

Mobile Simulation with applications for Serious Gaming

Andrew Jeffery Jonathon Panke Nick Eaket Gabriel Wainer

Department of Systems and Computer Engineering

Carleton University, Ottawa, ON Canada

jeffery.andrew@gmail.com, jonathonjpanke@gmail.com, neaket@gmail.com, gwainer@sce.carleton.ca

Keywords: Discrete event simulation, DEVS, Smart

Phones, serious games

Abstract

We discuss the design and development of an
infrastructure for serious gaming applications using a
formal Modeling and Simulation environment based on
the DEVS formalism. The research uses the RISE
simulation middleware services to build a serious
game application that can be deployed on a mobile
device using a properly developed mobile client. We
propose a mobile client that leverages the cloud
services provide by a RISE server to obtain simulation
data to be used in a serious gaming application. In
particular, our prototype provides a stock trading game.
The simulation model is based on a Brownian motion
economic model that has been analyzed
comparatively to real data.

1. INTRODUCTION

With the growth of network connectivity in past
years there has been a dramatic increase in the
applications and services that are provided for mobile
devices [1]. Additionally, in order to overcome the
hardware processing limitations of current technology
new methodologies and design architectures have
emerged. Such technologies, which include distributed
systems and cloud services, make it possible to bring
complex, process heavy simulation to mobile devices.
As further developments in mobile communications
arise new tools are being deployed on mobile
platforms. When taking into the consideration the
increasing popularity of such mobile tools and
applications in younger generations, there is a large
demand to try to incorporate mobile devices in
teaching practices. It has been suggested that the best
way to do this is using MSGs (Mobile Serious Games)
as explained in [2].

 The idea of serious gaming is to provide an

environment analogous to reality. In such an
environment a problem is presented to the participants,
which they must solve using similar techniques and

knowledge that would be required if the event
occurring was real. This allows for the development
and practice of the required skills before they are
necessary in the field.

Figure 1 Relationships between Games, Simulation
and Learning. [3]

In order to design a serious game successfully,

many aspects are required. One of the largest aspects
of serious games we are interested in is simulation.
Many existing serious games are based on game
engines that do not provide real simulation capabilities
(instead, they provide basic training scenarios).
Instead the goal of incorporating simulation in the
serious game is to emulate a real life environment that
follows specific rules that related to the real world. The
mixture of simulation and learning within the format of
a game is shown in Figure 1, the game based learning
region is the area that incorporates a serious game.
Outside of a game format many of the simulation
aspects and requirements that serious games
implement are found in training simulations, these
training simulations normally focus more on their

mailto:jeffery.andrew@gmail.com
mailto:jonathonjpanke@gmail.com
mailto:neaket@gmail.com
mailto:gwainer@sce.carleton.ca

realism over their fun factor, thus not being classified
as games.

Applying the idea of serious gaming to a video

game normally requires some level of simulation from
the application in order to obtain the proper data for
events that are occurring in the virtual system. One
technique for this is Web-based simulation which has
become popular in conducting online simulations. The
idea is to use a Web server to implement the
networked architecture using a particular architecture
(client-server, High Level Architecture, CORBA, RPC,
etc) [4]. Many advanced implementations have been
built on SOAP Web Services to communicate [5] [6].
These simulation middlewares are complex to
interoperate, and their composition scalability is limited.
Instead, the Representational State Transefer style
(REST) can solve these issues by imitating the Web
interoperability style. RESTful Web Services focus on
the resources more than on the operations, solving the
interoperability limitation and making easy the
development of Mash-Ups [7] (which reuse and
combine existing services to build a new web
application).

Since this type of simulation can be

computationally heavy, these types of games
traditionally have been limited to hardware not found in
mobile devices. Yet with the developments in cloud
computing and services, there now exists systems that
can provide simulation to a remote user as a cloud or
web service. The RISE simulation environment
provides an API to access its cloud services using
RESTful commands to run simulation models remotely
and retrieve the simulation results. In this article, we
present a mobile Smartphone client that uses
simulation of a Stock Market environment and the
inclusion of player driven missions to learn about the
basics of stock trading. The client titled Stock Market
Tycoon was originally developed with the desire to
bring simulation data done on a distributed server to
mobile devices. This later turned into a MSG with the
goal of having missions for the user to achieve. The
successful development of a client that meets the goals
of allowing a user to have access to a simulation model
remote and the results based on dynamically varying
input values was achieved.

2. BACKGROUND

Serious gaming has evolved from what it used to
be with war games, and board games. It has entered
into the digital world, which has led to techniques in
designing serious games. Today serious games for the
financial stock market are very scarce. A few
examples of modern games with the stock market are:
Wall Street Survivor, MarketWatch, and UpDown [8] [9]
[10].All three of these web browser based games use

real stock values in an attempt to teach their users
about investing. These differ from our application
greatly due to their lack of simulation (and they also
need connection to the Internet at all times). Another
example of similar work is found in [11] which
demonstrates a simulation engine for a stock options
game. Ours differs greatly due to ours being a serious
game, and the patented engine is for a normal game
which not based on the actual economic behavior of
real stocks. Another difference is our focus on
presenting the simulation on a mobile device,
simulation on a mobile device, mobile simulation in this
way is discussed in [12]. Our client focuses more on
using the application as a serious game, allowing the
use of dynamic data for the simulations.

The goal of any Distributed Simulation middleware
is to interlace different simulation environments,
allowing synchronization for a simulation that is ran
across a distributed network [13]. RISE is the first
RESTful distributed simulation environment, which
was used in this project to allow for cloud computing
services, and allowing multiple users able to run
simulations at the same time.

As discussed in [12] and [14], RISE allows plug-

and-play interoperability for simulation tools by
decoupling the services from the formalism. RISE
provides a general purpose API to interface different
simulators, allowing different clients and enabling
varied experimental frameworks with a number of
instances with different settings. RISE exposes the
tools through a set of URIs, and when a client makes a
request, it uses a specific URI. RISE looks for the
resource, and sends the request to it, collecting and
forwarding the response to the client. The clients
connect to the URIs via HTTP channels. They use GET
operations to read resource data, PUT operations to
create new resources or update them, and DELETE to
remove a resource. For example, a simple session
could include the following sequence [12]:

1. PUT http://.../cdpp/workspaces/bob/DCDpp

/model, to create a model in the workspace “bob”;

2. POST http://.../cdpp/workspaces/bob/DCDpp

/model?zdir=files, to submit the model files;

3. PUT http://.../cdpp/workspaces/bob/DCDpp

/model/simulation, to start the simulation;

4. GET http://.../cdpp/workspaces/bob/DCDpp

/model/results, to download the results

To use the RISE server an API is provided which

uses REST commands. Table 1 includes a summary
of some of the services available, which can be used
for simulation purposes.

Table 1. REST API with Messaging [14]

Action Channel HTTP
Success

Code

Message

Create
Framework

PUT 201
(Created)

XML

Configure
Framework

PUT 200 (OK) XML

Submit
Model

POST 200 (OK) .zip file

Delete
Framework

DELETE 200 (OK) None

Start
Simulation

PUT 202
(Accepted)

None

Stop/Abort
Simulation

DELETE 200 (OK) None

Check
Simulation

GET 200 (OK) XML

Download
Results

GET 200 (OK) .zip file

RISE can be instantiated with multiple simulators;

and in this case, we have used the default container:
Discrete-event Systems Specification (DEVS) models
created to be run in the CD++ simulation toolkit [18].
DEVS [15] is a formalism used in the modeling of both
continuous and discrete worlds. Basic DEVS models
(called atomic) are specified as black boxes, and
several DEVS models can be integrated together
forming a structural model (called coupled).

A DEVS atomic model can be defined as:

M = < X, S, Y, int, ext, λ, ta >

where X represents a set of input events, S a set of
states, and Y is the set of output events. Four

functions manage the model behavior: int the internal

transitions, ext the external transitions, the outputs,
and D the duration of a state. Each model uses its
input and output ports to communicate with other
models. External events are received via the input
ports, and the model defines its behavior upon the
reception of such inputs. The internal events produce
state changes, and results are communicated to its
influences using the output ports.

A DEVS coupled model can be defined as:

CM = < X, Y, D, {Mi}, {Ii}, {Zij} >.

where X is the set of input events, Y is the set of

output events, D is an index for the components of the
coupled model, and for every i in D, Mi is a basic
DEVS component (i.e., an atomic or coupled model).
The list of influencees Ii of a given model is used to
determine the models to which outputs must be sent.

The function Zij translates outputs of a model into
inputs for the other models. An index of influencees is
created for each model (Ii). For every j in the index,
outputs of model Mi are connected to inputs in model
Mj.

As we can see, DEVS can be used to model a

system whose states change based on the expiration
of a time delay, or due to an input event, which with a
stock market environment encompasses both these.
An input event for a stock market would be a random
event that affects how a stock changes. DEVS models
are a simplified structure of what it represents in reality.
The models are built upon the experimental
expectations of the system; these constraints being
the working conditions and its application domain.
These constraints are a composition of atomic or
coupled components. Coupled models are just a
collection of atomic models or coupled sub models.
This allows for the creation of complex models.

CD++ [18] is a toolkit, which was developed for

the use of modeling simulation environments using
DEVS formalisms. CD++ has support for creating two
types of models, behavioral and structural models.
CD++ is built as a class hierarchy of models related
with simulation processing entities. DEVS Atomic
models can be programmed and incorporated onto the
Model basic class hierarchy using C++. A new atomic
model is created as a new class that inherits from the
Atomic base class. The state of a model is defined in
the AtomicState class. When creating a new atomic
model, a new class derived from Atomic has to be

created.

class Atomic : public Model {

public:

virtual ~Atomic(); // Destructor

protected:

//Kernel services

Time nextChange();

Time lastChange();

holdIn(AtomicState::State &, Time &);

passivate();

ModelState* getCurrentState() ;

sendOutput(Time &time, Port &port, Value value);

//User defined functions.

initFunction();

externalFunction(ExternalMessage &);

internalFunction(InternalMessage &);

outputFunction(CollectMessage &);

string className() const

}; // class Atomic

Figure 2. The Atomic Class

 Atomic is an abstract class that declares a model’s
API and defines some service functions the user can

use to write the model. The Atomic class provides a
set of services and requires a set of functions to be
redefined:

- nextChange()/lastChange(): return the time

until the next internal transition/since the last state
change.

- holdIn(state, Time): tells the simulator that

the model remains in a state during a given Time. It

corresponds to the ta(s) function of DEVS.

- passivate(): sets the next internal transition

time to infinity. The model will only be activated again
if an external event is received.

- getCurrentState(): returns current model’s phase

- sendOutput(Time, port, value): sends an

output message through the specified port.

The new class should override the following functions:

- initFunction(): method invoked by the

simulator at the beginning the simulation.

- externalFunction(ExternalMessage &):

method invoked when an external event arrives to a

port. It corresponds to the ext function of the DEVS
formalism.

- internalFunction(InternalMessage &):

method defining the int function of the DEVS
formalism.

- outputFunction(const CollectMessage&):

in charge of transmitting the output events of the

model. It corresponds to the function of the DEVS
formalism.

 Once an atomic model is defined, it can be
combined with others into a multicomponent model
using a specification language specially defined with
this purpose. The coupled model at the higher level is
always named [top]. Four properties must be
configured: components, output ports, input ports and
links between models. The following syntax is used:

Components: name1[@atomicClass1] name2 ...

 This sentence lists the components of the coupled
model (atomic or coupled). For atomic models, an
instance and a class name must be specified, allowing
a coupled model to use more than one instance of a
given atomic class. For coupled models, only the

model name must be given, and it must be defined as
another group in the same file.

In: portname1 portname2 ...

Out: portname1 portname2 ...

 These sentences enumerate the model’s
input/output ports (optional clause).

Link:source[@model] destination[@model].

 This clause describes the internal and external
coupling scheme. If the name of the model is not
included, the default will be the coupled model
currently being defined.

Since a system is decomposed into some number
of modular sub-systems, this makes interconnecting
models easy and provides communication of data from
model to model. This also allows models to be
developed in iterations since additional behavior can
be added in the form of an additional module (i.e.
another atomic model). An advantage of using RISE is
that the user spaces on the servers are broken up into
domains and frameworks, where there is no
interference or shortage of resources between them.
This is useful because it allows for multiple users to
have their own unique data which can’t be tampered
with by other users. If many users are requesting
simulations to be executed at the same time, each of
them doesn’t have to wait for someone to free up
resources.

A complete description of RISE can be found in

[16] and [17]. The most common way to use a
simulator remotely is by designing a web-based tool.
Byrne, Heaveya and Byrne in [19] provide an
extensive review of web-based simulators, discussing
the advantages and disadvantages of the client/server
pattern applied to the simulation, and analyzing how
and with which technologies it can be implemented. In
the light of their paper, our work uses a hybrid
simulation and visualization approach to drive a
remote managed simulation (the client grabs the raw
data and visualizes them).

3. SIMULATING BROWNIAN MOTION

Simulating a stock market environment can be
achieved in many different ways. One of the most
common approaches is using Brownian motion [20],
an introductory method to calculating trends in assets.
The mobile application prototype we have built uses
Brownian motion, and more specifically deterministic
Brownian. The deterministic approach allows for the

prediction of the assets in a manner that doesn't allow
for risk. The formula used for our model is [20]:

where the variables are ΔS = S0 - ST , the change
in stock price, ST is the new Stock Price. S0 is defined
as the initial Stock Price and r is the Random
Normalized Variable. Note that Δt is the difference in
time between ST and S0 as a fraction of a year.

The model receives the initial stock price at the
current time, and it then calculates the predicted stock
value for the next 24 hours at one hour intervals by
default. The time interval between stock prices can be
changed in the model to allow for finer or broader
intervals. In order to track the data of multiple stocks,
each stock has an integer stock index that is unique so
that data sets may be properly associated with their
stocks.

In order to have dynamic data, the client running on

the Smartphone creates an event file that lists the
events and the time of occurrence that the model
utilizes when it runs the simulation. Each event must
specify the time it will occur at during the simulation,
the port that the event will be sent to in the model and
the value of the event. An example of an event (.ev)

file is given in figure 3. In this example there are 3

events that will occur during the simulation. The

events occur at hour 01:00:00, 02:00:00, and 03:00:00
as stated in the event file. Each event occurs on the
stated port, in this case all the events occur on the

same port (InStockIndex), note that the port must

be name and exist so that events can be entered
correctly into the simulation. The final entry is the
value that is passed to the requested port. This value
is then used by the simulation when the event occurs
as specified by the model used. The creation of event
files is the core mechanic that is used to provide
information to the simulation server from the mobile
client.

00:01:00:00 InStockIndex 004567

00:02:00:00 InStockIndex 003678

00:03:00:00 InStockIndex 234568

Figure 3 Example of the Event File

On the successful creation of the .ev file, the file is
compressed and uploaded to the RISE server via the
POST command [12]. After the file is uploaded to the
required simulation framework, the simulation can be
initialed at any time by using the REST command PUT

[12]. Once the simulation completes the simulation
results are available as a zip file that may be retrieved
until either the simulation is executed again or the
framework is deleted. An example of these commands
follows as:

POST http://.../cdpp/workspaces/andrew/DCDpp

/Brownian?zdir=Brownian, to submit the model
files to the Brownian model framework;

PUT http://.../cdpp/workspaces/andrew/DCDpp

/Brownian/simulation, to start the simulation;

GET http://.../cdpp/workspaces/bob/DCDpp

/Brownian/results, to download the results after
simulation is completed.

The status of the simulation can be checked using the

command:

GET http://.../cdpp/workspaces/andrew/DCDpp

/Brownian/status, to submit the model files;

 To show the realism in a Brownian motion
simulated stock environment, simulations where
compared to real world data. The real world stock
example chosen for comparison was the well-known
company BlackBerry (BBRY). The graph in figure 4 is
the daily stock graph for March 20

th
, 2013. While

looking at the stock graph note that the market opens
9:30 EST and closes at 4:00 EST, and the graph plots
the points in 5 minute intervals. The graph shows the
BBRY stock opening with a price of $16.25 a stock
and closing with a price of $16.53. The letters on the
stock graph are news events that correlate with the
BBRY stock for that day.

 To test and validate the effectiveness of the
deterministic Brownian motion DEVS model that was
implemented two variables had to be calculated – the
change in time and the number of data points for a
given day. For this we got a value of Δt to be ~0.0042
which equates to a 5 minute interval of time in
accordance to a year, and 84 data points to mimic a
normal stock day. Using these numbers to generate 5
trials, the simulation results can be seen in figure 5.

Figure 4 BlackBerry March 20th Stock Graph [21]

Based on a visual inspection of the results, it can be
seen that some trials produce similar behaviour, while
a few others deviate slightly. But the closing stock
prices are within the 10% margin of the realistic value.
Further data analysis is summarized in table 2.

Based on the result in table 2, it can be seem that the
random data produced falls in the region of the
realistic data as can be seen by the trial averages and
the range of their 10% confidence intervals. This
behaviour displayed is reminiscent of a realistic stock
price.

4. IMPLEMENTATION

The application is based on a client-server
architecture. A main piece of any client-server
architecture is the communication protocol used to
handles all the messaging and communication
between the two entities. The communication module
implemented in this project is the communication link
for the mobile client and the RISE server, which
handles all messaging between the two entities. The
communication module has a number of
responsibilities that assist that client aside from
communicating with the RISE server. The system was
organized into 3 subsystems during development, the
GUI, the Phone Client engine, and the RISE server.
An overview of the entire system is given in the
deployment diagram in figure 6.

The ViewModel governs the interactions between

the GUI and the communications from the RISE server
on the locally stored data. The data model is used to
store and retrieve data in a thread safe manner and
the Communication Module tracks the state of the
server and responds to asynchronous messages from
the ViewModel and the RISE server. Due to this
asynchronous nature and that each stock update
requires a number of stages to complete in sequence,
the Communication Module implemented a state
machine to track the process of each update as shown
in figure 7. Each state of the communication state
machine represents a stage in the communication
protocol that the client and server execute in order to
obtain new data. The data returned is dependent on
the chosen model of simulation, and the client
determines which model it is using before
communication begins so that it can signal the RISE
server to setup the appropriate framework.

Figure 7 Application State Diagram

There are four states to the communication state
machine. The Ready state is the initial state when the
state machine is instantiated. In the Ready state there

Figure 5 Multiple simulation runs mocking

Blackberry's daily stock graph

GUI
Phone Client

RISE Server

View ViewModel
Communication

Module

Stock Market
Simulation

DataModel

Figure 6 System deployment diagram

Table 2 Simulation Trial Statistics

Trial Average

Mean (μ)

Standard

Deviation

(σ)

10%

C.I.

5% C.I.

1 16.27 0.25 ±0.054 ±0.071

2 16.23 0.21 ±0.046 ±0.061

3 16.21 0.27 ±0.057 ±0.076

4 16.49 0.11 ±0.024 ±0.032

5 15.82 0.24 ±0.051 ±0.063

is no activity occurring on either the client or server
side; it is from this state that any communication
begins. The Setup state indicates the framework has
been initialized with the selected model and has
pending data for a simulation. The Running state
indicates no other data requests can be sent, since a
simulation is currently running. The Done state
indicates that there is pending simulation data that
needs to be collected by the client. The transitions
refer to the actions that the communication goes
through and reflect a change in the state of the RISE

server. The PostModelData transition occurs when

the mobile client creates a model framework and
instantiates the correct model with an event file. The

StartSimulation transition sends a PUT

command to the RISE server to start the simulation
and on the mobile client a new thread is created to

monitor the simulation status. The SimComplete

transition has the guard that the server must have
completed the simulation, if true the data retrieval and
parsing objects are loaded so that on the retrieval of
the results they can be updated in the DataModel. The

GetResults transition fetches the data from the

server and uses the loaded parser to read and sort the
data, which afterward is updated in the DataModel.
This method is used for communication to the server
by the client to obtain new simulation data.

5. APPLICATION AS A SERIOUS GAME

The stock simulations are executed remotely on
the RISE server in the cloud. This allows a
Smartphone to run complex, process and CPU intense
simulations due to the use of the cloud services
provided by the RISE API. The mobile client was
implemented as a Windows Phone Client application
which goal was to distribute the more CPU intense
task of simulation to the RISE server for the purposes
of simulation a stock market environment. The initial
data was sent using the REST commands that are
specified by the RISE server documentation via
compressed zip files. The Mobile client was then able
to retrieve the simulation data to use as the basis for a
stock market trading simulator called “Stock Market
Tycoon” or SMT.

 The two iconic screens of any stock market profile
are the recent history and the summary of current
statistics view. These where both included in the
application to help improve the emersion of the player
in the game. Since the format of these views is
commonly the same, the phone client attempted to
reuse the most common elements as seen in figure 8.
The two most common elements where the line graph

of recent history and the color coded gain or loss
arrows on the market screen for at a glance analysis.

 Stock Market Tycoon uses the simulated data to
present to the user the options of trading stock for
profit and browsing a small selection of stocks that
were present in a traditional stock market format. This
format and the use of the simulation data provides a
recreation of the same environment that is present in a
real stock market except for the real-time aspect since
time progression of the market on the phone client is
at the user’s discretion. Therefore the client application
implements the target attributes of a serious game due
to it’s the recreation of a real system based on a
simulation model.

6. CONCLUSION AND FUTURE WORK

 For the recreation of a system in the format of a
serious game, there is the possibility for game based
learning. But despite the educational content of a
game, if the recreation of the real system is valid then
the game constitutes a serious game. Serious games
require a set of rule or model in order to recreate the
environment and events that a system is composed of.
In order to accomplish this in a video game the most
common method is via simulation.

 The hardware limitations of mobile devices present
a barrier to heavy computational simulations. What we
have presented is an implementation that leverages
web services provided by the RISE API to run
simulation models on a cloud server architecture, this
frees the mobile device to focus on user interaction. By
separating the implementation of a serious game into
two areas, simulation and user interaction, the client
server design for the mobile application aims to fit the
appropriate hardware for the appropriate task. The

Figure 8 (Left) Market available in SMT client

(Right) View of recent stock behavior

more hardware limited smart phone runs it application
with its focus on the user experience and
communication. While the more hardware
sophisticated RISE server can run complex models
developed to accurately represent the stock market
system or other environments of the choice. Some
areas for future work are the creation of a more
complex stock market environment by expanding on
the existing Brownian model. Furthermore this
technique can be expanded to different systems and a
more generalized client or communication engine can
be pursued.

REFERENCES
[1] B. M. Cunningham, P. J. Alexander and A. Candeub,

"Network Growth: Theory and Evidence from the

Mobile Telephone Industry," Information Economics

and Policy, vol. 22, no. 1, pp. 91-102, 2010.

[2] J. Sanchez, C. Mendoza and A. Salinas, "Mobile

Serious Games for Collaborative Problem Solving,"

IOS Press, Chile, 2009.

[3] M. Ulicsak, "Games in Education: Serious Games,"

Futurelab, Slough, 2010.

[4] G. Wainer and K. Al-Zoubi, "An Introduction to

distributed simulation," in Modeling and Simulation

Fundamentals: Theoretical Underpinnings and Practical

Domains, C.Banks, J. Sokolowski, Eds., Wiley, 2010.

[5] S. Mittal, J. L. Risco-Martín and B. P. Zeigler,

DEVS/SOA: A Cross-Platform Framework for Net-

centric Modeling and Simulation in DEVS Unified

Process, SIMULATION, vol. 85, no. 7, pp. 419-450,

July 2009.

[6] A. Boukerche, F. M. Iwasaki, R. B. Araujo and E. B.

Pizzolato, “Web-Based Distributed Simulations

Visualization and Control with HLA and Web Services,”

in Proc. of the 2008 12th IEEE/ACM DS-RT,

Washington, DC, USA, 2008.

[7] Y. Harzallah, V. Michel, Q. Liu and G. Wainer,

“Distributed Simulation and Web Map Mash-Up for

Forest Fire Spread,” in Proceedings of the 2008 IEEE

Congress on Services, Washington, DC, USA, 2008.

[8] "Wall Street Survivor," [Online]. Available:

www.wallstreetsurvivor.com/dashboard. [Accessed 16

April 2013].

[9] "UpDown," [Online]. Available: www.updown.com.

[Accessed 16 April 2013].

[10] "Market Watch," The Wall Street Journal, [Online].

Available: www.marketwatch.com/game/fet. [Accessed

16 April 2013].

[11] K. e. al., "Stock Simulation Engine For An Options

Trading Game". US Patent 6709330, 24 March 2004.

[12] E. Mancini, G. Wainer, K. Al-Zoubi and O. Dalle,

"Simulation in the Cloud Using Handheld Devices," in

MSGC' 12 Workshop, CCGRID, 2012.

[13] G. Wainer and K. Al-Zoubi, "Using REST Web-Services

Architecture for Distributed Simulation," in

ACM/IEEE/SCS 23rd Workshop on Principles of

Advanced and Distributed Simulation, Lake Placid,

2009.

[14] G. W. Khaldoon Al-Zoubi, "RISE: REST-ing

Heterogenious Simulations Interoperability," in Winter

Simulations Conference, Ottawa, 2010.

[15] B.P. Zeigler, H. Praehofer, T.G.Kim. Theory of

Modeling and Simulation. 2
nd

 Edition. Acadamic Press.

2000.

[16] K. Al-Zoubi and G. Wainer, “Rise: Rest-ing

heterogeneous simulations interoperability,” in

Proceedings of the 2010 Winter Simulation Conference

(WSC), Baltimore, MD, 2010.

[17] K. Al-Zoubi and G. Wainer, "Distributed Simulation

Using RESTful Interoperability Simulation Environment

(RISE) Middleware," in Intelligence-Based Systems

Engineering, Springer Berlin Heidelberg, 2011, pp. 129-

157.

[18] G. Wainer, Discrete-Event Modeling and Simulation: A

Practitioner's Approach, P. Mosterman, Ed., Taylor and

Francis, 2009.

[19] J. Byrne, C. Heaveya and P. Byrne, “A review of Web-

based simulation and supporting tools,” Simulation

Modelling Practice and Theory, vol. 18, no. 3, pp. 253-

276, 2010.

[20] S. R. Starja, Stochastic Modeling of Stock Prices,

Montgomery Investment Technology Inc., New Jersey.

[21] "Research in Motion Ltd.," Google Finance, [Online].

Available:

https://www.google.com/finance?q=BBRY&hl=en&ei=b

15vUbirI8THqAHHswE. [Accessed 15 April 2013].

