
The DEVS Formalism

Rhys Goldstein1, Gabriel A. Wainer2, Azam Khan1

1Autodesk Research

210 King St. East

Toronto, ON, Canada

2Department of Systems and Computer Engineering

Carleton University

1125 Colonel By Drive

Ottawa, ON, Canada

Abstract

The DEVS formalism is a set of conventions introduced in 1976 for the specification of discrete

event simulation models. This chapter explains the core concepts of DEVS by applying the

formalism to a single ongoing example. First, the example is introduced as a set of informal

requirements from which a formal specification is to be developed. Readers are then presented

with alternative sets of modeling conventions which, lacking the DEVS formalism’s approach to

representing state, prove inadequate for the example. The chapter exploits the DEVS formalism’s

support for modular model design, as the system in the example is specified first in parts and later

as a combination of those parts. The concept of legitimacy is demonstrated on various model

specifications, and the relationship between DEVS and both object-oriented programming and

parallel computing is discussed.

Keywords: DEVS, discrete event simulation, modular model design, legitimacy, object-oriented

programming, parallel computing

Introduction

The DEVS (Discrete Event System Specification) formalism is a set of conventions for specifying

discrete event simulation models. It was introduced in 1976 with the publication of Bernard

Zeigler’s Theory of Modeling and Simulation (Zeigler, 1976). While the latest edition of that book

(Zeigler et al, 2000) provides a comprehensive overview of DEVS theory, here we focus on the

application of the core concepts. The chapter is organized around a particular example: the

simulation of an automatic lighting system in an office environment. We develop this example from

a set of informal requirements to a complete formal specification.

Before we begin, let us clarify the difference between a discrete time simulation and a discrete

event simulation. Numerous simulations are implemented with a time variable t that starts at some

initial value t0, and increases by a fixed time step Δt between calculations. The flowchart in Figure 1

outlines the procedure.

Figure 1. Discrete Time Simulation Procedure

This type of simulation is a discrete time simulation, as t is effectively a discrete variable. The

approach is simple and familiar, but limited in that the duration between any pair of inputs,

outputs, or state transitions must be a multiple of Δt.

DEVS can be applied to discrete time simulation, but it is best suited to the discrete event approach

for which it was invented. In a discrete event simulation, time is continuous. Any pair of events can

be separated by any length of time, and there is generally no need for a global Δt. Later in the

chapter we will present a procedure like that in Figure 1, but suitable for all discrete event

simulations.

The adoption of a discrete event approach impacts the model development process. For example,

suppose one designs separate models for different parts of a larger system. Ideally, modeling the

overall system would be a simple matter of combining these submodels. With discrete time

simulation, one would have to choose a single Δt appropriate for every submodel, or invent some

scheme by which only certain submodels experience events at any given iteration. With DEVS, two

models can be coupled together regardless of how they handle time advancement. The only

requirement is that the output values of one model are consistent with the input values of the other.

In this chapter we exploit the DEVS formalism’s support for modular model design. First we present

an example of a system as a combination of three interacting subsystems. We later specify an

atomic model, an indivisible DEVS model, for each of these subsystems. From there we specify a

coupled model, a DEVS model composed of other DEVS models, by combining the three atomic

models. As we proceed from atomic models to coupled models, we analyze the legitimacy of various

specifications. Towards the end of the chapter, we discuss DEVS in the context of object-oriented

programming and parallel computing.

An Example

Buildings are believed to be responsible for roughly one third of greenhouse gas emissions

worldwide (United Nations Environment Programme, 2009). Understandably, there is a growing

interest in technologies that reduce the energy required for building operation.

Consider an automatic lighting system in an office building. At its simplest, such a system consists of

a motion detector controlling a lighting fixture for a single workstation. When an office worker is

present, the motion detector signals the lighting fixture, and the lighting fixture keeps the

workstation illuminated. When the worker leaves, the motion detector signals the lighting fixture

again, and the lights may turn off to save energy. We are interested in modeling the overall system;

not just the Detector and the Fixture subsystems that compose the Automatic Lighting System, but

the Worker as well. Combined, the three subsystems compose the Automatic Lighting Environment

as illustrated in Figure 2.

Figure 2. Conceptual Model of an Automatic Lighting Environment

Figure 2 identifies the type of information that can be transmitted to and from each subsystem. This

transmitted information is organized into the four sets of values below. We can see, for example,

that the Detector may send one of two values to the Fixture: “Still” or “Moving”.

� ������ � �"Absent",	"Present"�	� ������� � �"Gone",	"Typing",	"Reading",	"Waving"�	� &�'��(� � �"Still",	"Moving"�	� ,�-�(� � �"Dark",	"Light"�	
The specification we seek must accommodate arbitrary schedules, which indicate whether the

Worker is present or absent at any given time. For now, consider a scenario resulting from the

specific schedule in Figure 2. At the beginning of the day, the Worker is absent and the light is off. At

9:00 the Worker arrives (phase = “Present”) and begins typing on the computer (action = “Typing”).

The Detector observes motion and informs the Fixture (signal = “Moving”). The Fixture responds by

turning on (level = “Light”), and the Worker simply continues typing.

At 10:30, the Worker is scheduled to leave for a break (phase = “Absent”). The Detector will notice

that the Worker has left (action = “Gone”), and signal the Fixture (signal = “Still”). The lights will

then turn off (level = “Dark”), but not right away. The system is programmed such that there is a

delay of ΔtSaving between the time when motion is last detected and the time when the lights are

turned off to save energy. If ΔtSaving exceeds 15 minutes, the workstation will remain lit throughout

the Worker’s 10:30-10:45 break. Otherwise the Fixture will turn off after ΔtSaving elapses, then turn

back on again when the Worker returns at 10:45.

Let us revisit 9:00, or shortly thereafter, when the lights are on and the Worker is typing. The

Worker is to continue typing for a time of ΔtTyping, after which they switch to reading (action =

“Reading”). They continue reading for a time of ΔtReading, and then revert to typing for ΔtTyping, and

then start reading again for ΔtReading, etc. Relying on motion, the Detector is unable to distinguish

between reading and absence. It simply informs the Fixture that there is no motion. Consequently, if

ΔtSaving is less than ΔtReading, the Worker may still be present when the Fixture turns off. If that

happens, the Worker must make a waving gesture to trigger the Detector (action = “Waving”). The

Worker resumes reading when the light turns back on.

An engineer could use simulation to help optimize automatic lighting systems like the one

described. Their goal could be to determine an appropriate value for ΔtSaving. If ΔtSaving is too large,

the technology would fail to save much energy when office workers are absent. But if ΔtSaving is too

small, office workers would become annoyed for frequently having to “wave” the lights back on

while reading.

Our goal is to provide a formal specification for a model of the overall system. This Environment

model is a function of the three parameters described above.

2�-�3��4���5Δ�789:;<, Δ�=>?:;<, Δ�@A8B:;<C � DspecificationG	
We will begin by seeing what makes DEVS appropriate for the task.

Representation of State

One aspect of DEVS that sets it apart from other modeling formalisms is its approach to

representing state. To understand the impact of how state is represented, let us first consider a

formalism that neglects state completely. We will apply this formalism to the Detector, which is the

simplest of the three subsystems described in the previous section. Recall that the Detector receives

actions as input and sends signals as output. Hence, our formalism will allow us to define inputs,

outputs, and a function that maps the former to the latter. Here is such a formalism, which we call

Formalism A:

� 〈I, J, K〉 � is	the	structure	of	a	Formalism	A	model	specification	���� I � is	the	set	of	input	values	���� J � is	the	set	of	output	values	���� K:I → J � is	the	output	function	
Here is a Detector model specified using Formalism A:

� R������3S � 〈I, J, K〉	���� I � �T"actionin", ������U|������ ∈ ��������	���� J � �T"signalout", ��'��(U|��'��(∈ &�'��(��	���� K5T"actionin", ������UC � T"signalout", ��'��(U	������� T������ ∈ �"Typing",	"Waving"�U ⟹ T��'��(� "Moving"U	������� T������ ∈ �"Gone",	"Reading"�U ⟹ T��'��(� "Still"U	
There are a couple of things in the specification worth noting. First, we have defined an input port

“actionin” and an output port “signalout”. A port is a label used to distinguish a particular type of

input or output from other types of inputs or outputs. Ports are not strictly necessary for such a

simple model, but we will make a habit of using them to help us combine models later on. All inputs

and outputs will be defined as (port, value) pairs, as done above. Also note the two implications that

define the output function. One maps both the “Typing” and “Waving” input actions to the output

signal “Moving”, and the other maps both “Gone” and “Reading” to “Still”.

There is a subtle problem with this specification. If a “Reading” action is received, followed by

“Gone”, the model will output two consecutive “Still” signals. Or if it receives two consecutive

“Typing” actions, it will send two consecutive “Moving” signals. We want the signals “Moving” and

“Still” to be output in alternation only. If an input action would produce the same signal as its

predecessor, the redundant output should be skipped. This implies that each output will depend

not only on the current input, but on previous inputs as well. In other words, the model must have

state.

State is generally represented as a group of state variables. State variables are analogous to model

parameters in that they are associated with a single model and can affect that model’s output. The

difference is that model parameters, like ΔtSaving, ΔtTyping, and ΔtReading in our automatic lighting

example, remain constant throughout a simulation. State variables may be reassigned.

If we want to simulate the Detector model with Formalism A, we must define the simulation

procedure associated with the formalism. Illustrated in Figure 3, the procedure is simple. As always,

the time t starts at some initial time t0. It then advances repeatedly to the time of the next event,

which in this formalism is the time of the next input x (x ∊ X). At each event, the output function λ is

evaluated to obtain the corresponding output y (y ∊ Y). Note that when the inputs are exhausted, we

assume that “[time of next input]” is ∞.

Figure 3. Formalism A Simulation Procedure

As we just discussed, models specified in Formalism A have no state (as the formalism does not

have a representation of state). Formalism A models are therefore memoryless. Among other

things, this prevents us from avoiding identical consecutive output values (as in our Detector

model). To address this issue in a more elegant fashion, let us propose a more complex formalism,

called Formalism B.

Formalism B is similar to Formalism A in that events coincide with inputs. However, models now

have state. The state of a Formalism B model remains constant between events, but may change

during any event. Here is Formalism B:

� 〈I, J, &, Y, K〉 � is	the	structure	of	a	Formalism	B	model	specification	���� I � is	the	set	of	input	values	���� J � is	the	set	of	output	values	���� & � is	the	set	of	states	���� Y: & × I → & � is	the	transition	function	���� K: & × I → J ∪ �∅� � is	the	output	function	
There are four differences between this formalism and the previous. First, a set of states S has been

added. At any point, a model’s state s must satisfy s ∊ S. Second, there is now a transition function δ

that can change the model’s state. Third, the output function λ now takes s as one of its arguments.

Fourth, λ may result in ∅, indicating that the output is to be ignored.

By giving up Formalism A for Formalism B, we have accepted additional complexity for improved

generality. The Detector model specification below is lengthier than the previous, but we have

introduced behavior that we could not previously describe. The model has one state variable,

signal, which allows us to now check whether a newly received action would produce the same

signal as the preceding action. If so, we now output ∅ instead of sending redundant information.

Using Formalism B, the Detector specification is as follows:

� R������3̂ � 〈I, J, &, Y, K〉	���� I � �T"actionin", ������U|������ ∈ ��������	���� J � �T"signalout", ��'��(U|��'��(∈ &�'��(��	���� & � &�'��(�	���� Y5��'��(, T"actionin", ������UC � ��'��(_	������� ������ ∈ �"Typing",	"Waving"� ⟹ T��'��(′ � "Moving"U	������� ������ ∈ �"Gone",	"Reading"� ⟹ T��'��(′ � "Still"U	���� K5��'��(, T"actionin", ������UC � T"signalout", ��'��(′U	
������� a������ ∈ �"Typing",	"Waving"���'��(� "Still" b ⟹ T��'��(′ � "Moving"U	
������� a������ ∈ �"Gone",	"Reading"���'��(� "Moving" b ⟹ T��'��(′ � "Still"U	
������� cabove	conditionsare	all	false d ⟹ Te � ∅U	

Observe that the transition function δ records the previous output, either “Moving” or “Still”, in the

state variable signal. Likewise, note the changes to the output function λ. The two implications are

still there, but now the conditions depend on signal. We only output “Moving” if signal was

previously “Still”, and we only output “Still” is signal was previously “Moving”. There is also a third

implication: if the neither of the first two conditions are met, we output ∅.

Figure 4 shows the simulation procedure associated with Formalism B. Note the inclusion of s, its

initial value s0, its reassignment using δ, and the changes to λ.

Figure 4. Formalism B Simulation Procedure

Formalism B appears well suited to the Detector model. However, our modeling requirements are

about to get steeper. Consider the Fixture model. After receiving an input signal of “Still”, the lights

will turn off after a time of ΔtSaving. So after ΔtSaving elapses, the Fixture model must spontaneously

send an output without having received an input at the same time. Such internally triggered outputs

are not possible with Formalism B. But Formalism B and others like it have an even more

fundamental problem. The problem pertains to how state is represented.

In Formalism B, state remains constant between events. The problem is that the state of a real-

world system may change continuously over time. Take the automatic lighting system, for example.

After the office worker leaves their workstation, the lighting system is in such a state that it will

turn off after a time of ΔtSaving. One infinitesimal duration dt later, the lighting system is in an

entirely new state: a state in which it will turn off after a time of ΔtSaving − dt. The system passes

through an infinite number of states like this one before ΔtSaving elapses and the light turns off.

Fortunately, the difference between the constant state of Formalism B and the continuously

changing state of a real-world system can be captured by a single variable: the time Δte elapsed

since the previous event. If we know that Δte has elapsed since motion was last detected, we know

that the lighting system will turn off after a time of ΔtSaving − Δte.

Having acknowledged the importance of the elapsed time, we now have a means to represent two

types of state. First we have our original type of state, s, which remains constant between events.

We will continue to refer to s as “the state”, despite the fact that we now have another type of state.

The other type is the total state, (s, Δte), which reflects the continuously changing state of a real-

world system. Note that the total state is simply the state (i.e. the first type of state) and the elapsed

time, grouped together.

In the DEVS formalism, a model’s output values and state transitions can be considered functions of

its total state. As mentioned earlier, this approach to representing state sets DEVS apart from other

modeling formalisms. It gives DEVS the generality to represent practically any real-world system

that varies in time.

DEVS Atomic Models

It can be convenient to distinguish between atomic models, which are indivisible DEVS models, and

coupled models, which are DEVS models composed of other DEVS models. The conventions below

are typically associated with atomic models. We will later see that, indirectly, they apply to coupled

models as well.

� 〈I, J, &, YAfg , Y:;g , K, ��〉 � is	the	structure	of	a	DEVS	atomic	model	���� I � is	the	set	of	input	values	���� J � is	the	set	of	output	values	���� & � is	the	set	of	states	���� YAfg: j × I → & � is	the	external	transition	function	
������� j � lT�, m�AUn � ∈ &0 ≤ m�A ≤ ��T�Uq � is	the	set	of	total	states	
���� Y:;g: & → & � is	the	internal	transition	function	���� K: & → J ∪ �∅� � is	the	output	function	���� ��: & → r � is	the	time	advance	function	������� r � �m�:;g|0 ≤ m�:;g ≤ ∞� � is	the	set	of	time	durations	

The first thing to notice is that instead of one transition function δ, there are two: δext and δint. The

external transition function δext is invoked whenever an input is received. Observe that one of its

arguments is an input value (some x ∊ X). The internal transition function δint is invoked at the

same time as the output function λ, though λ is evaluated before δint changes the state.

At what simulated time, exactly, are λ and δint invoked? The answer is provided by the time

advance function ta. Suppose that an event has just occurred. It may have been an external event

coinciding with an input and the evaluation of δext, or it may have been an internal event coinciding

with an output and the evaluation of λ and δint. Regardless, an internal event will occur after a time

of ta(s), provided that no inputs are received beforehand.

We stated earlier that a model’s output values and state transitions can be considered functions of

its total state. Yet we see above that only δext takes the total state (s, Δte) as an argument. The output

function and the internal transition function take as their arguments the state s but not the elapsed

time Δte. It turns out that passing Δte into λ or δint is unnecessary. Whenever λ and δint are evaluated,

Δte must be equal to ta(s). So if the total state is needed during an internal event, one simply

evaluates the time advance function and obtains the elapsed time.

At the beginning of this chapter, we illustrated the procedure for discrete time simulation and

mentioned that we would later present one for the discrete event approach. A discrete event

simulation flowchart based on DEVS is shown in Figure 5.

Figure 5. Discrete Event Simulation Procedure using DEVS

Observe that if an input is received before the time elapsed reaches ta(s), the model experiences an

external event during which the input is processed. If on the other hand ta(s) elapses before the

next input is scheduled, an internal event occurs and an output may be processed. But what

happens if the time of the next input coincides with the elapsing of ta(s)? Figure 5 indicates that in

the case of a tie, external events take priority over internal events. This convention allows one to

use the information provided by an input at the earliest possible stage.

For the time being, as we specify DEVS models for the Detector and the Fixture, we will assume that

inputs never coincide with the elapsing of ta(s). Later, once coupled models have been introduced,

we will see how to ensure that these two models process their outputs before receiving inputs.

Here is a specification of the Detector using the DEVS formalism:

� R������3 � 〈I, J, &, YAfg , Y:;g , K, ��〉	���� I � �T"actionin", ������U|������ ∈ ��������	���� J � �T"signalout", ��'��(U|��'��(∈ &�'��(��	

���� & � lT��'��(, ����Un��'��(∈ &�'��(����� ∈ �⊤, ⊥� q	
���� YAfg v5T��'��(, ����U, m�AC, T"actionin", ������Uw � T��'��(′, ����′U	
������� a������ ∈ �"Typing",	"Waving"���'��(� "Still" b ⟹ a��'��(_ � "Moving"����_ �⊥ b	
������� a������ ∈ �"Gone",	"Reading"���'��(� "Moving" b ⟹ a��'��(_ � "Still"����_ �⊥ b	
������� cabove	conditionsare	all	false d ⟹ a��'��(_ � ��'��(����_ � ⊤ b	
���� Y:;g5T��'��(, ⊥UC � T��'��(, ⊤U	���� K5T��'��(, ⊥UC � T"signalout", ��'��(U	���� ��5T��'��(, ����UC � m�:;g	������� ¬���� ⟹ Tm�:;g � 0U	������� ���� ⟹ Tm�:;g � ∞U	

Note that the new δext looks a lot like the output function of our Formalism B Detector. One

difference is that the resulting signal, either “Moving” or “Still” is recorded in a state variable to be

output at a later stage. Another difference is that there is no longer a need to output ∅. Instead, we

make use of the new a state variable sent, which is either true (⊤) or false (⊥), to avoid unwanted

outputs. The following explains how that works.

If an input is received, then after δext updates the state, the time advance function will be evaluated.

In the case that δext changes the signal from “Still” to “Moving” or from “Moving” to “Still”, sent is

assigned ⊥	and	consequently ta(s) is 0. The output therefore occurs immediately. Once the output

value λ(s) is sent, δint changes sent to ⊤.	This	causes	ta(s) to yield ∞, which means nothing happens

until the next input arrives.

Suppose that δext	leaves	the	signal	unchanged	Ti.e.	the	“Dabove	conditions	are	all	falseG”	implication	is	selectedU.	According	to	the	specification,	sent	must	end	up	⊤,	and	thus	ta(s) will yield ∞. In this

case there	is	no	need	for	λ to yield ∅, as ta(s) = ∞ prevents λ from being evaluated at all.	
With	the	Detector	model	out	of	the	way,	we	turn	our	attention	to	the	Fixture	model.	Recall	that	the	Fixture	emits	light	in	response	to	a	“Moving”	signal,	and	turns	the	light	off	 in	response	to	a	“Still”	signal.	Also	recall	that	the	light	only	turns	off	after	ΔtSaving elapses. Here is the specification:

� }�~��3�5m�789:;<C � 〈I, J, &, YAfg , Y:;g , K, ��〉	���� I � �T"signalin", ��'��(U|��'��(∈ &�'��(��	���� J � �T"levelout", (�-�(U|(�-�(∈ ,�-�(��	
���� & � lT(�-�(, m�:;gUn(�-�(∈ ,�-�(�0 ≤ m�:;g ≤ ∞q	

���� YAfg v5T(�-�(, m�:;gU, m�AC, T"signalin", ��'��(Uw � T(�-�(, m�:;g′U	
������� v��'��(� "Moving"(�-�(� "Dark" w ⟹ Tm�:;g′ � 0U	
������� ���'��(� "Still"(�-�(� "Light"m�:;g � ∞ � ⟹ 5m�:;g′ � Δ�789:;<C	
������� ���'��(� "Still"(�-�(� "Light"m�:;g ≠ ∞ � ⟹ Tm�:;g′ � m�:;g − m�AU	
������� cabove	conditionsare	all	false d ⟹ Tm�:;g′ � ∞U	
���� Y:;g5T(�-�(, m�:;gUC � T(�-�(′,∞U	������� T(�-�(� "Dark"U ⟹ T(�-�(′ � "Light"U	������� T(�-�(� "Light"U ⟹ T(�-�(′ � "Dark"U	���� K5T(�-�(, m�:;gUC � T"levelout", (�-�(′U	������� T(�-�(� "Dark"U ⟹ T(�-�(′ � "Light"U	������� T(�-�(� "Light"U ⟹ T(�-�(′ � "Dark"U	���� ��5T(�-�(, m�:;gUC � m�:;g	

There are two important observations here. First note that one of the state variables, Δtint, directly

provides the result of the time advance function. This is a very common technique in the

specification of DEVS models. The other observation is the use of Δte in δext.

When the light turns on, δint indicates that the Δtint state variable is assigned ∞. If the Fixture model

then receives a “Still” signal, it must turn the lights off after a time of ΔtSaving. Hence there is a case in

δext that, upon finding Δtint = ∞, sets Δtint to ΔtSaving. Continuing this scenario, suppose that the Fixture

model receives another “Still” signal before ΔtSaving elapses. (It is true that we previously went to

great trouble to prevent the Detector model from outputting two “Still” signals in a row. However, if

we want the Fixture model to be reusable in other contexts, its specification should accommodate

any sequence of inputs.) Because this is the second consecutive “Still” signal, it is handled by the

case in δext that requires Δtint ≠ ∞. In this case the Fixture was previously about to turn off after a

time of Δtint, but Δte has elapsed since then, so now it must turn off after Δtint − Δte. This

demonstrates the importance of the elapsed time as an argument of the external transition function.

In this section and the previous, we have looked at three formalisms: Formalism A, Formalism B,

and DEVS. Each of these formalisms was more complex than the previous, but allowed us to define a

larger set of possible models. Extrapolating this trend, one wonders if there are models that cannot

be specified with DEVS. When might we require yet another, even more flexible formalism? The

answer is hardly ever. True to its name, DEVS is a very general formalism for specifying discrete

event simulation models. Incidentally, it can also be used for discrete time simulation, which is

really just a special case of the discrete event approach.

To be fair, while DEVS is a plausible option for modeling almost any time-varying system, it may not

be the most convenient option for all applications. If the scope of a simulation project is both

constrained and well understood, other approaches should be considered as well. But especially for

large projects, it is reassuring to use a set of conventions like DEVS that can accommodate a wide

range of potentially unforeseen model requirements.

Research has shown that for any of a great number of alternative modeling formalisms, any

specification written in that formalism can be mapped into a DEVS specification. This generality has

led to the description of DEVS as a “common denominator” that supports the use of multiple

formalisms in a single project (Vangheluwe, 2000).

Legitimacy of Atomic Models

Whenever we specify a model using DEVS, we ought to ensure the specification is both consistent

and legitimate. For a specification to be consistent, it must contradict neither itself nor the

conventions of the formalism. Suppose we have a DEVS model in which Y is the set of positive real

numbers. If there exists an s ∊ S for which λ(s) is negative, the specification is inconsistent.

Although ensuring consistency may require considerable effort, the concept is intuitive and its

importance is obvious. Legitimacy is more subtle. Even if a DEVS model has a consistent

specification, it will not necessarily allow simulated time to properly advance. The problem is not

that the simulation procedure stops. Rather, if the specification is not legitimate, an infinite number

of events may occur in a finite duration of simulated time.

A DEVS model has a legitimate specification if, in the absence of inputs, simulated time will

necessarily advance towards ∞ without stopping or converging. This condition can be written

mathematically as follows:

���T�:U�
:�� � ∞ for	all �� ∈ & where	for	� ≥ 1, �: � Y:;gT�:��U	

The convenient thing about this condition is that, when assessing the legitimacy of an atomic model,

one can ignore a large part of the specification. In fact, only S, δint, and ta are relevant. To

demonstrate, let us check whether our Detector model is legitimate. The relevant part of the

specification is repeated below.

���� & � lT��'��(, ����Un��'��(∈ &�'��(����� ∈ �⊤, ⊥� q	
���� Y:;g5T��'��(, ⊥UC � T��'��(, ⊤U	���� ��5T��'��(, ����UC � m�:;g	������� ¬���� ⟹ Tm�:;g � 0U	������� ���� ⟹ Tm�:;g � ∞U	

We can see that δint changes the state variable sent to ⊤. If sent is ⊤, ta yields ∞, so the model is

legitimate.

���T�:U�
:�� � ��T��U + ��5Y:;gT��UC + �� vY:;g5Y:;gT��UCw + ⋯	

� ��T��U + ��5T��'��(�, ⊤UC + ��5T��'��(�, ⊤UC +⋯	� ��T��U + ∞+∞+⋯	� ∞	
Regardless of what state it is in, the Detector model will experience at most one internal event

before it starts waiting for an input. We will leave it as an exercise for the reader to show that the

Fixture model behaves similarly, and is therefore legitimate as well. Things are more complicated

with the Worker model, which can enter into a never-ending cycle of states despite the absence of

inputs. The cycle itself is not a problem, but we must ensure that time advances at each repetition.

We have yet to give the complete specification of the Worker model. Here it is:

� ��3��35m�=>?:;<, m�@A8B:;<C � 〈I, J, &, YAfg , Y:;g , K, ��〉	���� I � I?�8�A ∪ I�A9A�	������� I?�8�A � �T"phasein",	�����	U	|	����� ∈ �������	������� I�A9A� � �T"levelin", (�-�(U	|	(�-�(∈ ,�-�(��	���� J � �T"actionout", ������	U	|	action ∈ action�	
���� & � �T������, m��, ����U	�	 ������ ∈ �������0 ≤ m�� ≤ ∞���� ∈ �⊤,⊥�T������ � "Gone"U ⟹ Tm�� � ∞U�	���� YAfg v5T������, m��, ����U, m�AC, ~w � T������′, m��′, ����′U	
������� v~ � T"phasein","Present"U������ � "Gone" w ⟹ �������_ � "Typing"m��′ � m�=>?:;<����_ �⊥ �	
������� v~ � T"phasein","Absent"U������ ≠ "Gone" w ⟹ �������_ � "Gone"m��′ � ∞����_ �⊥ �	
������� a~ � T"levelin","Dark"U������ � "Reading" b ⟹ �������_ � "Waving"m��′ � m�� − m�A����_ �⊥ �	
������� a~ � T"levelin","Light"U������ � "Waving" b ⟹ �������_ � "Reading"m��′ � m�� − m�A����_ �⊥ �	

������� cabove	conditionsare	all	false d ⟹ �������_ � ������m��′ � m�� − m�A����_ � ���� �	
���� Y:;g5T������, m��, ����UC � T������′, m��′, ⊤U	
������� ¬���� ⟹ a������_ � ������m��′ � m�� b	
������� v������ � "Typing"���� w ⟹ a������_ � "Reading"m��′ � m�@A8B:;< b	
������� v������ ∈ �"Reading",	"Waving"����� w ⟹ a������_ � "Typing"m��′ � m�=>?:;< b	
���� K5T������, m��, ����UC � T"actionout", ������′U	������� ¬���� ⟹ T������_ � ������U	
������� v������ � "Typing"���� w ⟹ T������_ � "Reading"U	
������� v������ ∈ �"Reading",	"Waving"����� w ⟹ T������_ � "Typing"U	
���� ��5T������, m�� , ����UC � m�:;g	������� ¬���� ⟹ Tm�:;g � 0U	������� ���� ⟹ Tm�:;g � m��U	

Recall that when the office worker is at their workstation (i.e. after an input phase of “Present” is

received), they alternate between “Typing” and “Reading”. When they are reading it is possible for

the lights to turn off (i.e. an input level of “Dark” may be received). This causes the Worker to start

“Waving” until the light returns. The transition functions above provide a formal description of this

behavior.

We encourage the reader to further study how this specification fulfills the informal requirements

presented near the beginning of the chapter. But our task at the moment is to determine

mathematically whether the specification is legitimate. It will simplify things greatly if we notice

that δint always assigns the state variable sent the value ⊤.

Y:;g5T������, m�� , ����UC � T������′, m��′, ⊤U	
With sent being ⊤,	time	is	always	advanced	by	the	value	of	the	state	variable	Δtr.

��5T������, m��, ⊤UC � m��	
According to S, it is a possibility that Δtr is 0. This concerns us because it leaves open the possibility

that the key term affecting legitimacy, ta(δint(s)), is also 0.

& � �T������, m��, ����U	�	 ������ ∈ �������0 ≤ m�� ≤ ∞���� ∈ �⊤, ⊥�T������ � "Gone"U ⟹ Tm�� � ∞U�	
Note that S also tells us that if action = “Gone”, Δtr = ∞. If Δtr is guaranteed to be ∞ at any point, the

specification is legitimate. We can therefore focus on the remaining three actions, “Typing”,

“Reading”, and “Waving”. These actions are addressed by the following conditions in δint.

� v������ � "Typing"���� w ⟹ a������_ � "Reading"m��′ � m�@A8B:;< b	
� v������ ∈ �"Reading",	"Waving"����� w ⟹ a������_ � "Typing"m��′ � m�=>?:;< b	

Here we see that Δtr must be one of two values, ΔtTyping or ΔtReading. And because the state variable

action will alternate between “Typing” and “Reading” after at most one event, Δtr will alternate

between ΔtTyping and ΔtReading. With this observation, we can derive an expression for the total

accumulated time.

���T�:U�
:�� � ��T��U + ��5Y:;gT��UC + �� vY:;g5Y:;gT��UCw + ⋯	

�
�
��
��T��U + m�=>?:;< + m�@A8B:;< + m�=>?:;< + m�@A8B:;< +⋯

or
��T��U + m�@A8B:;< + m�=>?:;< + m�@A8B:;< + m�=>?:;< +⋯�

� 	
� ��T��U + lim;→�� ∙ 5m�@A8B:;< + m�=>?:;<C		

We do not know the value of ta(s0). However, we can assure ourselves that it is not necessarily ∞,

so we should focus on the second term. To guarantee legitimacy, the second term must be ∞. We

can see that this will be the case as long as (ΔtTyping + ΔtReading) > 0.

As an aside, note that regardless of legitimacy we should know that ΔtTyping ≥ 0 and ΔtReading ≥ 0.

Why? For one thing, it makes no sense for the Worker to type or read for a negative duration. But

mathematically, a negative ΔtTyping or ΔtReading would render the Worker model inconsistent. To see

this inconsistency, review the DEVS formalism’s conventions for the time advance function.

Having assessed the legitimacy of the Worker model, we now realize that a nonnegative ΔtTyping and

ΔtReading is not enough. We now know that their sum must be positive, which means that one of the

parameters must be positive. Combined, we have the following constraints.

� m�=>?:;< ≥ 0 � m�@A8B:;< ≥ 0 � 5m�@A8B:;< > 0C ∨ 5m�=>?:;< > 0C

Whereas the Detector and Fixture specifications were unconditionally legitimate, the Worker

specification is legitimate only if we restrict the model parameters. This result makes sense. If

ΔtTyping and ΔtReading are both 0, the Worker will alternative between typing and reading an infinite

number of times at a single instant of simulated time. Assessing legitimacy is useful, as dangers like

ΔtTyping = ΔtReading = 0 can go undiscovered until after simulation software is deployed. Another useful

discovery from the above analysis is the fact that if exactly one of the two parameters is 0, the

specification is legitimate. Our model can represent an office worker who only spends time typing,

or only spends time reading.

If a time advance function always yields a positive value, may we assume that the specification is

legitimate? The intuitive answer is yes, but the correct answer is no. Consider the following partial

specification of the model Pitfall:

� ���¤�((� 〈I, J, &, YAfg , Y:;g , K, ��〉	���� & � �m�	|	0 < m� ≤ ∞�	
���� Y:;gTm�U � m�2 	
���� ��Tm�U � m�	

Here the result of ta is the value of the one and only state variable Δt. According to S, Δt may never

be 0, so we know that time will advance between every internal event. The guaranteed

advancement of time suggests legitimacy, unless it turns out that the sum of the time intervals

converges. Here δint scales down Δt by a factor of 2 at each event. Decreasing at this rate, the

intervals will in fact converge. If the initial value of the state variable is Δt0, and if there are no

intervening inputs, the simulation will progress no further than twice Δt0.

���T�:U�
:�� � ��Tm��U + ��5Y:;gTm��UC + �� vY:;g5Y:;gTm��UCw + ⋯	

� m�� + Y:;gTm��U + Y:;g5Y:;gTm��UC + ⋯	
� m�� + m��2 + Y:;g am��2 b +⋯	
� m�� + m��2 + m��4 +⋯	
� �a12b: ∙ m��

�
:�� 	

� 2 ∙ m��	
The set of states permits Δt0 < ∞, in which case 2·Δt0 < ∞; therefore, the Pitfall specification is not

legitimate.

Because the Worker model has only discrete state variables and none of them are unbounded, the

model has a finite number of possible states. For such a model, legitimacy requires that every

possible cycle of states contains at least one state s for which ta(s) > 0. The relevant cycle in the

Worker model was the “Typing”/“Reading” cycle, and indeed we found that a positive duration is

required for at least one of these two states.

Note that this “cycle of states” rule is insufficient for models like Pitfall that have an infinite number

of possible states. For these types of models, even if ta(s) > 0 for all s, the specification may still not

be legitimate. In such cases, one technique for ensuring legitimacy is to require ta(δint(s)) > Δtε for

all s ∊ S, where Δtε is some small but positive constant duration.

DEVS Coupled Models

At this point we have an atomic model specification for the Detector, the Fixture, and the Worker.

To complete a specification of the Automatic Lighting Environment, we need only link the atomic

models together as submodels of a DEVS coupled model. The conventions for doing this are below.

� 〈I, J, R,¨, 2©ª, 2«ª, ©ª, &�(���〉 � is	the	structure	of	a	DEVS	coupled	model	���� I � is	the	set	of	input	values	���� J � is	the	set	of	output	values	���� R � is	the	set	of	submodel	IDs	���� ¨:R → � is	the	ID-to-submodel	mapping	function	������� � is	the	set	of	possible	DEVS	models	���� 2©ª � is	the	set	of	external	input	couplings	���� 2«ª � is	the	set	of	external	output	couplings	���� ©ª � is	the	set	of	internal	couplings	���� &�(���: 2¯ → R � is	the	tie-breaking	function	
We can see that, like an atomic model, a coupled model has a set of inputs X and a set of outputs Y.

Coupled models also have ports associated with their inputs and outputs. We will give our

Environment model an input port for the two possible phases in the office worker’s schedule,

“Present” and “Absent”. We will also define two output ports, one for the office worker’s actions and

one for the lighting level. These outputs contain information relevant to the performance of the

automatic lighting system. An occurrence of the “Waving” action indicates inconvenience for an

office worker left momentarily in the dark, and any time elapsed while the lights are on and the

office worker is “Gone” could be viewed as a waste of electricity.

The input and output ports of the Environment model are shown in Figure 6, along with the

relationships between these ports and the ports of the three submodels.

Figure 6. Coupled Model of an Automatic Lighting Environment

Below is the specification of the Environment model, with the exception of the tie-breaking

function. We will look at Select later.

� 2�-�3��4���5m�789:;<, m�=>?:;<, m�@A8B:;<C � 〈I, J, R,¨, 2©ª, 2«ª, ©ª, &�(���〉	���� I � �T"phasein", �����U|����� ∈ �������	���� J � J8°g:±; ∪ J�A9A�	������� J8°g:±; � �T"actionout", ������U|������ ∈ ��������	������� J�A9A� � �T"levelout", (�-�(U|(�-�(∈ ,�-�(��	���� R � �"Detector", "Fixture", "Worker"�	���� ¨T²U � 4	������� T² � "Detector"U ⟹ T4 � R������3U	������� T² � "Fixture"U ⟹ v4 � }�~��3�5Δ�789:;<Cw	
������� T² � "Worker"U ⟹ v4 � ��3��35m�=>?:;<, m�@A8B:;<Cw	���� 2©ª � ³5T"", "phasein"U, T"Worker", "phasein"UC´	
���� 2«ª � µ 5T"Fixture", "level¶·¸"U, T"", "levelout"UC,5T"Worker", "action¶·¸"U, T"", "actionout"UC¹	
���� ©ª � �5T"Worker", "actionout"U, T"Detector", "actionin"UC,5T"Detector", "signalout"U, T"Fixture", "signalin"UC,5T"Fixture", "levelout"U, T"Worker", "levelin"UC �	

Note that a large part of this specification is merely a formal representation of the information in

Figure 6. The set D contains a unique ID for each submodel, and here we have used the same labels

as in the diagram. The empty string “” serves as the ID of the coupled model itself (sometimes “Self”

or other symbols are used).

Each coupling between ports takes the form (([source ID], [output port]), ([destination ID], [input

port])). The diagram shows that the Environment’s one input port, “phasein”, is connected to the

“phasein” input port of the “Worker” submodel. The port names match in this case, but they need

not. The relationship is represented by ((“”,“phasein”), (“Worker”, “phasein”)) in the set EIC.

Similarly, the links in the diagram between the submodels and the Environment’s output ports can

be found in EOC, and the links from submodel to submodel are in IC.

The variable M specifies the DEVS model associated with each submodel ID. Observe that we have

used its definition to distribute the parameters of the Environment model to the individual

submodels. Here we are treating M as a function that maps an ID d to the corresponding DEVS

submodel M(d) = 〈Xd, Yd, …〉. Note that M is often defined instead as a set of submodels Md. Either

way, consistency requires that for every coupling, the possible values for the source’s output port

constitute a subset of the possible values for the destination’s input port.

Earlier we presented the simulation procedure associated with DEVS atomic models. Now that we

are missing the transition functions, the output function, and the time advance function, what is the

simulation procedure for coupled models? It turns out that the procedure is the same. DEVS has a

property known as closure under coupling, which guarantees that the behavior of any coupled

model can be represented using the conventions associated with atomic models. Here again are

both sets of conventions:

� 〈I, J, R,¨, 2©ª, 2«ª, ©ª, &�(���〉 � is	the	structure	of	a	DEVS	coupled	model	� 〈I, J, &, YAfg , Y:;g , K, ��〉 � is	the	structure	of	a	DEVS	atomic	model	
The 8 variables that compose a coupled model can be mapped into the 7 variables of an atomic

model, yielding what is referred to as the resultant. We will review this mapping informally to

highlight the sequences of events that occur in coupled models. First, the input and output sets X

and Y are the same in both a coupled model and its resultant. The state of the resultant includes the

total state of every model in M. Therefore, the set of states S includes all possible combinations of all

possible total states for every submodel.

A coupled model experiences an external event when it receives an input. In that case, the

resultant’s δext redirects the input to all receiving submodels as specified by EIC. Each receiving

submodel then experiences its own external event; their δext functions are invoked. For example, a

“phasein” input received by the Environment model will get redirected to the “phasein” port of the

Worker model. The Worker model will then receive the same input and experience an external

transition.

The resultant’s ta yields the time before any one submodel experiences an internal event. If this

time elapses, the coupled model experiences an internal event as well. The resultant’s λ and δint

invoke the λ and δint functions associated with the one submodel that triggered the event. The

triggering submodel’s output is redirected to receiving submodels according to IC, and those

receiving submodels experience external events. For example, if the Detector model triggers an

internal event, a “signalout” output will be sent to the Fixture model. The Fixture model will then

experience an external event.

If, according to EOC, the triggering submodel’s output is linked to the output of the entire coupled

model, then the resultant’s λ reflects that output. Otherwise, the resultant’s λ yields ∅. So if the

Fixture model sends an output, the Environment model sends the same output as well. But if the

Detector model sends an output, the Environment model outputs ∅.

Note that when an event of any kind occurs in a coupled model, the elapsed time associated with

every submodel is updated.

That mostly describes the behavior of a coupled model, though there is one remaining

complication: multiple submodels may try to trigger internal events at the same time. In such cases,

the select function is used to break the tie. The function takes the argument Dimm, the set of IDs of

all imminent submodels. A submodel is imminent if it is scheduled to experience an internal event

at least as soon as any other. The result of Select is ds, the ID of the submodel selected to trigger the

internal event (ds ϵ Dimm). Here is the select function for the Environment model:

� &�(���TR:ººU � ²�	���� T"Fixture" ∈ R:ººU ⟹ T²� � "Fixture"U	
���� a"Detector" ∈ R:ºº"Fixture" ∉ R:ºº b ⟹ T²� � "Detector"U	
���� � "Worker" ∈ R:ºº"Detector" ∉ R:ºº"Fixture" ∉ R:ºº � ⟹ T²� � "Worker"U	

When we first specified DEVS atomic models for the Detector and the Fixture, we assumed that

neither model would ever have an input coincide with the elapsing of ta(s). In other words, we

would never have to choose between an external event and an internal event for these models. This

select function validates that assumption, at least in the context of the Environment model. For

example, suppose the Detector and Fixture submodels are both imminent. According to Select, the

Fixture model experiences the internal event first. By the time the Detector model triggers an

internal event and signals the Fixture model, the Fixture model is in a new state and is no longer

imminent. In a similar fashion, Select prevents the Worker model from sending actions to an

imminent Detector model.

One cannot always rely on Select to prevent collisions between external and internal events. The

Worker model in the “Reading” state may well receive a “Dark” input at the same time that it is

scheduled to transition to “Typing”. Will the Worker start “Waving” in response to the loss of light,

or will it simply start “Typing”? According to the simulation procedure we presented for DEVS

models, external events take priority. So the Worker will enter the “Waving” state immediately,

revert to “Reading” in response to another input when the lights come back on, and only then enter

the “Typing” state. We will assume this behavior is acceptable, but otherwise we would modify the

Worker model specification.

It is common practice to define the select function with a list of submodel IDs; for example,

(“Fixture”, “Detector”, “Worker”). Whenever there is a tie, the submodel closest to the front of the

list is selected. A list offers less flexibility than a function. But in many cases, including our

Environment model, it would suffice.

Legitimacy of Coupled Models

When we say a coupled model is legitimate, we mean that its resultant is legitimate based on the

definition presented earlier for atomic models. As one would expect, for a coupled model to be

legitimate, all of its submodels must be legitimate. The question is, if all of its submodels are

legitimate, may we assume that the coupled model is legitimate? It turns out that if there are no

feedback loops in the coupled model, the answer is yes. But if there are feedback loops, we have

more work to do.

A feedback loop in a coupled model is any circular path formed by traversing couplings from their

source submodels to their destination submodels. There is one feedback loop in the Environment

model, as the Worker sends outputs to the Detector which outputs to the Fixture which outputs to

the Worker. The problem is not the existence of a feedback loop, but rather the possibility that a

sequence of self-perpetuating events propagates around the loop an infinite number of times in a

finite duration of time.

Recall that when assessing the legitimacy of an atomic model, one generally studies the value of

ta(δint(s)). Here we are considerably more interested in ta(δext((s, Δte), x)), the delay between

receiving an input and sending an output. Why? The time required for a sequence of events to

propagate around a feedback loop is the sum of these delays. Suppose the circular propagation of

events repeats itself indefinitely. If all of these ta(δext((s, Δte), x)) delay values either equal 0 or their

sum converges on 0, the model is not legitimate.

In the case of the Environment model, all submodels have a finite number of states. With this type

of model, the only concern is the possibility that all ta(δext((s, Δte), x)) values equal 0. Let us start

with the Worker model, and determine all cases in which there is no delay. Because we are worried

about cycles of events with no time advancement whatsoever, we may simplify matters by

assuming the elapsed time Δte is 0. Also, although the Worker model has two input ports, the

“phasein” is not part of the feedback loop and can be ignored. With these simplifications, here is the

Worker model’s external transition function:

� YAfg v5T������, m��, ����U, 0C, T"levelin", (�-�(Uw � T������′, m��′, ����′U	
���� a (�-�(� "Dark"������ � "Reading"b ⟹ �������_ � "Waving"m��′ � m������_ �⊥ �	

���� a (�-�(� "Light"������ � "Waving"b ⟹ �������_ � "Reading"m��′ � m������_ �⊥ �	
���� cabove	conditionsare	all	false d ⟹ �������_ � ������m��′ � m������_ � ���� �	

We must also look at the Worker model’s time advance function.

� ��5T������, m��, ����UC � m�:;g	���� ¬���� ⟹ Tm�:;g � 0U	���� ���� ⟹ Tm�:;g � m��U	
Substituting the result of the external transition function into the time advance function, we get a

formula for the delay Δtint between the Worker model’s inputs and outputs.

� �� aYAfg v5T������, m��, ����U, 0C, T"levelin", (�-�(Uwb � m�:;g	
���� a (�-�(� "Dark"������ � "Reading"b ⟹ Tm�:;g � 0U	
���� a (�-�(� "Light"������ � "Waving"b ⟹ Tm�:;g � 0U	
���� cabove	conditionsare	all	false d ⟹ vm�:;g � ��5T������, m��, ����UCw	

There are 3 conditions in total, but the third one is uninteresting since the state of the model has

been left unchanged. So effectively there are 2 cases to consider in which Δtint = 0.

If we perform the same exercise for the Detector model, the delay is given by the following:

� �� aYAfg v5T��'��(, ����U, 0C, T"actionin", ������Uwb � m�:;g	
���� v������ ∈ �"Typing",	"Waving"�� � "Still" w ⟹ Tm�:;g � 0U	
���� a������ ∈ �"Gone",	"Reading"�� � "Moving" b ⟹ Tm�:;g � 0U	
���� cabove	conditionsare	all	false d ⟹ Tm�:;g � ∞U	

Again there are 3 conditions, but we may ignore the third one because the resulting delay can never

be 0. So effectively we have another 2 cases.

Below is the delay for the Fixture model:

� �� aYAfg v5T(�-�(, m�:;gU, 0C, T"signalin", ��'��(Uwb � m�:;g	

���� v��'��(� "Moving"(�-�(� "Dark" w ⟹ Tm�:;g � 0U	
���� ���'��(� "Still"(�-�(� "Light"m�:;g � ∞ � ⟹ 5m�:;g � Δ�789:;<C	
���� ���'��(� "Still"(�-�(� "Light"m�:;g ≠ ∞ � ⟹ vm�:;g � ��5T(�-�(, m�:;gUCw	
���� cabove	conditionsare	all	false d ⟹ Tm�:;g � ∞U	

Now there are 4 conditions, but again only 2 of them are relevant. For the third condition, the state

is unchanged. For the fourth, the delay is never 0. Although the delay in the second condition is not

necessarily 0, we have yet to rule out ΔtSaving = 0.

 Now we must consider all combinations of states that may lead to a perpetual cycle of events with

no delay. The task seems daunting, but fortunately we can neglect all combinations of states that fail

to satisfy any of the 6 conditions above for which Δtint = 0 is a possibility. The first condition in the

Worker’s Δtint formula suggests a potential problem if the Fixture has become “Dark” while the

Worker is “Reading”. In that case, the Worker will start “Waving”. Looking at the Detector model’s

Δtint, a “Waving” input is only dangerous if the state is “Still”. So we consider the initial combination

of states in which the Worker’s action is “Reading”, the Detector’s signal is “Still”, and the Fixture’s

level has just become “Dark”. Figure 7 shows the sequence of states resulting from these initial

conditions.

Figure 7. Cycle of States in the Environment Model’s Feedback Loop

The “Reading”, “Still”, “Dark” combination of states does indeed lead to a self-perpetuating cycle of

events. The office worker waves to trigger the lighting system, the lights turn on, the office worker

resumes reading, the lights eventually turn off, and the cycles repeats. Figure 7 shows the state of

each submodel at each stage in the cycle. The key thing to note is that the submodels end up in the

original combination of states, which produces the repetition.

It so happens that this cycle involves all 6 of the relevant cases in the delay formulas above.

Furthermore, if we consider each case one by one like we did for the first condition in the Worker’s

Δtint formula, we will end up with the same sequence of states. The initial combination of states may

differ, but the cycle will be the same. Therefore, the legitimacy of the Environment model depends

only on whether time advances at all during this cycle.

Notice for each step in the cycle, Figure 7 shows the delay between receiving an input and sending

the resulting output. The delay values came directly from the 6 cases in the formulas for Δtint.

According to these values, it takes a time of ΔtSaving for events to propagate twice around the

feedback loop, or for one repetition of the cycle of states. Therefore, the Environment model is only

legitimate if ΔtSaving > 0.

This result is not particularly intuitive, as there is nothing fundamentally wrong with modeling a

lighting fixture that turns off immediately when no motion is detected. In fact, if we modify the

Worker model to include a positive delay before transitioning from “Reading” to “Waving”, ΔtSaving =

0 would yield a legitimate Environment model. This might be a worthwhile exercise for the reader.

The important point is that DEVS provides techniques to assess the legitimacy of both atomic and

coupled model specifications. Had we not analyzed the specifications in our example, we may not

have become aware of the necessary constraints on the Environment model’s parameters:

� m�789:;< > 0 � m�=>?:;< ≥ 0 � m�@A8B:;< ≥ 0 � 5m�@A8B:;< > 0C ∨ 5m�=>?:;< > 0C

Hierarchical Models

Closure under coupling tells us that we could have described the Automatic Lighting Environment

as an atomic model instead of a coupled model. However, the modular design approach we adopted

allowed us to avoid this potentially difficult task. Instead of attempting to produce one complex

atomic model for the Environment system, we specified and combined 3 simpler atomic models.

For extremely complicated systems, even the task of coupling submodels can be problematic.

Imagine, for example, the complexity of a coupled model composed of several dozen distinct atomic

models. In these situations one should consider a hierarchical approach to model design. Because

every coupled model has a resultant, which is essentially an atomic model, one coupled model can

be a submodel of another. This nesting of coupled models produces a hierarchy. Note that when

replacing the flat structure of a single coupled model with the multi-leveled structure of a

hierarchical model, the total number of atomic models remains unchanged. We are simply trading

one complex coupled model for several simpler coupled models.

Let us return once again to our Environment model specification. Previously we used a single

coupled model composed of 3 atomic models. Here we provide an alternative specification

featuring a hierarchical structure. The Environment model will now consist of only 2 submodels,

the Worker model and a new Lighting model that represents the Automatic Lighting System. The

Lighting model is also specified as a coupled model, and it consists of the Detector model and the

Fixture model. The new model structure, with additional ports and slightly different relationships,

is shown in Figure 8.

Figure 8. Hierarchical Model of an Automatic Lighting Environment

The conventions for specifying hierarchical models are exactly the same as those for specifying

coupled models; we need only apply these conventions multiple times. For our example, we first

produce the specification of the Lighting model.

� ,�'����'5m�789:;<C � 〈I, J, R,¨, 2©ª, 2«ª, ©ª, &�(���〉	���� I � �T"actionin", ������U|������ ∈ ��������	���� J � �T"levelout", (�-�(U|(�-�(∈ ,�-�(��	���� R � �"Detector", "Fixture"�	���� ¨T²U � 4	������� T² � "Detector"U ⟹ T4 � R������3U	������� T² � "Fixture"U ⟹ v4 � }�~��3�5Δ�789:;<Cw	���� 2©ª � ³5T"", "actionin"U, T"Detector", "actionin"UC´	���� 2«ª � ³5T"Fixture", "level¶·¸"U, T"", "level¶·¸"UC´	���� ©ª � ³5T"Detector", "signalout"U, T"Fixture", "signalin"UC´	���� &�(���TR:ººU � ²�	������� T"Fixture" ∈ R:ººU ⟹ T²� � "Fixture"U	
������� a"Detector" ∈ R:ºº"Fixture" ∉ R:ºº b ⟹ T²� � "Detector"U	

Now we provide an alternative specification of the Environment model. Note that the set of input

values X and the set of output values Y are the same as in the previous version, the one coupling all

3 atomic models directly. The fact that the Lighting submodel now replaces the Detector and

Fixture submodels does not change the behavior represented by the specification.

� 2�-�3��4���5m�789:;<, m�=>?:;<, m�@A8B:;<C � 〈I, J, R,¨, 2©ª, 2«ª, ©ª, &�(���〉	���� I � �T"phasein", �����U|����� ∈ �������	���� J � J8°g:±; ∪ J�A9A�	������� J8°g:±; � �T"actionout", ������U|������ ∈ ��������	������� J�A9A� � �T"levelout", (�-�(U|(�-�(∈ ,�-�(��	���� R � �"Lighting", "Worker"�	���� ¨T²U � 4	������� T² � "Lighting"U ⟹ v4 � ,�'����'5Δ�789:;<Cw	
������� T² � "Worker"U ⟹ v4 � ��3��35m�=>?:;<, m�@A8B:;<Cw	���� 2©ª � ³5T"", "phasein"U, T"Worker", "phasein"UC´	
���� 2«ª � µ 5T"Lighting", "level¶·¸"U, T"", "levelout"UC,5T"Worker", "action¶·¸"U, T"", "actionout"UC¹	
���� ©ª � µ5T"Worker", "actionout"U, T"Lighting", "actionin"UC,5T"Lighting", "levelout"U, T"Worker", "levelin"UC ¹	
���� &�(���TR:ººU � ²�	������� T"Lighting" ∈ R:ººU ⟹ T²� � "Lighting"U	
������� a"Worker" ∈ R:ºº"Lighting" ∉ R:ººb ⟹ T²� � "Worker"U	

In summary, a simple system can be effectively specified using a single atomic model. Given a more

complex system, one may benefit from a modular approach in which the single atomic model is

replaced with a single coupled model containing several atomic models. For an even more complex

system, one may couple models in a hierarchical fashion. The single coupled model is then replaced

with several coupled models nested within one another.

DEVS and Object-Oriented Programming

Support for modular and hierarchical model design is one of the DEVS formalism’s most compelling

attributes. It is often remarked, however, that widely adopted object-oriented programming

practices provide the same benefits. Technically, object-orientation and DEVS are not alternatives

to one another. Many simulations have been implemented using object-oriented programming

features in conjunction with DEVS conventions. That said, the analogy between object-oriented

classes and DEVS models deserves some discussion.

In an objected-oriented language, classes include methods that take arguments, deliver return

values, and reassign member variables. Similarly, DEVS models include transition functions that

take inputs, deliver outputs, and reassign state variables. The difference is that these transition

functions also depend on the simulated time elapsed since the previous event. It is possible to

include this temporal information in object-oriented code, but it is not the norm.

The other major difference between object-orientation and DEVS is that, with the former, it is

common practice to design classes that reference one another explicitly. For example, one might

implement a Detector class that invokes a receive_signal method on a reference to a Fixture

object. With DEVS, models almost never reference the other models with which they interact. In our

Detector specification, there is no mention of the Fixture it was designed to influence. The Detector

model simply outputs a signal with no particular destination, and it is up to the encompassing

coupled model to direct the signal to the Fixture model. Some pairs of interacting object-oriented

classes exhibit a similar degree of independence. But typically, at least one of these classes will

depend on the other.

The pseudocode below illustrates an object-oriented but DEVS-unaware implementation of the

Detector model. Note that there is no representation of time in the receive_action method, the

main function responsible for state transitions. Also note that the lighting fixture is explicitly

referenced.

class Detector_OO:

 private variable signal

 private variable fixture

 public method set_fixture(f):
 fixture:= f

 public method receive_action(action):
 new_signal:= [...]
 if not signal = new_signal:
 signal:= new_signal
 fixture.receive_signal(signal)

Compare the implementation above to the following Detector implementation which combines

DEVS with object-oriented programming. Time is now represented. In the external_transition

function, the time elapsed since the previous event is given by the argument elapsed. If the elapsed

time were needed in the internal_transition function, it could be obtained by invoking

time_advance. Note that there is no longer an explicit reference to the lighting fixture. It is up to

the coupled model, which would be implemented in a separate class, to ensure that the result of the

output method is delivered to a lighting fixture object.

class Detector_DEVS inherits from AtomicModel:

 private variable signal

 private variable sent

 public method external_transition(elapsed, action):
 signal, sent:= [...]

 public method internal_transition():
 sent:= true

 public method output():
 return ["signal_out", signal]

 public method time_advance():
 if not sent:
 dt:= 0
 else:
 dt:= infinity
 return dt

Our DEVS-aware Detector class inherits from a base class named AtomicModel. The idea is that a

generic simulation procedure can be implemented once for AtomicModel, and applied to any

application-specific derived class like Detector_DEVS. Admittedly, this use of inheritance does not

require a well-established modeling formalism. However, by following DEVS conventions, an

object-oriented programmer ensures that his or her simulation code is sufficiently generic to

accommodate any discrete-event simulation.

DEVS and Parallel Computing

In what ways can one exploit multi-core processors, multi-process computers, and multi-computer

networks to accelerate computer simulations developed with DEVS? One option is to parallelize

only the few most time-consuming functions. The drawback to this approach is that, given a large

coupled model, it requires the execution time to be dominated by only a few of the many atomic

models. Furthermore, the parallelization effort is invested in certain models while others will show

no improvement. Another option is to run multiple simulations simultaneously with different sets

of parameters, as is frequently done for Monte Carlo or cost minimization problems. Unfortunately,

this technique is of little use if one must accelerate a single simulation run. A third option is to

exploit the modularity of DEVS to automate the parallelization of a coupled model. For this

approach, DEVS practitioners often adopt a variant of the formalism called Parallel DEVS (Chow &

Zeigler, 1994).

Recall that the select function orders the internal events of imminent submodels. In our example, if

the Detector and the Fixture were scheduled to experience internal events at the same time, we

ensured that the Fixture’s transition would occur first. Parallel DEVS eliminates the select function.

The order of simultaneous events is deliberately left ambiguous to allow the functions of multiple

imminent submodels to be executed concurrently.

With Parallel DEVS, all imminent models send outputs simultaneously. This raises two issues which

the variant addresses. First note that the outputs of multiple imminent submodels may be directed

to a single receiving model. This receiving model must recognize that the order in which its inputs

arrive is essentially arbitrary and best ignored. For that reason, the external transition function of a

Parallel DEVS atomic model takes a bag of inputs instead of a single input. A bag is like a set in that

its items are unordered, but different in that it can contain duplicate items.

The other issue raised by simultaneous outputs is the possibility that one submodel sends an

output to a second submodel at the same time that the second submodel sends its own output.

Clearly the output functions get evaluated for both models. But since the second model is both

receiving an input and sending an output, which transition function should be called? In many cases

it makes sense to call δint first, since the output function has already been evaluated, and then to call

δext to process the input. But that raises the question of what elapsed time value to pass into δext:

should it be 0 or the previous ta(s)? Parallel DEVS addresses the issue by requiring atomic models

to have a confluent transition function δcon. It is invoked in place of δext or δint whenever external

and internal events collide.

Earlier in the chapter when we specified atomic models for the Detector and Fixture, we assumed

that external and internal events would never collide. We later used Select to guarantee that

internal events would be fully processed before inputs were received. Had we used Parallel DEVS,

we would have defined both confluent transition functions as follows to achieve the same effect.

Y°±; vT�, ��T�UU, ~¼8<w � YAfg vTY:;gT�U, 0U, ~¼8<w	
Summary and Further Reading

With state transitions that depend in part on the time elapsed since the previous event, a DEVS

model can represent practically any real-world system that varies in time. The DEVS formalism

provides first and foremost a set of conventions for specifying atomic models, along with a

procedure for performing simulations with these models. If one specifies a coupled model, then due

to closure under coupling one has implicitly defined an equivalent atomic model. This modular

approach can be used to avoid a complex atomic model in favor of multiple simpler atomic models.

Similarly, by combining models in a hierarchical fashion, one avoids a complex coupled model in

favor of multiple simpler coupled models.

It is important to ensure that every DEVS model has a legitimate specification, one that always

allows a simulation to properly advance time. For atomic models, this requires an examination of

the delay between events in an infinite sequence of internal events. For coupled models, one must

look at the delay between inputs and outputs for every submodel in a feedback loop.

We have applied these core DEVS concepts by developing and analyzing specifications representing

an office lighting system and its various components. As mentioned at the outset, more information

on the DEVS formalism and related theory can be found in Zeigler et al (2000).

It is helpful to understand the similarities and differences between the DEVS formalism and the

conventions used by modern software developers. We have already compared DEVS with object-

orientation, but another noteworthy set of conventions is the Unified Modeling Language (UML).

Traditional UML is somewhat limited in its ability to represent the timing of events. This

shortcoming is partially addressed by an extension of UML designed for real-time software systems

(UML-RT). Huang & Sarjoughian (2004) provide a detailed comparison of UML-RT with DEVS, and

explain how the DEVS formalism’s treatment of time is better suited to simulation studies.

DEVS users should familiarize themselves with several variants of the formalism. One of these

variants is Parallel DEVS, which we have already discussed. Another notable variant is Cell-DEVS,

which applies DEVS to models composed of an array of cells (Wainer & Giambiasi, 2001). Among

other things, Cell-DEVS has been used to model the spread of forest fires, the diffusion of heat, and

urban traffic. Stochastic DEVS (STDEVS) is one of several ways one can introduce randomness into

a DEVS model (Castro et al, 2008). It replaces the deterministic results of the transition functions

with probability spaces. There is also a variant called Dynamic Structure DEVS (DSDEVS), which

allows a coupled model’s submodels and connections to be added and deleted during a simulation

(Barros, 1995).

Several noteworthy books cover DEVS from different perspectives. Written for simulation

practitioners, Wainer (2009) demonstrates the application of DEVS and the Cell-DEVS variant to

physical, biological, environmental, communication, and urban systems. Nutaro (2011) focuses on

the implementation of simulation software using object-oriented techniques and Parallel DEVS. A

chapter on hybrid systems shows how DEVS can be integrated with various differential equation

solving techniques. For those interested in the latest developments in the field, Wainer &

Mosterman (2011) provide a collection of recent DEVS research.

References

Barros, F. J. (1995). Dynamic structure discrete event system specification: A new formalism for

dynamic structure modeling and simulation. In Proceedings of the 27th conference on Winter

simulation (WSC) (pp. 781-785).

 Castro R., Kofman E., & Wainer G. A. (2008). A formal framework for stochastic DEVS modeling and

simulation. In Proceedings of the 2008 Spring simulation multiconference (SpringSim) (pp.

421-428).

Chow, A. C. H., & Zeigler, B. P. (1994). Parallel DEVS: a parallel, hierarchical, modular, modeling

formalism. In Proceedings of the 26th conference on Winter simulation (WSC) (pp. 716–722).

Huang D., & Sarjoughian, H. (2004). Software and Simulation Modeling for Real-Time Software-

Intensive Systems. In Proceedings of the 8th IEEE International Symposium on Distributed

Simulation and Real-Time Applications (DS-RT) (pp. 196-203).

Nutaro J. J. (2011). Building Software for Simulation: Theory and Algorithms with Applications in C++.

Hoboken, NJ, USA: John Wiley & Sons.

United Nations Environment Programme (2009). Buildings and Climate Change: Summary for

Decision Makers.

Vangheluwe, H. (2000). DEVS as a common denominator for multi-formalism hybrid systems

modelling. In Proceedings of IEEE International Symposium on Computer-Aided Control

System Design (CACSD) (pp. 129–134).

Wainer, G. A., & Giambiasi, N. (2001). Timed Cell-DEVS: modelling and simulation of cell spaces. In

Discrete Event Modeling & Simulation: Enabling Future Technologies. Springer-Verlag.

Wainer, G. A. (2009). Discrete-Event Modeling and Simulation: A Practitioner’s Approach. Boca Raton,

FL, USA: CRC Press.

Wainer, G. A., & Mosterman, P. J. (2011). Discrete-Event Modeling and Simulation: Theory and

Applications. Boca Raton, FL, USA: CRC Press.

Zeigler, B. P. (1976). Theory of Modeling and Simulation. New York: Wiley-Interscience.

Zeigler, B. P., Praehofer, H., & Kim, T. G. (2000). Theory of Modeling and Simulation (2nd ed.). San

Diego, CA, USA: Academic Press.

Definitions

Atomic Model: An indivisible DEVS model specified with state transition functions, an output

function, a time advance function, and sets of input values, output values, and states.

Closure Under Coupling: A property of the DEVS formalism which guarantees that the behavior of

any coupled model can be captured by an atomic model specification.

Confluent Transition Function: A state transition function used in the Parallel DEVS variant to

handle collisions between external and internal events.

Consistent: Describes a model specification that contradicts neither itself nor the conventions of

the modeling formalism.

Coupled Model: A DEVS model composed of other DEVS models; a hierarchy is produced when

coupled models are composed of other coupled models.

Discrete Event Simulation: A simulation in which time is repeatedly advanced by a variable, non-

negative duration to the time of the next event.

Discrete Time Simulation: A simulation in which time is repeatedly advanced by a fixed time step.

External Transition Function: The state transition function invoked whenever an input is

received.

Feedback Loop: A circular path in a coupled model formed by traversing couplings from their

source submodels to their destination submodels.

Imminent: Describes a submodel that is scheduled to experience an internal event at least as soon

as any other in the same coupled model.

Internal Transition Function: The state transition function invoked immediately after the output

function.

Legitimate: Describes a model that, in the absence of inputs, is guaranteed to allow simulated time

to advance towards infinity without stopping or converging.

Memoryless: Describes a model which has no state, and can therefore produce an output value that

depends only on present information such as a just-received input.

Model Parameter: Represents a value that can be supplied to a model, but remains constant

throughout a simulation.

Output Function: A function invoked to obtain an output value whenever the duration given by the

time advance function elapses.

Port: A label assigned to a model to distinguish a particular type of input or output from other

types of inputs or outputs.

Resultant: An atomic model that represents the behavior of a coupled model; closure under

coupling guarantees that for every coupled model, a resultant exists.

Select Function: A function used to order the internal events of multiple imminent submodels; in

the Parallel DEVS variant, the function is excluded to allow all imminent submodels to produce

outputs simultaneously.

State: Any complete or partial, or raw or transformed record of a system’s history.

State Variable: A variable used to represent part of a model’s state.

Time Advance Function: A function invoked at the beginning of a simulation and after any state

transition to give the duration that must elapse before the next internal event occurs.

Total State: Includes both the component of a system’s state that remains constant between events,

and the continuously changing time that has elapsed since the previous event.

