a cellular model as well, which has a

mapping of the chords within the cell space.

3.2 Chord Progression Model
One layer of the musical composition is the chord

progressions. There have been a couple models developed

which provide rules to switch from one chord to the next.

The model used in this project is that proposed by

Frederick Horwood [10].

There are three primary triads for every scale. These triads

are the chords made from the I, IV, and V notes of the

scale. These chords can be combined in any sequence.

From these three chords, there are six possible

combinations.

The secondary triads are the chords that are made from the

ii, iii, and vi notes on the scale. These chords have special

rules when combining them with the primary chords. The

chord built on II is a minor triad and it can be used when

followed by a V chord. This chord can be approached from

the I or VI chords. The chord built on III is also a minor

chord and is used less often than the other secondary triads.

When used in a chord progression it must be preceded or

followed by a I or VI chord. Also, it can be followed by a

IV chord. The VI chord may be used on any occasion as a

substitute for I. Taking every combination of the chords,

this sums up to a total of 18 possible chord progressions as

can be seen in Table 1.

Table 1. All Possible Chord Progressions

I-V I-IV V-IV IV-I IV-V V-I

ii-V I-iii iii-I iii-VI VI-iii iii-IV

vi-V V-vi IV-vi vi-IV I-ii VI-ii

3.3 Mapping a Cell Space for Chord

Modulation
The chord progression model is defined as a cellular model.

The cell space is comprised of hexagonal cells as opposed

to the more common square cells. Each of the hexagonal

cells is mapped to a corresponding chord. The placement of

these chords is such that the chord number in any direction

is known. See Figure 5 for the layout mapping of the chord

numbers.

Figure 5: Cell Mapping for Chord Progression Model

In Figure 5, it can be seen that in the direct neighborhood,

the cell in the [0] position is the I chord. The cell in the [1]

position is the VII chord and the cell in the [2] position of

the V chord. The cell in the [3] position is the VI chord and

the cell in the [4] position is the II chord. The cell in the [5]

position is the IV chord and the cell in the [6] position is

the III chord. This can be extended for every known chord

and it will have a mapping grid that looks like the one

shown in Figure 6. A representative sample of chords is

used in Figure 6 to present the concept behind the mapping

of chords to a cell space. In Figure 6 the chords are written

in terms of the note letter that the chord is built on. A plus

(+) represents a major chord and a minus (-) represents a

minor chord.

Figure 6: Mapping of the Chords to the Cell Space

3.4 Defining Rules and Cell States
A chord change in the model is defined as a transformation

from one chord to another. Chord changes are referenced

from the I chord. The states on the cells must contain

information on the chord number the cell is representing

and which chord number is to be played next. The state of

the cell is thus defined as a two digit number where the first

digit represents the chord number for that cell, and the

second digit represents the chord that is coming next. For

example, if the state on the cell is 25, then that cell is on the

II chord and the next cell to be activated is the cell that is in

the V direction.

The rules are defined in such a way that there is only one

active cell in the cell space. This cell corresponds to the

current key of the composition. An initial state of the

system is defined by initializing a cell with a chord number

and specifying the next desired chord number. Since this is

a unique cell state, the next cell that has to be activated is

known. For a cell with the state 62, then examining the

mapping of the chords on the hexagonal cell space reveals

that the cell representing the II chord is in the [5] position

from the current cell. In this case the rule states that if the

cell in the [2] position of the cell has the state 62 then the

cell activates with a state of 25. Another rule is that a cell

has a state of zero if there is any value in the cell, including

zero.

3.5 Defining the Model in CD++
The model is implemented using CD++. Figure 7 shows the

initialization of the model. There is a cell space that is 9 by

9 cells with 6 output ports. These output ports correspond

to the 6 cells that are activated during the simulation. These

output ports provide messages for when each of the cells is

activated. Therefore it is possible to know what chord is to

be played at each time step.

components : MusicModulation

out : output

link : out1@MusicModulation output

link : out2@MusicModulation output

link : out3@MusicModulation output

link : out4@MusicModulation output

link : out5@MusicModulation output

link : out6@MusicModulation output

[MusicModulation]

out : out1 out2 out3 out4 out5 out6

link : out@MusicModulation(6,5) out1

link : out@MusicModulation(6,6) out6

link : out@MusicModulation(6,4) out3

link : out@MusicModulation(7,5) out4

link : out@MusicModulation(7,6) out2

link : out@MusicModulation(5,6) out5

type : cell

dim : (9,9)

delay : transport

defaultDelayTime : 100

border : wrapped

neighbors : (-1,-1) (-1,0) (-1,1)

neighbors : (0,-1) (0,0) (0,1)

neighbors : (1,-1) (1,0) (1,1)

Figure 7: Coupled Modulation Model

The rules are defined using the hexagonal neighborhood;

the ltrans (lattice translator) function converts rules written

with the direct hexagonal neighbors into square celled rules.

It can be seen that the neighborhood defined using the

CD++ specification is a Moore’s neighborhood. This

transformation is carried out analyzing the parity of the row

where a cell is located. Considering a cell that is in the

position (x,y), where x is the row and y the column, the

position is translated as shown in Figure 8.

Figure 8: Distribution of close neighbors in the mapping

process.

The mapping process results in a correspondence that

differs according to the original row position. For instance,

from the example described in section 3.4

rule: 125 50 { [0] = 0 and [4] = 25 }

We obtain the following translated version

rule: 125 50 {(0,0)=0 and (1,0)=25 and even(cellpos(1) }

rule: 125 50 {(0,0)=0 and (1,1)=25 and odd(cellpos(1) }

After the mapping process, the model is combined with a

16x16 Game of Life model. Output ports are added to

provide the messages about which cells are activated. The

cells that are of interest are the cells at the bottom row of

the cell space. These cells are of interest because these are

the cells that provide initiation of the music notes for the

model.

4. SIMULATION RESULTS

4.1 Music Modulation Model Verification
First, the music modulation model will be verified. The

model is initiated with an initial cell value of 54 in the cell

(5,6). From the model definition, the expected result is that

the cell representing the I chord, or in this case the cell in

the [5] position from the cell (5,6) should have the state

154. This test confirms that the intermediate states between

the V and IV chords are working properly. The result is

obtained using the CD++ modeling specification and the

results are shown graphically in Figure 9. Also, it can be

seen that there is only one cell active at any given time. The

cell representing the IV chord has a proper state where the

first digit in the state value is the chord number.

Additionally, the next desired chord is one using a proper

chord progression. This test indicates that the model

defined using the CD++ modeler is capable of correctly

defining the model.

Figure 9: Verifying the Modulation Model

Currently, the model does not allow for the random

selection of the next desired chord. The random selection of

subsequent chords is not implemented in the definition of

the model in CD++. As a result, a repetitious pattern in the

chord progression eventually develops. This pattern has a

period of about 8 chords. Many compositions use a

repetitive chord progression, for example Pachelbel’s

Canon in D Major. The entire song is based on a chord

progression of a period of 8 chords and is a very popular

piece of music. Also, the music form known as the Theme

and Variation uses the same chord progressions from the

introductory theme and modifies the melodies on top of that

chord progression in subsequent variations.

4.2 Converting the Simulation Results to

Music
Music is created from the cellular model using the mapping

techniques. The two layered technique for mapping. The

first layer of the music composition is defined by the music

modulation model which has been developed and verified.

The second layer is from the results from the Game of Life.

There are sixteen cells that are of interest along the bottom

row of the cell space. These cells are mapped such that the

notes from an ascending music scale are placed in the cells.

This mapping can be seen in Figure 10 for seven of the

cells. This is expanded for the sixteen cells.

Figure 10: Mapping the Notes to the Game of Life

By knowing which cell is activated at a certain time and

what the corresponding note for that cell is, music can be

created by playing back the frequencies. The music

frequencies are played back by using the jMusic

framework.

Based on this, a Java application is built to convert the

layers into midi files. The input file from the model must

contain one column of midi pitch values, where each row

represents the current pitch to be played. The midi pitch

scale is a scale with integer values between 0 and 128. The

note called middle C is given the value of 60 on the midi

scale. Each increase of one on the midi scale is an increase

of half a tone of a note. Using the midi scale, the notes in

the cells in Figure 10 could also be represented by the

numbers as seen in Figure 11.

Figure 11: Mapping the Midi Scale to Life Game

The values from the input file are then stored into a note

array. This note array is a special class from the jMusic

framework. The note array contains a sequence of midi

scale values which can be played back. These notes have to

be placed within the hierarchy of the framework which

mimics that of music. Once the score has been created a

midi file with the pitches from the input file is created.

Also, the framework allows for the printing music notation.

In order to create the input file, the output data from the

Game of Life must be organized. The data is organized in

an excel spreadsheet. As defined in the mapping process,

the cells on the bottom of the cell space are of interest. As a

result of the mapping technique, the cell sending the

messages to output port 1 is corresponding to the midi

value 48, and the cell sending messages to output port 2 has

the midi value of 50, and so on. When taking the results of

the first test of the Game of Life, the piece of music seen in

Figure 12 is created.

Figure 12: Musical Composition from One Layered

Mapping of the Game of Life

The one layered mapping technique for the Game of Life

works using the jMusic framework. Now the second layer

of the mapping is applied. The modulation model is used as

a scale from the original key. This means that the original

values are scaled by a constant value depending on which

cell is active in the modulation model. The outputs of the

model are organized such that the output number

corresponds to the mapped chord that the cell would

represent. Also, passing the states through the I chord cell,

the states like 154, need to be removed for the mapping

process to function properly. After applying the two layered

mapping technique to the Game of Life cell space, the

following piece of music is created, a portion of which is

seen in Figure 13 in music notation.

Figure 13: Musical Composition from Two Layered

Mapping of the Game of Life

4.3 Alternative Mapping Techniques
The mapping technique presented thus far only uses a one

layer approach to musical composition. Most current

Western classical music includes harmonies. A

modification of the mapping technique can create

harmonies using the same results from the Game of Life.

Listening to the two compositions developed using the

developed model, it can be heard that there is a lot of large

variation in the pitches of the piece. This alternative

mapping technique will eliminate the jumping in the

melodies by creating the second layer of music from the

lower notes. It eliminates the jumping because it uses all of

the 16 cells in the composition with the bottom 8 cells as

one layer of the music and the top 8 cells as the melody.

4.4 Listening to Cellular Models
The implementation of the chord modulation model was

hypothesized to have a higher level of organization for the

selection of the pitches for the cellular model music. This

model was thought to be able to create groups of sounds, as

opposed to the random scatter that is typically generated in

the final audio result. This mapping technique does show

promise. From listening to the pieces without and with the

music modulation model, it can be heard that there are

specific groups of chords. However, the apparent

randomness of the Game of Life causes the compositions to

lack a fundamental structure in the note level. This

randomness makes the resulting audio sound random.

There are many other possible ways to map cellular model

to musical structures. The mapping techniques presented in

this paper are more of a sequential method where the notes

are played one after the other in order. There could also be

mapping techniques where the length of the note can

change as well. Also, there are many different layers to

musical composition. These layers can be modeled and

implemented in the mapping technique. An example is the

overlaying form of the music which includes the Rondo or

Sonata forms. A model could be developed that would

allow the mapping to conform to the compositional

structure of music.

5. CONCLUSIONS AND FUTURE WORK
We have showed how to use cellular models in musical

composition. Cellular models have been shown to have

similar patterns and forms to that of musical structures. It is

for this reason that we believed they could be used to create

varied musical compositions. The method for creating the

musical composition was to map the cell space of the cell

space to musical pitches.

A music modulation model was developed using the CD++

tool, in order to model the chord level of the musical

composition. The second layer of the composition was

mapped from Conway’s game of life. From this layer the

mapping was taken for the pitches of each of the notes. The

two layered mapping technique showed that the musical

composition can become more organized with the two

layered mapping technique, but there is still refinement

needed in the mapping.

There are still many layers of the musical composition that

can be modeled to add to the complexity of the mapping

scheme. Using different time functions in the cell-DEVS

models would allow for creating different rhythms to the

music, such as Latin beats. Also, there can be improvements

to automate the mapping sequence. Currently the mapping

is performed mostly in Microsoft Excel and organized by

the user. A simple program could be created in order to

automate the process. In conclusion, the two layer mapping

technique for automatic music composition has been

introduced and shown to create musical compositions

following the rules defined in the model.

6. REFERENCES
[1] Wolfram, Stephen. 2002. A New Kind of Science. Wolfram

Media, Inc.

[2] Gardner, Martin. 1970. Mathematical Games: The fantastic

combinations of John Conway’s new solitaire game “life”.

Scientific America 223 (Oct. 1970), 120-123. DOI=

http://www.ibiblio.org/lifepatterns/october1970.html.

[3] Zeigler, B.; Praehofer, H.; Kim, T., 2000. Theory of

Modeling and Simulation: Integrating Discrete Event and

Continuous Complex Dynamic Systems. Academic Press.

[4] Wainer, Gabriel A. 2009. Descrete-Event Modeling and

Simulation: A Practitioner’s Approach. CRC Press, Taylor

and Francis Group, NW.

[5] Horwood, Frederick J. 1948. The Basis of Harmony. Gordon

V. Thompson Music, c/o Warner Bros. Publications, Miami,

Florida.

[6] Miranda, Eduardo Reck. Evolving Cellular Automata Music:

From Sound Synthesis to Composition. Technical Report.

Sony Computer Science Laboratory Paris.

[7] Reiners, Paul D. 2004. Cellular Automata and Music: Using

the Java language for algorithmic music composition.

Technical Article. DOI=

http://www.ibm.com/developerworks/java/library/j-camusic/

[8] Cellular Automata Music: An Interdisciplinary Project.

Eduardo Reck Miranda. Interface. Vol. 22, Iss. 1, 1993.

[9] Brown, Andrew; Sorensen, Andrew C. 2000. Introducing

jMusic. Australasian Computer Music Conference. Brisbane,

Australia.

[10] Horwood, Frederick J. 1989. The basis of harmony. G.V.

Thompson Music.

