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Abstract— In recent years, various environmental disasters 
(tsunamis, earthquakes, forest fires and nuclear incidents) 
have caused numerous losses in lives and infrastructure. In 
such emergency, remote access to the simulation resources can 
increase the emergency response success. We propose a new 
architecture based on the RISE simulation services middle-
ware and on Taverna workflow to execute the entire simula-
tion process into the Cloud. We present its use through an 
emergency flooding scenario use case in which emergency crew 
can order a new simulation and visualize result on Google 
Earth. 
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I.  INTRODUCTION 
In recent years, various environmental disasters (tsunamis, 
earthquakes, forest fires and nuclear incidents) have caused 
numerous losses in lives and infrastructure. Studying the be-
havior of such environmental systems is a key to minimize 
the impact of such disasters, and in providing better aids for 
emergency management. Studying such environmental sys-
tems is difficult, because the environment is complex, in-
volve interactions between several processes and require 
multi-disciplinary expertise. To model such complex sys-
tems, we cannot rely on analytical solutions, which usually 
need simplifications and deals with the problem at a high 
level of abstraction. Instead, Modeling and Simulation 
(M&S) have been successful in studying study such detailed 
phenomena by providing a constrained experimentation en-
vironment for better emergency management [1][2]. 

M&S of environmental systems has existed since the ear-
ly days of computer simulation [3], and since the 1980’s, 
these simulations have been combined with Geographic In-
formation Systems (GIS) [4][5][6][7][8][9].  In recent years, 
the use of GIS has become popular for the input, storage, 
manipulation, and output of geographically referenced data 
due to the numerous online engines (Google Earth, Google 
Maps, Bing Maps, MapQuest, and others).  

Building and running advanced environmental simulation 
models is complex, and many methods have been proposed 
for M&S of these applications. In our case, we are interested 
in efforts based on the DEVS formalism [10], which has 
shown potential for managing the complexity  of environ-
mental systems simulation [11][12][13][14] (in terms of 
quality and performance). DEVS has been successfully used 
in this area due to its ease of modeling, the varied mechan-
isms to combine existing models, and the efficiency of the 
simulation engines. Also, several studies showed interesting 
results when mixing GIS and DEVS M&S [12][15][16]. 

Most of these methods run on single-user workstations; 
nevertheless, in case of actual emergencies (where there are 
timing and spatial constraints), it is better to have remote 
access to the simulation resources. In this way, results can be 
visualized by the emergency crews on site; the emergency 
crews can provide new data and run new simulations on de-
mand (when conditions change), and such arrangement can 
increase the emergency response success. 

In order to deal with these issues, we propose to deploy 
all the simulation software, files and process in the Cloud. 
The simulation engine can be controlled by Web Services 
(WS) and the simulation files are archived on a server. The 
simulation experiment formalizes the whole simulation 
process from the creation of the simulation model to the ex-
ecution and the processing of simulation results. The simula-
tion experiments are stored on a server and can be run re-
motely to execute all the simulations tasks describe above in 
order to show simulation results to the emergency crews on 
site. This provides other advantages. From an M&S metho-
dology perspective, previous solutions are deployed on one 
machine and are self-contained. This helps reproducing si-
mulation results, which is usually complicated, as it needs 
the installation and configuration of all the software and de-
pendencies needed by the simulation. 

To demonstrate this concept, section III presents a life-
cycle of a flooding emergency simulation scenario and pro-
pose architecture to deploy and control the simulation envi-
ronment and the simulation process of such simulation in the 
Cloud using software and tools described section II. Section 
IV relates on the work we did to control and manage simula-
tion in the Cloud, from the creation of the simulation model 
based on GIS data and real-time weather forecast to the ex-
ecution and the processing of simulation results and their vi-
sualizations on Google Earth. Finally, we apply our approach 
through the simulation of a flooding emergency and discuss 
the benefits of our approach. 

II. BACKGROUND 
A flood is an overflow of an expanse of water that sub-
merges land not normally covered by water. According to 
the Stockholm International Water Institute (SIWI), these are 
the natural disasters producing the most damage for human 
lives and property [17]. Flooding can occur suddenly after 
excessive rainfall, a dam or levee failure, or a sudden release 
of water held by an accumulation of broken river ice caught 
in a narrow channel. In such cases, any emergency team on 
site needs accurate information about the flood in the next 
minutes (or hours) in order to help people and preventing se-
rious damages. A simulation can predict and give useful in-

2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

978-0-7695-4691-9/12 $26.00 © 2012 IEEE

DOI 10.1109/CCGrid.2012.88

886



formation to the emergency team, such as the next zone to be 
underwater, the water level, the safest way to evacuate the 
zone, etc. Different authors have discussed how to simulate 
flooding. In [2], the authors defined a two-dimensional simu-
lation model based on a 2D grid that that allows identifying 
area of inundation. More recently, LISFLOOD [7][23] intro-
duced a simulation framework based on GIS data, which al-
lows obtaining accurate land and soil information for grid 
models, and it allows identifying the flooded area. Other stu-
dies have focused on how to simulate flooding during an 
emergency scenario, using real-time data. In [9], the author’s 
presents Shyska, a solution using GIS to support real-time 
decision based on simulation. Similarly, in [18] the authors 
use a GIS-based model and access the resulting data online 
using a WWW interface, a GIS and numerical functions. In 
[20], the authors proposed an interaction and visualization 
system for flooding emergency based on a 3D physical en-
gine. The 3D visualization communicates with the simula-
tion using a Web Services layer. Most of these solutions are 
based on GIS, and some of them ([18][20]) use Web Servic-
es to improve the interoperability or the user experience. 
However, none of them distributes the simulation experi-
mentation in the Cloud, and the simulation environment, the 
models, and the simulation lifecycle are run locally. 

Many of the flooding simulation models use Geographic 
Information Systems (GIS), which allow manipulating geo-
referenced information and performing different operations 
with maps [30]. GIS are usually organized in multiple data 
layers, centralizing all the environmental data available and 
making it accessible in several forms (maps, digital maps or 
raw data files). Whatever format is chosen, it is necessary to 
transform GIS data into a format compatible with the simula-
tion software. As discussed in the Introduction, we are inter-
ested in using DEVS [10], which is a formal specification for 
discrete event systems that has been successfully applied to 
this kind of problems in the past [11][12][13][14][15][16]. 
One of the advantages of using DEVS is that it is a universal 
abstract formalism, independent from the implementation, 
which makes it perfect for deployment in the Cloud. Numer-
ous tools have been used for DEVS M&S of environmental 
systems such as JDEVS [32], DEVSimPy [31], or CD++ 
[11]. In particular, in [13], we showed how to simulate envi-
ronmental systems efficiently using DEVS and Cell-DEVS. 
Those studies used the CD++ M&S environment [11], and 
this software stack was recently expanded to allow GIS data 
to be transformed into CD++ simulation engine [21]. This 
method relies on the GeoTIFF standard file format, which is 
supported by most GIS. In [21] we used GRASS [22], an 
open source GIS, and Google Earth as the Geospatial Visua-
lization System (GVS). Google Earth uses KML (Keyhole 
Markup Language), an XML-based language focused on 
geographic visualization that includes annotation of maps 
and images [33]. Its file format can be used to display geo-
graphic data in Earth browsers (such as Google Earth), using 
a tag-based structure with nested elements and attributes. 
The geographic visualization needs to include not only the 
presentation of graphical data, but also the control of the us-
er's navigation (e.g., where to go, where to look). Once A 
KML file is created, it can be imported into Google Earth, al-

lowing the visualization of the simulated results a layer im-
pressed over the standard layers (e.g. satellite views, street 
maps, etc.). Google Earth provides mechanisms to make lay-
ers evolve forward and backward in time, which is useful to 
analyze the progress of a simulation interactively (e.g., a cell 
temperature in a fire spreading model). 

As discussed earlier (and proposed by other studies [18] 
[20]), Web Services can be used for remote simulation of 
environmental systems, improving data accessibility, intero-
perability and user experience through Cloud computing. 
Cloud computing allows scaling the number of resources as 
required sand is fault-tolerance. We can identify two classes 
of Web Services: REST-compliant WSs [24] (whose primary 
purpose is to manipulate XML representations of Web re-
sources using a uniform set of "stateless" operations), and 
arbitrary WS, in which the service may expose an arbitrary 
set of operations [23]. Access to RESTful WS is done 
through Web resources (URIs) and XML messages using 
HTTP methods (GET, PUT, POST and DELETE). Due to 
this simple protocol, RESTful WS are simple, efficient and 
scalable as evidenced by the WWW. In [27], we identified 
the benefits of distributing the simulation using WS while 
most existing distributed simulation systems use SOAP-
based WS and other approaches (see [27] for a more com-
prehensive list). As discussed in [25], most of these simula-
tion middleware lack plug-and-play interoperability, dyna-
micity, and composition scalability. Instead, RESTful WS 
can solve these issues by imitating the Web interoperability 
style. Based on these ideas, in [25], we presented the first ex-
isting RESTful Interoperability Simulation Environment 
(RISE) middleware. The main goal of RISE is to provide si-
mulation interoperability and mash-ups regardless of the 
base formalism, theory or implementation. RISE allows 
modelers to run experiment instances, whose settings and re-
sources (URIs) are persistent and repeatable (unless delibe-
rately removed or updated). An interface between RISE and 
CD++ allows running distributed simulations. Web Services 
also enable the integration of application or data from hete-
rogeneous sources (mash-up) within the simulation. For in-
stance, Taverna [28] eases the use and integration of the 
growing number of tools and databases available on the 
Web, especially Web Services. Users that are not necessarily 
expert programmers, can design, execute and share 
workflows of Web Services, allowing them to integrate 
many resources into a single analysis. Taverna workflows 
can be also shared in myExperiment [29], an online social 
networking environment to find, share and reuse workflows. 
MyExperiment allows anybody who finds workflows rele-
vant to their research to reuse and repurpose them to their 
specific requirements. At the same time, developers who 
build their own workflows can submit them to myExperi-
ment to contribute to the scientific community. 

The approach we present in the next section III is a new 
simulation method that takes benefit of the tools and soft-
ware described above to manage emergency simulation in 
the Cloud. Our approach whose implementation is detailed 
section IV uses RISE to provide a distributed simulation en-
vironment, accessible via RESTful WS, and using the CD++ 
simulation engine. Taverna is used to organize all Web Ser-
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vices involved in the simulation process, such as the creation 
of the simulation model using GIS data and weather services, 
simulation experimentation, execution, or processing the re-
sult. Our approach contribute to improve the emergency 
planning simulation methodology by offering to the end-
users a new way to manage and execute simulation remotely, 
from the creation of the simulation model to the processing 
of results, what is useful when one needs simulation in 
emergency areas. 

III. EMERGENCY SIMULATION IN THE CLOUD 
As discussed in section I, in the case of an emergency scena-
rio, the use of online access to remote simulation resources 
can improve the management of the emergency situation. In 
the case of emergency planning simulations, the following 
tasks are typically needed: 
1. Creation of the simulation model; with preference, a 

GIS should be used to obtain information about the dif-
ferent data layers of the dedicated area to study. 

2. Creation of a simulation experiment; based on the simu-
lation model and specifying simulation inputs. 

3. Execution of the simulation. 
4. Processing of the simulation results. 
5. Visualization of the results. 

 
Figure 1.  Architecture of the proposed solution 

Unless you plan to build a specific simulation for a dedi-
cated zone with predefined inputs, these tasks should be done 
online during the emergency. If we can formalize and auto-
mate the tasks described above and host the information on 
the Cloud, we can obtain real-time experimentation and re-
sponse, improving whole process. To do this, we propose the 
conceptual architecture presented in figure 1. The simulation 
process is run in the Cloud, using the techniques discussed in 
section II. The idea is to use RISE, simulation services, and 
to ensure repeatability using workflow of services to formal-

ize and automate the simulation process. This architecture al-
so facilitates mashing up services available in the Cloud.  

ES1 and ES2 represent two different simulation envi-
ronments in the Cloud, managed by simulation services. 
The execution of the simulation in the Cloud allows not in-
stalling a simulation tool locally, sharing and reusing the 
same software among all practitioners, thus improving repea-
tability. The Workflow Desktop Engine can communicate 
with the simulation Cloud services, and with other Web Ser-
vices (such as a Weather Forecast service or a Geographic 
Information System). Indeed, the simulation workflow can 
be seen as a blueprint describing the tasks represented by 
Web Services within the simulation Cloud for the creation 
and execution of the simulation or within other Web re-
sources, such as weather services for the input of the simula-
tion. In that way, the workflow formalizes the simulation 
process, and enhances repeatability and ease of use by auto-
mating execution. The simulation experiment workflow can 
be executed by a Workflow Server Engine also in the 
Cloud (avoid the need to install the workflow engine local-
ly). The Workflow Repository contains existing simulation 
experiment workflows, and it allows finding, downloading 
existing workflows and uploading new workflows. 

User A in the figure represents a developer building a 
new simulation workflow. User B represents an emergency 
crew using the simulation workflow developed by A. A can 
get existing workflow resources from a repository (1), which 
allows reusing related workflows (instead starting from 
scratch). Then, A builds its own simulation workflow locally 
(2). This simulation workflow formalizes and automates the 
process described at the beginning of this section: it commu-
nicates with a GIS server to obtain geographic information, 
and with a weather service to obtain meteorological informa-
tion on the zone to study. The workflow also communicates 
with the simulation Cloud services to create, execute, and get 
simulation results. When the experiment workflow is fi-
nished, A uploads the workflow to the repository (1), and 
other practitioners can find and download it to reuse it (as is, 
or as modifying it for another emergency planning simula-
tion workflow). Finally, A uploads and setups its simulation 
workflow on the Workflow Server Engine (3). In that way, B 
(the emergency crew on site) can execute the simulation 
workflow developed by user A (in the Cloud). B inputs any 
parameters defined by A in the workflow (4), and visualizes 
the simulation results, without being involved in any tasks of 
the simulation process. 

In the following section, we show how we can use the 
tools and software described in the background section III to 
implement the conceptual architecture of figure 1. RISE will 
be used as the Simulation Cloud Service, CD++ as a Simula-
tion Environment (in the Cloud), myExperiment as a 
Workflow Repository, and Taverna as a Workflow Engine. 
Other tools will be used to transform GIS data to CD++ and 
CD++ simulation results into KML (for Google Earth). 

IV.  IMPLEMENTATION 
A typical emergency planning simulation involves several 
tasks. We first need to build a simulation model (like User A 
in figure 1), and we do that using Taverna workflows. 
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Figure 2.  Simplified view of the Taverna simulation workflow. 

To automate the simulation process, we need to build a 
simulation workflow (using Taverna), as described in the rest 
of the section (due to space limitation, we use a simplified 
view of the final workflow. The complete Taverna workflow 
can be reviewed on myExperiment at this URL: 
http://www.myexperiment.org/workflows/2739.html).  The 
workflow, described in figure 2, starts by taking a User 
Workspace, a Location, and a GIS Map as inputs, and pro-
duces, as output, a KML file to visualize the simulation re-
sults (which can be seen using Google Earth).  

To build this workflow, we first implemented the defini-
tion of the flooding models (using CD++ language), using 
GIS and weather data to initialize the model. A Taverna 
workflow takes the GIS map, its location and produces the 
files needed by CD++ to start a simulation. As we can see on 
figure 2, the Taverna Local Tool Service (in orange) takes in 
as a parameter a GIS map given (input workflow parameter). 
The GIS2CDpp executable is called, and after completed, the 
application transforms the GeoTIFF maps into the simula-
tor’s format, in this case, initial data values (val), an updated 

Cell-DEVS (ma), and an information file (info) to keep glob-
al geographical references. The Local Tool Service generates 
three outputs provided by GIS2CDpp, as well as the standard 
output (stdout) and error (stderr).  
     The models resulting from this phase need to be updated 
using the weather data. This weather prediction can be ac-
cessed using a Taverna RESTful WS (in blue) which queries 
the online weather service. A Taverna REST WS can take 
many inputs, and it provides 2 outputs: a status and a respon-
seBody. The status contain the HTTP response to indicate 
the invocation status (200, 404, etc.) and the responseBody 
contains the result. The Taverna RESTful WS we added to 
the simulation workflow takes in parameter the location giv-
en in workflow parameter (Location), and it is configured 
with the URL template of the weather forecast service 
http://weather.yahooapis.com/forecastrss?w={location} and 
the HTTP method GET. The Taverna REST WS generates 
the content of the weather forecast response, which needs to 
be processed in order to extract the information we need. 
This processing is done using the Taverna XPath Service (in 
pink), which can be used to extract data from an XML file. 
Finally a Taverna Beanshell Service (in grey) takes the mod-
el files and the weather information as inputs, and it produc-
es the final CD++ model file ready to be used by the RISE 
simulation environment. 

The second step of the simulation process is to create a 
simulation experiment in the Cloud. As described in the 
Background section, RISE is a simulation middleware that 
allows CD++ simulation to be executed in the Cloud. Access 
to RISE is done through Web resources (URIs) and XML 
messages using HTTP methods: GET (to read a resource), 
PUT (to create new resource or update existing data), POST 
(to append new data to a resource), and DELETE (to remove 
a resource). The RISE API looks like a classic website URL 
such as: http://www.example.com/cdpp/sim/{userwork-
space}/{servicetype}/{framework}. URLs respond to HTTP 
methods, for example with the URL above, to submit files to 
a framework we use the POST method. PUT is used to create 
a framework or update simulation configuration settings. 
DELETE is used to remove a framework. GET is used to re-
trieve the framework’s state.  

We can identify four steps to manage a new simulation 
using the Web Services offered by RISE: (1) Create a new 
empty experiment based on 4 parameters (the user work-
space, the service type, the framework name, and a XML 
configuration file); (2) Upload the simulation model files we 
created earlier; (3) Start the simulation and wait for its end; 
(4) Retrieve the simulation results. To automate these steps, 
we first added a Taverna REST WS that takes as parameters 
the emergency crew user workspace, the name of the new 
simulation experiment, and an XML file to configure the 
RISE experiment. The Taverna REST WS configuration 
contains the URL template http://www.example.com/cdpp 
/sim/workspaces/{userworkspace}/dcdpp/{framework}, and 
uses the HTTP method PUT to send the XML file to create a 
new simulation experiment on RISE. Taverna invokes the 
REST WS according to the parameters given prior to the si-
mulation workflow execution (for example, if the user work-
space given in parameter is “Bob” and the simulation expe-
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riment is “flood13022012”, Taverna will invoke 
http://www.example.com/cdpp/sim/workspaces/Bob/dcdpp/fl
ood13022012). The user workspace will be set by the emer-
gency crew, and it must be part of the workflow parameters 
(in addition to the GIS map and the location); while the 
framework name and the RISE XML configuration file will 
be computed automatically by a Taverna Beanshell Script. 

The next Taverna REST WS is invoked to upload the 
archived CD++ model files. This Service takes in a CD++ 
model (in a ZIP file), the user workspace, and the framework 
name. Its configuration contains the template 
http://www.example.com/cdpp/sim/workspaces/{userworkspa
ce}/dcdpp/{framework} and use the HTTP method POST to 
send the ZIP file to the RISE server. RISE extracts the simu-
lation files into the simulation experiment. We also added a 
Taverna REST WS into the simulation workflow to run the 
simulation, which takes the user workspace, the framework 
name, and its configuration in the URL template 
http://www.example.com/cdpp/sim/workspaces/{userworkspa
ce}/dcdpp/{framework}/simulation. Then, the HTTP method 
PUT executes the simulation.  

We then need to wait for the simulation to finish. This is 
done using a REST WS which invokes the GET HTTP me-
thod. RISE WS results are XML-based, so we used Taver-
na’s XPath service to process the XML result and extract 
their data. These two Taverna services are re-executed every 
second until the DONE message is found.  

In order to retrieve the simulation results, we added 
another Taverna REST WS that takes as parameters the user 
workspace and the framework name. Its configuration con-
tains the URL template http://www.example.com/cdpp/sim/ 
workspaces/{userworkspace}/dcdpp/{framework}/results,and 
it uses the HTTP method GET. The result of the simulation 
is provided on the Taverna REST WS output ResponseBody. 

As discussed in the Background, we want to process the 
simulation results and generate a KML file to visualize the 
simulation results (using, for instance, Google Earth). To au-
tomate this last step of the simulation process, we added to a 
Taverna Local Tool Service call to invoke the tool 
CDpp2KML [21], which parses the data generated by the 
simulator (representing the model’s state changes) into the 
desired output visualization format. It then generates a KML 
file with geo-referenced and timed representation of each si-
mulated cell state change. The local tool takes as parameter 
the simulation result from the previous Taverna REST WS 
output (ResponseBody), calls CDpp2KML, and provides a 
KML file ready to be used. The output of this last Taverna 
service is connected to the output of the simulation workflow 
seen on figure 2. 

In summary, the simulation workflow in figure 2 takes as 
parameters the GIS map file, the location, and the emergency 
crew user workspace, and it provides the KML file to visual-
ize the simulation result (on Google Earth). The workflow 
can be shared on myExperiment to be used, rated, com-
mented, modified and uploaded as a new version by other 
users. The workflow on myExperiment can be found at this 
URL: http://www.myexperiment.org/workflows/2739.html). 

In order to be used by the emergency crew, this Taverna 
simulation workflow needs to be uploaded on a Taverna 

Server to be executed directly in the Cloud. As this workflow 
depend on local tools (GIS2CDpp and CDpp2KML), the de-
veloper (User A) need to set up the Taverna Server and in-
stall on the same computer in the Cloud the necessary tool 
GIS2CDpp and CDpp2KML. Once the simulation workflow 
is on the Taverna Server, the emergency crew (User B) can 
specify the workflow input and execute the workflow using 
an Internet Browser. The next section presents how an emer-
gency crew on site can make use of a simulation workflow in 
the cloud in case of a flooding emergency scenario. 

V. CASE STUDY: FLOODING EMERGENCY SCENARIO 
Section III presented the architecture we used to define this 
simulation process in the Cloud, and Section IV explained 
how to implement the simulation workflow using Taverna. 
In this section we show simulation results obtained when 
running this simulation workflow to create and execute new 
simulation in the cloud in case of a flooding emergency. 

An emergency scenario, as may be a flash flood, can 
generate damages, and worse, an attempt on human life. Un-
der these conditions, emergency teams must act quickly to 
save lives and reduce damages to infrastructure. Consider the 
case of an emergency crew to the scene of the flooding. The 
rain intensifies and new areas may be submerged and must 
be evacuated. The emergency crew must choose which areas 
should be evacuated in priority. The emergency crew 
(represented by User B on Figure 1) must locate the Taverna 
simulation workflow to manage flooding simulation 
(http://vs3.sce.carleton.ca/taverna-server/). According to the 
implementation described section IV, the emergency crew 
needs to give in parameters prior to the workflow execution 
the User Workspace (user ID), the GIS map of the region to 
study, and the location code of the region. In our flooding 
scenario case, the emergency crew will give in parameter the 
emergency team ID (for example EC001), the GIS map file 
of the flooding area, and the WOEID location code of the re-
gion (for example, 3369). The emergency crew can then 
submit the form and wait for the Taverna workflow to be ex-
ecuted on the server side. According to the implementation, 
the Taverna simulation workflow will first create the simula-
tion model. The model we choose simulate natural region 
that acts as the water-receiving area of a drainage basin. The 
model considers water from different origins: rain, rivers and 
snow and the type of ground to compute the level of water 
for each cell. Once the model is created based on the GIS 
map and the weather forecast, the Taverna simulation 
workflow deploys it on the RISE server. Then the Taverna 
simulation workflow order RISE to execute the workflow, 
wait for the simulation to be finish and get the simulation re-
sults available on RISE. The last step of the Taverna simula-
tion workflow is to process the results into a KML file view-
able with Google Earth. 

Once the workflow execution is finish, the web portal of-
fers the possibility to download the KML file. The emergen-
cy crew imports this KML file into the locally installed 
Google Earth and visualizes the result. Thanks to the Google 
Earth feature to go forward and back we can navigate 
through the simulation results 
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VI. CONCLUSION 
We introduced new software architecture for emergency 
crews to execute remote simulations. The various steps of the 
simulation process are all executed in the Cloud, and a 
workflow manages the different steps of the simulation 
process automatically. This allows emergency units to use 
thin clients. The simulation workflow execution is requested 
through a Web portal which makes the models accessible.  

We showed how to use this architecture for emergency 
scenarios in which an emergency crew can run flooding si-
mulations. In order to run this simulation, 3 inputs are 
needed: the emergency crew ID, a GIS Map file, and the lo-
cation code of the area to study. The emergency crew ob-
tains, in response, a KML file to visualize simulation result 
with Google Earth. 

The architecture we presented facilitates access to the 
simulation by reducing the infrastructure costs to a mini-
mum: it only requires access to the Internet to execute a si-
mulation workflow. It also increases the credibility of a 
study, by providing an automated simulation workflow that 
will guarantee the repeatability. It also permits mixing data 
from simulations and from the real world using mash-up to 
use simulation as a prediction and decision-making tool. 
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