
Simulation Processes In The Cloud For Emergency Planning

Judicaël Ribault, Gabriel Wainer
Department of Systems and Computer Engineering

Carleton University Centre for Visualization and Simulation (V-Sim)
Ottawa, ON K1S-5B6

jribault@gmail.com, Gabriel.Wainer@sce.carleton.ca

Abstract— In recent years, various environmental disasters
(tsunamis, earthquakes, forest fires and nuclear incidents)
have caused numerous losses in lives and infrastructure. In
such emergency, remote access to the simulation resources can
increase the emergency response success. We propose a new
architecture based on the RISE simulation services middle-
ware and on Taverna workflow to execute the entire simula-
tion process into the Cloud. We present its use through an
emergency flooding scenario use case in which emergency crew
can order a new simulation and visualize result on Google
Earth.

Keywords: Modeling; simulation; workflow; emergency
planning; RISE; web-service; REST; DEVS

I. INTRODUCTION
In recent years, various environmental disasters (tsunamis,
earthquakes, forest fires and nuclear incidents) have caused
numerous losses in lives and infrastructure. Studying the be-
havior of such environmental systems is a key to minimize
the impact of such disasters, and in providing better aids for
emergency management. Studying such environmental sys-
tems is difficult, because the environment is complex, in-
volve interactions between several processes and require
multi-disciplinary expertise. To model such complex sys-
tems, we cannot rely on analytical solutions, which usually
need simplifications and deals with the problem at a high
level of abstraction. Instead, Modeling and Simulation
(M&S) have been successful in studying study such detailed
phenomena by providing a constrained experimentation en-
vironment for better emergency management [1][2].

M&S of environmental systems has existed since the ear-
ly days of computer simulation [3], and since the 1980’s,
these simulations have been combined with Geographic In-
formation Systems (GIS) [4][5][6][7][8][9]. In recent years,
the use of GIS has become popular for the input, storage,
manipulation, and output of geographically referenced data
due to the numerous online engines (Google Earth, Google
Maps, Bing Maps, MapQuest, and others).

Building and running advanced environmental simulation
models is complex, and many methods have been proposed
for M&S of these applications. In our case, we are interested
in efforts based on the DEVS formalism [10], which has
shown potential for managing the complexity of environ-
mental systems simulation [11][12][13][14] (in terms of
quality and performance). DEVS has been successfully used
in this area due to its ease of modeling, the varied mechan-
isms to combine existing models, and the efficiency of the
simulation engines. Also, several studies showed interesting
results when mixing GIS and DEVS M&S [12][15][16].

Most of these methods run on single-user workstations;
nevertheless, in case of actual emergencies (where there are
timing and spatial constraints), it is better to have remote
access to the simulation resources. In this way, results can be
visualized by the emergency crews on site; the emergency
crews can provide new data and run new simulations on de-
mand (when conditions change), and such arrangement can
increase the emergency response success.

In order to deal with these issues, we propose to deploy
all the simulation software, files and process in the Cloud.
The simulation engine can be controlled by Web Services
(WS) and the simulation files are archived on a server. The
simulation experiment formalizes the whole simulation
process from the creation of the simulation model to the ex-
ecution and the processing of simulation results. The simula-
tion experiments are stored on a server and can be run re-
motely to execute all the simulations tasks describe above in
order to show simulation results to the emergency crews on
site. This provides other advantages. From an M&S metho-
dology perspective, previous solutions are deployed on one
machine and are self-contained. This helps reproducing si-
mulation results, which is usually complicated, as it needs
the installation and configuration of all the software and de-
pendencies needed by the simulation.

To demonstrate this concept, section III presents a life-
cycle of a flooding emergency simulation scenario and pro-
pose architecture to deploy and control the simulation envi-
ronment and the simulation process of such simulation in the
Cloud using software and tools described section II. Section
IV relates on the work we did to control and manage simula-
tion in the Cloud, from the creation of the simulation model
based on GIS data and real-time weather forecast to the ex-
ecution and the processing of simulation results and their vi-
sualizations on Google Earth. Finally, we apply our approach
through the simulation of a flooding emergency and discuss
the benefits of our approach.

II. BACKGROUND
A flood is an overflow of an expanse of water that sub-
merges land not normally covered by water. According to
the Stockholm International Water Institute (SIWI), these are
the natural disasters producing the most damage for human
lives and property [17]. Flooding can occur suddenly after
excessive rainfall, a dam or levee failure, or a sudden release
of water held by an accumulation of broken river ice caught
in a narrow channel. In such cases, any emergency team on
site needs accurate information about the flood in the next
minutes (or hours) in order to help people and preventing se-
rious damages. A simulation can predict and give useful in-

2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

978-0-7695-4691-9/12 $26.00 © 2012 IEEE

DOI 10.1109/CCGrid.2012.88

886

formation to the emergency team, such as the next zone to be
underwater, the water level, the safest way to evacuate the
zone, etc. Different authors have discussed how to simulate
flooding. In [2], the authors defined a two-dimensional simu-
lation model based on a 2D grid that that allows identifying
area of inundation. More recently, LISFLOOD [7][23] intro-
duced a simulation framework based on GIS data, which al-
lows obtaining accurate land and soil information for grid
models, and it allows identifying the flooded area. Other stu-
dies have focused on how to simulate flooding during an
emergency scenario, using real-time data. In [9], the author’s
presents Shyska, a solution using GIS to support real-time
decision based on simulation. Similarly, in [18] the authors
use a GIS-based model and access the resulting data online
using a WWW interface, a GIS and numerical functions. In
[20], the authors proposed an interaction and visualization
system for flooding emergency based on a 3D physical en-
gine. The 3D visualization communicates with the simula-
tion using a Web Services layer. Most of these solutions are
based on GIS, and some of them ([18][20]) use Web Servic-
es to improve the interoperability or the user experience.
However, none of them distributes the simulation experi-
mentation in the Cloud, and the simulation environment, the
models, and the simulation lifecycle are run locally.

Many of the flooding simulation models use Geographic
Information Systems (GIS), which allow manipulating geo-
referenced information and performing different operations
with maps [30]. GIS are usually organized in multiple data
layers, centralizing all the environmental data available and
making it accessible in several forms (maps, digital maps or
raw data files). Whatever format is chosen, it is necessary to
transform GIS data into a format compatible with the simula-
tion software. As discussed in the Introduction, we are inter-
ested in using DEVS [10], which is a formal specification for
discrete event systems that has been successfully applied to
this kind of problems in the past [11][12][13][14][15][16].
One of the advantages of using DEVS is that it is a universal
abstract formalism, independent from the implementation,
which makes it perfect for deployment in the Cloud. Numer-
ous tools have been used for DEVS M&S of environmental
systems such as JDEVS [32], DEVSimPy [31], or CD++
[11]. In particular, in [13], we showed how to simulate envi-
ronmental systems efficiently using DEVS and Cell-DEVS.
Those studies used the CD++ M&S environment [11], and
this software stack was recently expanded to allow GIS data
to be transformed into CD++ simulation engine [21]. This
method relies on the GeoTIFF standard file format, which is
supported by most GIS. In [21] we used GRASS [22], an
open source GIS, and Google Earth as the Geospatial Visua-
lization System (GVS). Google Earth uses KML (Keyhole
Markup Language), an XML-based language focused on
geographic visualization that includes annotation of maps
and images [33]. Its file format can be used to display geo-
graphic data in Earth browsers (such as Google Earth), using
a tag-based structure with nested elements and attributes.
The geographic visualization needs to include not only the
presentation of graphical data, but also the control of the us-
er's navigation (e.g., where to go, where to look). Once A
KML file is created, it can be imported into Google Earth, al-

lowing the visualization of the simulated results a layer im-
pressed over the standard layers (e.g. satellite views, street
maps, etc.). Google Earth provides mechanisms to make lay-
ers evolve forward and backward in time, which is useful to
analyze the progress of a simulation interactively (e.g., a cell
temperature in a fire spreading model).

As discussed earlier (and proposed by other studies [18]
[20]), Web Services can be used for remote simulation of
environmental systems, improving data accessibility, intero-
perability and user experience through Cloud computing.
Cloud computing allows scaling the number of resources as
required sand is fault-tolerance. We can identify two classes
of Web Services: REST-compliant WSs [24] (whose primary
purpose is to manipulate XML representations of Web re-
sources using a uniform set of "stateless" operations), and
arbitrary WS, in which the service may expose an arbitrary
set of operations [23]. Access to RESTful WS is done
through Web resources (URIs) and XML messages using
HTTP methods (GET, PUT, POST and DELETE). Due to
this simple protocol, RESTful WS are simple, efficient and
scalable as evidenced by the WWW. In [27], we identified
the benefits of distributing the simulation using WS while
most existing distributed simulation systems use SOAP-
based WS and other approaches (see [27] for a more com-
prehensive list). As discussed in [25], most of these simula-
tion middleware lack plug-and-play interoperability, dyna-
micity, and composition scalability. Instead, RESTful WS
can solve these issues by imitating the Web interoperability
style. Based on these ideas, in [25], we presented the first ex-
isting RESTful Interoperability Simulation Environment
(RISE) middleware. The main goal of RISE is to provide si-
mulation interoperability and mash-ups regardless of the
base formalism, theory or implementation. RISE allows
modelers to run experiment instances, whose settings and re-
sources (URIs) are persistent and repeatable (unless delibe-
rately removed or updated). An interface between RISE and
CD++ allows running distributed simulations. Web Services
also enable the integration of application or data from hete-
rogeneous sources (mash-up) within the simulation. For in-
stance, Taverna [28] eases the use and integration of the
growing number of tools and databases available on the
Web, especially Web Services. Users that are not necessarily
expert programmers, can design, execute and share
workflows of Web Services, allowing them to integrate
many resources into a single analysis. Taverna workflows
can be also shared in myExperiment [29], an online social
networking environment to find, share and reuse workflows.
MyExperiment allows anybody who finds workflows rele-
vant to their research to reuse and repurpose them to their
specific requirements. At the same time, developers who
build their own workflows can submit them to myExperi-
ment to contribute to the scientific community.

The approach we present in the next section III is a new
simulation method that takes benefit of the tools and soft-
ware described above to manage emergency simulation in
the Cloud. Our approach whose implementation is detailed
section IV uses RISE to provide a distributed simulation en-
vironment, accessible via RESTful WS, and using the CD++
simulation engine. Taverna is used to organize all Web Ser-

887

vices involved in the simulation process, such as the creation
of the simulation model using GIS data and weather services,
simulation experimentation, execution, or processing the re-
sult. Our approach contribute to improve the emergency
planning simulation methodology by offering to the end-
users a new way to manage and execute simulation remotely,
from the creation of the simulation model to the processing
of results, what is useful when one needs simulation in
emergency areas.

III. EMERGENCY SIMULATION IN THE CLOUD
As discussed in section I, in the case of an emergency scena-
rio, the use of online access to remote simulation resources
can improve the management of the emergency situation. In
the case of emergency planning simulations, the following
tasks are typically needed:
1. Creation of the simulation model; with preference, a

GIS should be used to obtain information about the dif-
ferent data layers of the dedicated area to study.

2. Creation of a simulation experiment; based on the simu-
lation model and specifying simulation inputs.

3. Execution of the simulation.
4. Processing of the simulation results.
5. Visualization of the results.

Figure 1. Architecture of the proposed solution

Unless you plan to build a specific simulation for a dedi-
cated zone with predefined inputs, these tasks should be done
online during the emergency. If we can formalize and auto-
mate the tasks described above and host the information on
the Cloud, we can obtain real-time experimentation and re-
sponse, improving whole process. To do this, we propose the
conceptual architecture presented in figure 1. The simulation
process is run in the Cloud, using the techniques discussed in
section II. The idea is to use RISE, simulation services, and
to ensure repeatability using workflow of services to formal-

ize and automate the simulation process. This architecture al-
so facilitates mashing up services available in the Cloud.

ES1 and ES2 represent two different simulation envi-
ronments in the Cloud, managed by simulation services.
The execution of the simulation in the Cloud allows not in-
stalling a simulation tool locally, sharing and reusing the
same software among all practitioners, thus improving repea-
tability. The Workflow Desktop Engine can communicate
with the simulation Cloud services, and with other Web Ser-
vices (such as a Weather Forecast service or a Geographic
Information System). Indeed, the simulation workflow can
be seen as a blueprint describing the tasks represented by
Web Services within the simulation Cloud for the creation
and execution of the simulation or within other Web re-
sources, such as weather services for the input of the simula-
tion. In that way, the workflow formalizes the simulation
process, and enhances repeatability and ease of use by auto-
mating execution. The simulation experiment workflow can
be executed by a Workflow Server Engine also in the
Cloud (avoid the need to install the workflow engine local-
ly). The Workflow Repository contains existing simulation
experiment workflows, and it allows finding, downloading
existing workflows and uploading new workflows.

User A in the figure represents a developer building a
new simulation workflow. User B represents an emergency
crew using the simulation workflow developed by A. A can
get existing workflow resources from a repository (1), which
allows reusing related workflows (instead starting from
scratch). Then, A builds its own simulation workflow locally
(2). This simulation workflow formalizes and automates the
process described at the beginning of this section: it commu-
nicates with a GIS server to obtain geographic information,
and with a weather service to obtain meteorological informa-
tion on the zone to study. The workflow also communicates
with the simulation Cloud services to create, execute, and get
simulation results. When the experiment workflow is fi-
nished, A uploads the workflow to the repository (1), and
other practitioners can find and download it to reuse it (as is,
or as modifying it for another emergency planning simula-
tion workflow). Finally, A uploads and setups its simulation
workflow on the Workflow Server Engine (3). In that way, B
(the emergency crew on site) can execute the simulation
workflow developed by user A (in the Cloud). B inputs any
parameters defined by A in the workflow (4), and visualizes
the simulation results, without being involved in any tasks of
the simulation process.

In the following section, we show how we can use the
tools and software described in the background section III to
implement the conceptual architecture of figure 1. RISE will
be used as the Simulation Cloud Service, CD++ as a Simula-
tion Environment (in the Cloud), myExperiment as a
Workflow Repository, and Taverna as a Workflow Engine.
Other tools will be used to transform GIS data to CD++ and
CD++ simulation results into KML (for Google Earth).

IV. IMPLEMENTATION
A typical emergency planning simulation involves several
tasks. We first need to build a simulation model (like User A
in figure 1), and we do that using Taverna workflows.

888

Figure 2. Simplified view of the Taverna simulation workflow.

To automate the simulation process, we need to build a
simulation workflow (using Taverna), as described in the rest
of the section (due to space limitation, we use a simplified
view of the final workflow. The complete Taverna workflow
can be reviewed on myExperiment at this URL:
http://www.myexperiment.org/workflows/2739.html). The
workflow, described in figure 2, starts by taking a User
Workspace, a Location, and a GIS Map as inputs, and pro-
duces, as output, a KML file to visualize the simulation re-
sults (which can be seen using Google Earth).

To build this workflow, we first implemented the defini-
tion of the flooding models (using CD++ language), using
GIS and weather data to initialize the model. A Taverna
workflow takes the GIS map, its location and produces the
files needed by CD++ to start a simulation. As we can see on
figure 2, the Taverna Local Tool Service (in orange) takes in
as a parameter a GIS map given (input workflow parameter).
The GIS2CDpp executable is called, and after completed, the
application transforms the GeoTIFF maps into the simula-
tor’s format, in this case, initial data values (val), an updated

Cell-DEVS (ma), and an information file (info) to keep glob-
al geographical references. The Local Tool Service generates
three outputs provided by GIS2CDpp, as well as the standard
output (stdout) and error (stderr).
 The models resulting from this phase need to be updated
using the weather data. This weather prediction can be ac-
cessed using a Taverna RESTful WS (in blue) which queries
the online weather service. A Taverna REST WS can take
many inputs, and it provides 2 outputs: a status and a respon-
seBody. The status contain the HTTP response to indicate
the invocation status (200, 404, etc.) and the responseBody
contains the result. The Taverna RESTful WS we added to
the simulation workflow takes in parameter the location giv-
en in workflow parameter (Location), and it is configured
with the URL template of the weather forecast service
http://weather.yahooapis.com/forecastrss?w={location} and
the HTTP method GET. The Taverna REST WS generates
the content of the weather forecast response, which needs to
be processed in order to extract the information we need.
This processing is done using the Taverna XPath Service (in
pink), which can be used to extract data from an XML file.
Finally a Taverna Beanshell Service (in grey) takes the mod-
el files and the weather information as inputs, and it produc-
es the final CD++ model file ready to be used by the RISE
simulation environment.

The second step of the simulation process is to create a
simulation experiment in the Cloud. As described in the
Background section, RISE is a simulation middleware that
allows CD++ simulation to be executed in the Cloud. Access
to RISE is done through Web resources (URIs) and XML
messages using HTTP methods: GET (to read a resource),
PUT (to create new resource or update existing data), POST
(to append new data to a resource), and DELETE (to remove
a resource). The RISE API looks like a classic website URL
such as: http://www.example.com/cdpp/sim/{userwork-
space}/{servicetype}/{framework}. URLs respond to HTTP
methods, for example with the URL above, to submit files to
a framework we use the POST method. PUT is used to create
a framework or update simulation configuration settings.
DELETE is used to remove a framework. GET is used to re-
trieve the framework’s state.

We can identify four steps to manage a new simulation
using the Web Services offered by RISE: (1) Create a new
empty experiment based on 4 parameters (the user work-
space, the service type, the framework name, and a XML
configuration file); (2) Upload the simulation model files we
created earlier; (3) Start the simulation and wait for its end;
(4) Retrieve the simulation results. To automate these steps,
we first added a Taverna REST WS that takes as parameters
the emergency crew user workspace, the name of the new
simulation experiment, and an XML file to configure the
RISE experiment. The Taverna REST WS configuration
contains the URL template http://www.example.com/cdpp
/sim/workspaces/{userworkspace}/dcdpp/{framework}, and
uses the HTTP method PUT to send the XML file to create a
new simulation experiment on RISE. Taverna invokes the
REST WS according to the parameters given prior to the si-
mulation workflow execution (for example, if the user work-
space given in parameter is “Bob” and the simulation expe-

889

riment is “flood13022012”, Taverna will invoke
http://www.example.com/cdpp/sim/workspaces/Bob/dcdpp/fl
ood13022012). The user workspace will be set by the emer-
gency crew, and it must be part of the workflow parameters
(in addition to the GIS map and the location); while the
framework name and the RISE XML configuration file will
be computed automatically by a Taverna Beanshell Script.

The next Taverna REST WS is invoked to upload the
archived CD++ model files. This Service takes in a CD++
model (in a ZIP file), the user workspace, and the framework
name. Its configuration contains the template
http://www.example.com/cdpp/sim/workspaces/{userworkspa
ce}/dcdpp/{framework} and use the HTTP method POST to
send the ZIP file to the RISE server. RISE extracts the simu-
lation files into the simulation experiment. We also added a
Taverna REST WS into the simulation workflow to run the
simulation, which takes the user workspace, the framework
name, and its configuration in the URL template
http://www.example.com/cdpp/sim/workspaces/{userworkspa
ce}/dcdpp/{framework}/simulation. Then, the HTTP method
PUT executes the simulation.

We then need to wait for the simulation to finish. This is
done using a REST WS which invokes the GET HTTP me-
thod. RISE WS results are XML-based, so we used Taver-
na’s XPath service to process the XML result and extract
their data. These two Taverna services are re-executed every
second until the DONE message is found.

In order to retrieve the simulation results, we added
another Taverna REST WS that takes as parameters the user
workspace and the framework name. Its configuration con-
tains the URL template http://www.example.com/cdpp/sim/
workspaces/{userworkspace}/dcdpp/{framework}/results,and
it uses the HTTP method GET. The result of the simulation
is provided on the Taverna REST WS output ResponseBody.

As discussed in the Background, we want to process the
simulation results and generate a KML file to visualize the
simulation results (using, for instance, Google Earth). To au-
tomate this last step of the simulation process, we added to a
Taverna Local Tool Service call to invoke the tool
CDpp2KML [21], which parses the data generated by the
simulator (representing the model’s state changes) into the
desired output visualization format. It then generates a KML
file with geo-referenced and timed representation of each si-
mulated cell state change. The local tool takes as parameter
the simulation result from the previous Taverna REST WS
output (ResponseBody), calls CDpp2KML, and provides a
KML file ready to be used. The output of this last Taverna
service is connected to the output of the simulation workflow
seen on figure 2.

In summary, the simulation workflow in figure 2 takes as
parameters the GIS map file, the location, and the emergency
crew user workspace, and it provides the KML file to visual-
ize the simulation result (on Google Earth). The workflow
can be shared on myExperiment to be used, rated, com-
mented, modified and uploaded as a new version by other
users. The workflow on myExperiment can be found at this
URL: http://www.myexperiment.org/workflows/2739.html).

In order to be used by the emergency crew, this Taverna
simulation workflow needs to be uploaded on a Taverna

Server to be executed directly in the Cloud. As this workflow
depend on local tools (GIS2CDpp and CDpp2KML), the de-
veloper (User A) need to set up the Taverna Server and in-
stall on the same computer in the Cloud the necessary tool
GIS2CDpp and CDpp2KML. Once the simulation workflow
is on the Taverna Server, the emergency crew (User B) can
specify the workflow input and execute the workflow using
an Internet Browser. The next section presents how an emer-
gency crew on site can make use of a simulation workflow in
the cloud in case of a flooding emergency scenario.

V. CASE STUDY: FLOODING EMERGENCY SCENARIO
Section III presented the architecture we used to define this
simulation process in the Cloud, and Section IV explained
how to implement the simulation workflow using Taverna.
In this section we show simulation results obtained when
running this simulation workflow to create and execute new
simulation in the cloud in case of a flooding emergency.

An emergency scenario, as may be a flash flood, can
generate damages, and worse, an attempt on human life. Un-
der these conditions, emergency teams must act quickly to
save lives and reduce damages to infrastructure. Consider the
case of an emergency crew to the scene of the flooding. The
rain intensifies and new areas may be submerged and must
be evacuated. The emergency crew must choose which areas
should be evacuated in priority. The emergency crew
(represented by User B on Figure 1) must locate the Taverna
simulation workflow to manage flooding simulation
(http://vs3.sce.carleton.ca/taverna-server/). According to the
implementation described section IV, the emergency crew
needs to give in parameters prior to the workflow execution
the User Workspace (user ID), the GIS map of the region to
study, and the location code of the region. In our flooding
scenario case, the emergency crew will give in parameter the
emergency team ID (for example EC001), the GIS map file
of the flooding area, and the WOEID location code of the re-
gion (for example, 3369). The emergency crew can then
submit the form and wait for the Taverna workflow to be ex-
ecuted on the server side. According to the implementation,
the Taverna simulation workflow will first create the simula-
tion model. The model we choose simulate natural region
that acts as the water-receiving area of a drainage basin. The
model considers water from different origins: rain, rivers and
snow and the type of ground to compute the level of water
for each cell. Once the model is created based on the GIS
map and the weather forecast, the Taverna simulation
workflow deploys it on the RISE server. Then the Taverna
simulation workflow order RISE to execute the workflow,
wait for the simulation to be finish and get the simulation re-
sults available on RISE. The last step of the Taverna simula-
tion workflow is to process the results into a KML file view-
able with Google Earth.

Once the workflow execution is finish, the web portal of-
fers the possibility to download the KML file. The emergen-
cy crew imports this KML file into the locally installed
Google Earth and visualizes the result. Thanks to the Google
Earth feature to go forward and back we can navigate
through the simulation results

890

VI. CONCLUSION
We introduced new software architecture for emergency
crews to execute remote simulations. The various steps of the
simulation process are all executed in the Cloud, and a
workflow manages the different steps of the simulation
process automatically. This allows emergency units to use
thin clients. The simulation workflow execution is requested
through a Web portal which makes the models accessible.

We showed how to use this architecture for emergency
scenarios in which an emergency crew can run flooding si-
mulations. In order to run this simulation, 3 inputs are
needed: the emergency crew ID, a GIS Map file, and the lo-
cation code of the area to study. The emergency crew ob-
tains, in response, a KML file to visualize simulation result
with Google Earth.

The architecture we presented facilitates access to the
simulation by reducing the infrastructure costs to a mini-
mum: it only requires access to the Internet to execute a si-
mulation workflow. It also increases the credibility of a
study, by providing an automated simulation workflow that
will guarantee the repeatability. It also permits mixing data
from simulations and from the real world using mash-up to
use simulation as a prediction and decision-making tool.

REFERENCES
[1] Sheffi, Y., Mahmassani, H. and Powell, W.B. 1982. A transportation

network evacuation model. Transportation Research Part A:
General. 16, 3 (1982), 209–218.

[2] O’brien, J., Julien, P. and Fullerton, W. 1993. Two-dimensional water
flood and mudflow simulation. Journal of Hydraulic Engineering.
119, 2 (1993), 244–261.

[3] Botkin, D.B., Janak, J.F. and Wallis, J.R. 1972. Some ecological
consequences of a computer model of forest growth. The Journal of
Ecology. 60, 3 (1972), 849–872.

[4] Band, L. 1986. Topographic partition of watersheds with digital
elevation models. Water resources research. 22, 1 (1986), 15-24.

[5] Desmet, P.J.J. and Govers, G. 1995. GIS-based simulation of erosion
and deposition patterns in an agricultural landscape: a comparison of
model results with soil map information. Catena. 25, 1-4 (Jun. 1995),
389-401.

[6] Wang, X. 2005. Integrating GIS, simulation models, and visualization
in traffic impact analysis. Computers, Environment and Urban
Systems. 29, 4 (Jul. 2005), 471-496.

[7] Van Der Knijff, J.M., Younis, J. and De Roo, a. P.J. 2010.
LISFLOOD: a GIS�based distributed model for river basin scale
water balance and flood simulation. International Journal of
Geographical Information Science. 24, 2 (Feb. 2010), 189-212.

[8] Chapman, L. and Thornes, J.E. 2003. The use of geographical
information systems in climatology and meteorology. Progress in
physical geography. 27, 3 (2003), 313–330.

[9] García, S.G. 2004. Technical Note GRASS GIS-embedded Decision
Support Framework for Flood Simulation and Forecasting.
Transactions in GIS. 8, 2 (2004), 245-254.

[10] Zeigler, B.P., Praehofer, H., and Kim, T.G. 2000. Theory of modeling
and simulation, 2nd Edition, Academic Press.

[11] Wainer, G.A. 2009. Discrete-Event Modeling and Simulation. CRC.
[12] Hu, X., Sun, Y. and Ntaimo, L. 2011. DEVS-FIRE: design and

application of formal discrete event wildfire spread and suppression
models. Simulation. October (Oct. 2011).

[13] Wainer, G. 2006. Applying Cell-DEVS Methodology for Modeling
the Environment. Simulation. 82, 10 (Oct. 2006), 635-660.

[14] Filippi, J.-B., Morandini, F., Balbi, J.H. and Hill, D.R. 2009. Discrete
Event Front-tracking Simulation of a Physical Fire-spread Model.
Simulation. 86, 10 (Aug. 2009), 629-646.

[15] Chiari, F., Delhom, M., Filippi, J.-B. and Santucci, J.-F. 2000.A GIS
based methodology for the modeling and the simulation of
watersheds. In Proceedings of the Advanced Technology Workshop
(ATW) 2000 Conference, Corsica, France.

[16] Hill, D., Thibault, T., and Coquillard, P. 2002. Predicting invasive
species expansion using GIS and simulation coupling. Modeling and
Simulation 1(1):30–5

[17] http://www.siwi.org/statistics SIWI. Retrieved 2012-02-06
[18] Alsabhan, W., Mulligan, M. and Blackburn, G. 2003. A real-time

hydrological model for flood prediction using GIS and the WWW.
Computers, Environment and Urban Systems. 27, 1 (Jan. 2003), 9-32.

[19] Bates, P.. and De Roo, a. P.. 2000. A simple raster-based model for
flood inundation simulation. Journal of Hydrology. 236, 1-2 (Sep.
2000), 54-77.

[20] Nóbrega, R., Sabino, A., Rodrigues, A. and Correia, N. 2008. Flood
emergency interaction and visualization system. Visual Information
Systems. Web-Based Visual Information Search and Management.
(2008), 68–79.

[21] Zapatero, M., Castro, R., Wainer, G. and Hussein, M. 2011.
Architecture For Integrated Modeling, Simulation And Visualization
Of Environmental Systems Using GIS And Cell-DEVS. Winter
Simulation Conference 2011 (2011).

[22] Neteler, M. and Mitasova, H. 2010. Open Source GIS: A GRASS
GIS Approach, 3rd. Edition. Springer Publishing Company,
Incorporated.

[23] "Relationship to the World Wide Web and REST Architectures".
http://www.w3.org/TR/ws-arch/#relwwwrest Web Services
Architecture. W3C. Retrieved 2012-02-06.

[24] Richardson, L. and Ruby, S. 2007. RESTful Web Services.
[25] K. Al-Zoubi and G. Wainer. Distributed simulation using restful

interoperability simulation environment (rise) middleware.
Intelligence-Based Systems Engineering, pages 129–157, 2010.

[26] F. Kuhl, R. Weatherly, and J. Dahmann. Creating computer
simulation systems: an introduction to the high level architecture.
Prentice Hall PTR, 1999.

[27] G.A. Wainer, R. Madhoun, and K. Al-Zoubi. Distributed simulation
of devs and cell-devs models in cd++ using Web Services. Simulation
Modelling Practice and Theory, 16(9):1266–1292, 2008.

[28] Hull, D., Wolstencroft, K., Stevens, R., Goble, C., Pocock, M.R., Li,
P. and Oinn, T. 2006. Taverna: a tool for building and running
workflows of services. Nucleic acids research. 34, Web Server issue
(Jul. 2006), W729-32.

[29] Goble, C. a, Bhagat, J., Aleksejevs, S., Cruickshank, D., Michaelides,
D., Newman, D., Borkum, M., Bechhofer, S., Roos, M., Li, P. and De
Roure, D. 2010. myExperiment: a repository and social network for
the sharing of bioinformatics workflows. Nucleic acids research. 38,
Web Server issue (Jul. 2010), W677-82.

[30] Longley, P.A, Goodchild, M.F., Maguire, D.J., and Rhind, D.W.
2005. Geographic Information Systems and Science. Wiley.

[31] Capocchi, L., Santucci, J.F., Poggi, B. and Nicolai, C. 2011.
DEVSimPy: A Collaborative Python Software for Modeling and
Simulation of DEVS Systems. 2011 IEEE 20th International
Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises (Jun. 2011), 170-175.

[32] Filippi, J.B. and Bisgambiglia, P. 2004. JDEVS: an implementation
of a DEVS based formal framework for environmental modelling.
Environmental Modelling & Software. 19, 3 (2004), 261–274.

[33] OGC. 2011. “KML.” Accessed June 2011.
http://www.opengeospatial.org/standards/kml

891

