
Cellular Simulation of Asymmetric Energy

Requirements in Wireless Sensor Networks

Mohammad El-Shabani

Department of Electrical Engineering and Computer

Science

University of Ottawa, Ottawa, ON, Canada

m.elshabani@uottawa.ca

Mohammad Moallemi, Gabriel Wainer

Department of Systems and Computer

Engineering

Carleton University

 Ottawa, ON, Canada

 {moallemi, gwainer}sce.carleton.ca

Abstract—We discuss the importance of careful

energy requirement planning in Wireless Sensor Networks

(WSN) to optimize and reduce cost. Different cellular

discrete-event models of WSN are presented and

visualized. An experiment is carried out using the CD++

tool. Different results are presented, showing a range of

realistic scenarios. The scenarios show the importance of

energy management in these networks.

Keywords — WSN, Energy, CD++, Cell-DEVS,

requirement planning

I. Introduction

A Wireless Sensor Network (WSN) consists of

spatially distributed set of nodes that are able to

communicate in an ad-hoc manner with no need for

infrastructure [1]. Each node includes processing power,

multiple types of memory, an RF transceiver, a power

source (e.g., batteries and solar cells), and variety of

sensors and actuators [2]. Each node functions as a

wireless router connected to a set of neighboring nodes

with packet routing capability. A routing algorithm tries

to optimize the path based on selected parameters, such as

the number of hops or energy consumed.

One of the potential applications that drive research

in WSN is data collection. This application is envisioned

as being able to deploy hundreds or thousands of enabled

nodes in random or specific locations, where the nodes

are able to auto-configure by setting up ad-hoc

connections. For example, nodes could be thrown out of a

helicopter in human non-accessible areas such as volcanic

centers or rainforests. Other data collection applications

include air quality monitoring in cities, water quality

monitoring, structural health as in building and bridges,

and emergency planning.

The WSN nodes usually have constrained resources

to reduce costs, and limited energy consumption. Each

node usually has a microcontroller chip, and a lightweight

operating system such as TinyOS [3] or ContikiOS [4],

which makes creating new applications much easier. A

node is usually equipped with certain sensors to collect

data about its environment in a specified variable rate.

A sink is used to collect the data gathered by the

nodes. All data collected is forwarded to the sink, which

acts as a gateway to the WSN; or alternatively, it forwards

all the data using some other technology such as GPRS

mobile data network or IEEE 802.11 WLAN to be stored

in a database. A sink is able to do that because it is

usually a more powerful device and is able to handle

higher data transmission rates and energy consumption.

Such a node has either power connectivity or is equipped

with an energy collection method such as a solar panel.

Energy efficiency is one of the most important

factors in WSNs, since nodes must run for longest

possible period of time while powered by a constrained

battery. It is impractical to change the batteries of a big

number of nodes, a process that needs to be done for

hundreds or thousands of nodes, which could be difficult

or inefficient to access in individually. Energy is

consumed by a number of activities or states within a

node, for example, computation activity in the MCU, data

transmission, data reception, idling and sleeping. The

most energy consuming activity is data transmission, and

the other factors fade in comparison. This is why, it is

considered more efficient to do more computation, if it

can reduce the size of the data transmitted. Therefore, a

node’s lifetime is measured by the amount of data it

transmits.

The sink connects the WSN to the outside world; thus,

data collected is forwarded to a sink either continuously

or on-demand. Energy requirements of the nodes around

the sink are asymmetrical, since, the closer nodes will be

forwarding more traffic towards the sink. In addition,

obstacles in the field create additional variance in energy

consumption. This will be illustrated in our model and

will be discussed later.

The variance of energy requirements of nodes makes

it harder to plan the power source capacity. It creates a

compromise between the early death of nodes around the

source, or wasted battery nodes away from the sink. There

are many possible solutions such as deploying larger

number of nodes around the sink, which are put to sleep

according to a topology control algorithm.

Wireless Sensor Network modeling and simulation is

a very active research area due to the complex analysis of

the applications envisioned for these networks, as well as

the high cost of deployment and maintenance of the

sensors. However, the large amount of intensive research

dedicated to this area is generated by unique problems

that require novel solutions. This is because WSN is

different from the other types of conventional networks

that have been developing for the last three decades [2].

Simulation tools are commonly used to predict the

behavior of WSNs; in fact, they are used for all kinds of

distributed and real-time systems, since it is very difficult

to prove their behavior deterministically. Besides, it is too

expensive and time consuming to test actual

implementations.

DEVS is a well-known formal discrete-event M&S

methodology, which is based on generic dynamic systems

theory. The discrete-event nature of DEVS provides

event-driven response to external stimuli, which can

represent sensor reaction to the environment and resource

limitations. On the other hand, discrete-event

methodologies provide continuous timing of the events. In

particular, DEVS includes well-defined coupling of

components, hierarchical, modular construction, support

for discrete event approximation of continuous systems

and support for repository reuse.

Cellular state-machines (such as Cellular Automata

(CA) [6]) are efficient spatial modeling alternatives for

M&S of WSNs. In this branch of discrete dynamic

systems, which space is represented by a regular grid,

with each cell being a state machine, the time advances in

a discrete manner, triggering state changes in the cells,

based on the value of their neighboring cells. This theory

is used in physics, complexity science, theoretical biology,

microstructure modeling, and spatial modeling. The Cell-

DEVS formalism [7] is derived from both CA and DEVS.

The Cell-DEVS formalism solves the problem of

unnecessary processing burden in quiescent cells, and it

allows for a more efficient asynchronous execution.

The energy requirement of the nodes is one of the

topics receiving the most research attention due to the fact

that, it is the most limiting factor when it comes to

implementing WSNs. In this paper, energy requirement

variance of nodes in a WSN is modeled using the

Discrete-Event System Specification (DEVS) formalism

[5]. The goal is the use of modeling and simulation (M&S)

to test and understand the operation of networks. This is

done by emulating certain behavior up to the point where

we could say that it matches real behavior within the

experimental frame of interest. The use of simulation has

become so popular due to the complexity of implementing

and proving the correctness of distributed and real-time

systems, which makes it very convenient to model and

simulate this behavior since it reduces the time, effort and

associated costs.

II. Related Work

The energy management issue in WSN is considered as

an important requirement in these networks such that low-

power hardware components and customized system

architectures are required to build them [8]. In WINS

project developed in University of California in Los

Angeles [9] the specific parameters of WSNs namely

higher tolerance to latency and low sampling rates are

taken into account to develop low-power hardware. The

advance of hardware along with software in these

networks has made it very difficult for engineers and

programmers to predict the behavior of large WSNs such

as Smart Dust [10] networks. Therefore, M&S can play a

great role in providing a realistic representation of these

networks that allows for more efficient assessment of the

performance and efficiency of these networks in the field

as well as reducing the costs of testing and providing a

safe and practical test bed for verification of the sensors in

the actual environment [11].

Analytical computational are also investigated in [12]

where two network scenarios are studied: one including

arbitrarily located nodes and traffic patterns, the other one

with randomly located nodes and traffic patterns. Another

study presented in [13] provides mathematical

computations on solving the problem of optimal data

distribution and data collection, and analytically evaluate

the time performance of the solutions. However,

analytical solutions are mostly focused on network

routing and data distribution and do not provide tangible

or visual representation of the networks and are limited by

many factors.

A number of WSN simulators exist that are mostly

concerned with the node management and routing

protocols in these networks. J-Sim [14] is a java-based

object-oriented WSN simulator that provides scripting

language for defining network topologies and routing

algorithms like NS-2. It is built on the WSN simulation

framework of both the ACA and INET simulation tools

[15] and implements several well-known localization,

geographic routing, and directed diffusion protocols.

These protocols can be readily implemented by extending

the object classes defined in the framework and

customizing their behaviors.

In [16] a Markov model of a sensor network is

presented in which sleep mode in nodes is used to

investigate the system performance in terms of energy

consumption, network capacity, and data delivery delay.

The model is limited to analytical model and does not

provide a simulation of the network.

Based on the existing works, most of the efforts are

either analytical calculation of network parameters or

simulation of the network routing protocols and data

transfer. Therefore, our motive here is to provide a

tangible and configurable cellular simulation of WSNs to

analyze the power management as well as efficiency in

these networks by using a discrete-event approach. Our

model also provides a visualization of the environment

and field-base conception of the sensors. This will allow

us to measure the performance factors and be able to

modify network parameters easily to investigate different

scenarios.

Cell-DEVS is an extension to DEVS that allows

defining cellular models with explicit timing delays. A

Cell-DEVS model is a lattice of cells holding state

variables and a computing apparatus, which is in charge

of updating the cell states according to a local rule. This is

done using the current cell state and those of a finite set of

nearby cells (called its neighborhood). Cell-DEVS

improves execution performance of cellular models by

using a discrete-event approach. It also enhances the

cell’s timing definition by making it more expressive.

Each cell is defined as a DEVS atomic model, and it can

be later integrated to a coupled model representing the

cell space. Cell-DEVS models are informally defined as

shown in Figure 1.

Figure 1. Cell-DEVS model [7].

CD++ [17] is an M&S tool that provides a

development environment for implementing DEVS and

Cell-DEVS models. DEVS atomic models can be

developed and incorporated into a class hierarchy

programmed in C++. Coupled models can be defined

using a built-in specification language. Cell-DEVS

models are built following the formal specifications for

DEVS, and a built-in language is provided to describe the

behavior rules. The language is based on the formal

specifications of Cell-DEVS. The model specification

includes the definition of the size and dimension of the

cell space, the shape of the neighborhood and borders.

The cell’s local computing function is defined using a set

of rules with the form POSTCONDITION DELAY

{PRE-CONDITION}. These indicate that when the

PRECONDITION is satisfied, the state of the cell will

change to the designated POSTCONDITION, whose

computed values will be transmitted to other components

after consuming the DELAY. If the precondition is false,

the next rule in the list is evaluated until a rule is satisfied

or there are no more rules. CD++ was used to simulate

and visualize the energy requirement variance in WSNs.

An advanced version of CD++ [19] was also used to

provide this functionality, which enabled the

improvement of the original model and allowed the

execution of more realistic test cases.

(0,0,0)

newPacket and

Blocked Planes

WSN

Plane

Energy

Plane

Figure 2: Cell neighborhood Cell-DEVS model

implemented in CD++

The model uses three planes, each containing a

different behavior.. The first plane is used to control the

number of packets to be forwarded in the next step

(packets in buffer). The second plane is monitoring

energy consumption. The third plane is used to generate

new packets. A multi-plane neighborhood definition

connects the cells of all planes together to easily access

data from the associated cells in each plane. Figure 2

illustrates this design.

The first plane is a rotation plane in which all nodes

are initialized to a random number, and they rotate from 0

to 9. The other plane is set to 1 when the corresponding

node in the rotation plane is equal to 1. Thus, all nodes

generate packet with the same period; however, they are

not synchronized.

The sink is located in the lower left end in the

suggested model, because it is simpler to follow the

shortest path in such a scenario correctly. To be able to

locate a sink, we would require additional planes, which

will increase the computation time of the simulation (as

the number of cells would increase).

In addition, nodes in the main plane read the states of

energy and blocked planes included in the neighboring set.

This is to make the decision on where to forward packets.

Cells in the energy plane set themselves to a very large

number, if the associated cell in the blocked plane is set.

Therefore, other nodes will not assume that packets are

forwarded by the blocked cells.

The three extra planes simplify and reduce the rule-

set because they help account for many special cases in an

ingenious way. For example, the new packet plane

reduced the set of rules to half. In addition, before adding

the blocked plane, a blocked cell was represented by

setting a cell in the main plane to -1. However, the model

required more than 20 rules to account for special cases.

After introducing the plane, the cell in the main plane

remains zero. This, in addition to setting corresponding

cells in the energy plane to a very large number,

eliminated all but one special case because they fit

correctly.

III. Models Definition

The model defined involves a single plane of cells and

each cell has 8 state variables. A size of 20x20 cells was

chosen. To simplify implementation, a modular design is

used where forwarding is separated from routing to

simplify the implementation.

An initialization phase starts by setting up the routing

parameters or nodes. Each node that does not have routing

information looks if one of its neighbors sends the rout

information to it or if one of them is a sink. Then, it

defines the route by setting a route variable pointing at

that node. There are actually three routing variables: one

is used for forwarding, and two others, which are

alternative options. The main routing variable is evaluated

at each time-step according to the energy consumption of

possible destinations. It chooses the one that has

consumed less energy. The first alternative is the first

route found by the node as described earlier, while the

second alternative is any other possible path that is not the

same as the first one and where the other node does not

point back to the original one.

After the initialization phase is done for some cell,

new packets start being generated one for every 10-time

steps. At the beginning, a rotation is set up and for each

10 time steps, all the cells send a single packet at a

random point in that period. This is why a rotation

variable is required.

At each time-step, each node checks the routing of

neighboring cells and collects packets that are pointing

towards it by looking at the neighbors’ packet variable in

addition to packets generated by it. Then, it sets that

number to its own packet variable.

The energy consumed by each node is evaluated to be

the total number of packets a node forwarded; thus, the

energy consumed variable counts that number and this

variable is used to visualize the results of the model.

An additional entity variable is required to be

initialized at the beginning to distinguish between regular

nodes, empty cells, and blocking cells. This variable is

used to create various test cases that will be shown later.

The model was implemented in CD++ defined as in

Table 1. The rules are organized in sets to facilitate

explanation:

Set 1: sets route for exceptional cases according to

entity, if blocked, set to -1 and if sink set to 1. These are

preset constants not required for operation, but are used

for visualization.

Set 2: if routing is not set yet, and is set at one of the

neighbors, set routing to that neighbor. This is the initial

phase that establishes shortest path reachability.

Set 3: This phase establishes the alternative paths.

route2 is set to the next neighbor that is reachable to the

sink. It makes sure that none of the routing alternatives of

that neighbor direct traffic at the original cell.

Set 4: In the rare occasion of two neighboring cells

directing traffic at each other, the following set of rules

takes care of fixing that.

Set 5: The following rules take care of choosing a

route from the two alternatives. It attempts to create some

sort of load balancing be forwarding the neighbor with the

lower total energy consumption.

Set 6: This rule is the last resort; it is executed if no

other previous rule is.

type : cell dim : (20,20)

delay : transport border : unwrapped

neighbors : wsn(-1,-1) wsn(-1,0) wsn(-1,1)

neighbors : wsn(0,-1) wsn(0,0) wsn(0,1)

neighbors : wsn(1,-1) wsn(1,0) wsn(1,1)

localtransition : wsnrule

statevariables : route route1 route2 entity energy

packets rotation newPacket

neighborports : route1 route2 route entity energy

packets rotation newPacket

initialvariablesvalue : wsn.stvalues

[wsnrule]

#set 1

rule : {~route := $route1; ~route1 := $route1;

~route2:= $route2;#macro(routinePort)}{$route1 := -1;

$route2 := -1;#macro(routineAssign) } 10 {$entity = 1}

rule : {~route := $route1; ~route1 := $route1;

~route2:= $route2;#macro(routinePort)}{$route1 := 1;

$route2 := 1;#macro(routineAssign) } 10 {$entity =2}

...

#set 6

rule : {~rotation :=

$rotation;#macro(routinePort)}{ #macro(routineAssign) }

10 { t}

Table 1: Model implemented in the enhanced CD++.

The model uses a set of rules defined as macros as

follows::
#BeginMacro (routineAssign)

$rotation := remainder ($rotation+1,10);

$newPacket := ifu($rotation = 1 and $route !=

0 ,1,0,0);

$packets := if ($entity != 1, $newPacket

+ ifu((0,1)~route = 4 , (0,1)~packets ,0,0)

+ ifu((-1,0)~route = 5 , (-1,0)~packets ,0,0)

+ ifu((0,-1)~route = 2 , (0,-1)~packets ,0,0)

+ ifu((1,0)~route = 3, (1,0)~packets ,0,0),-1);

$energy := if ($entity != 1 , $energy +

$packets , 10000);

#EndMacro

#BeginMacro (routinePort)

~rotation := $rotation;

~newPacket := $newPacket;

~packets := $packets;

~energy := $energy;

#EndMacro

Table 2: The macros

The ―routineAssign‖ macro takes care of assigning

the correct values to a set of variables; this macro is

executed every time since it is included with all the rules.

The rotation variable is incremented at every time step,

and is initialized to random number between 0 and 9 at

initialization.

The packets variable indicates the number of packets

queued at the cell in that time step; it is calculated at each

time step by collecting the packets destined to it from the

neighboring cells. The energy variable indicates the total

number of packets forwarded.

IV. Simulation Results

Various testing scenarios were considered to cover best

cases and realistic situations. The rest of this section

shows the results produced by these scenarios in the

following figures. Note that the most interesting results

produced for each scenario are shown here. The following

were the chosen results:

1- The number of packets queued at each node at

the chosen time step, where a darker red color indicates a

larger number of packets.

2- Total energy consumption at each node at that

time step, where a darker red color indicates higher total

energy consumption.

3- The routing map at that time step, where each

color refers to forwarding in a certain direction: red refers

to the right, green to the left, yellow to upwards and pink

to downwards. The blue color indicates a sink.

In Scenario 1, no blocked cells are considered and all

nodes are allowed to forward packets naturally. In

addition, only one sink is set at the lower left corner

similar to the old model. This should provide a uniform

fade of the level of energy consumption from the lower

left corner (the sink) to the upper right corner.

Figure 3: a) Number of packets queued at each node on

time step 80 b) Energy consumption c) Routing map at

time step 80 for the basic case

The results shown in Scenario 1 are as expected; the

routing map is dynamic and the one shown is a snapshot.

There is a higher packet density towards the upper left

cells (which represent the WSN nodes) in Figure 3a. This

explains the higher energy consumptions at the higher left

cells than the lower right in Figure 3b, as the latter

forwarded fewer packets. The routing map shows that

most of the cells are forwarding upwards or to the left,

and this makes sense. The few cells that behave

differently forward to the right in order to distribute

energy consumption. This is done this way because they

detect higher total consumption at the upper cell than the

one to the right.

Another two scenarios (scenario 2 and 3, shown in

the following figures) use multiple sinks. The first

includes two sinks at the upper left and right corners and

another midway of the lower row, while the other has a

sink at each corner of the model.

Figure 4: a) Packets at time step 80 for the multiple sinks

case; b) Energy consumption and c) Routing map for

Scenario 2

Figure 5: Packets queued at each node at time step 80;

energy consumption; and c) Routing map for Scenario 3.

These test cases (Scenario 2 and 3) show a much

better distribution of packets and energy consumption.

Figure 5a shows that the density of packets is higher

towards the corners, which means that those cells forward

more packets. This is also conveyed by the energy

consumption distribution in Figure 5b. Figure 5c shows

the four sinks in the four corners (the blue cells); in

addition, it shows the forwarding directions at that

instance.

Our following test (scenario 4) included blocking

obstacles to the scenario 2.

Figure 6: a) Number of packets queued at each node

at time step 80; b) Energy consumption; and c) Routing

map with obstacles.

The black cells in the three figures above represent

dead regions; they could either represent a dead node, a

barrier preventing communication or just an empty space

with no nodes deployed; in any case, no forwarding

happens through these cells.

This simulation result shows an interesting routing

map established, and the longer paths taken by packets.

In addition, in scenario 5, one sink is centered at the

middle of the cell space. This shows how placing the node

in the middle changes the variance of energy consumption.

Figure 7: Number of packets queued at each node at

time step 80; b) Energy consumption; c) Routing map.

 Figure 7b shows an energy consumption distribution

similar to scenario 1.

Finally, we show a bad blocking case (scenario 6) in

which the sink has been placed in the middle, and an

almost closed circle of blocking cells is around it.

Figure 4: The number of packets queued at each node

at time step 80; b) Energy consumption; c) Routing map.

Finally, we include the simulation results of two

realistic cases (scenarios 7 and 8). In the first example,

there are four sinks placed strategically in the cells (5,5),

(5,15), (15,5), (15,15). This shows how such a WSN

implementation can reduce variance.

Figure 5: a) Number of packets; b) Energy

consumption; c) Routing map for a better location

scenario for sinks.

Figure 9a shows how a better choice for the location

of the sinks results on a smaller number of packets in the

network.

In addition, a realistic blocking case was simulated in

a field with almost 25% randomly placed blocked cells.

This case shows how packets are forwarded around the

blocked nodes; and thus, further energy consumption

variance can be seen in those areas.

Figure 10: a) Number of packets; b) Energy

consumption; c) Routing map for a randomly distributed

set of obstacles.

 In a realistic scenario, a certain ratio of dead spots

should be expected. In addition, as shown in the routing

map in figure 10c, some cells that do contain active nodes

are not active (the white cells); this is because these cells

are surrounded with dead cells.

After implementing an improved version of the

model using a new version CD++, and collected some

basic performance metrics in order to evaluate the

performance the different models.

Figure 6: The total time required for simulation by

the CD++ tool (comparison between original and

enhanced tools)

As illustrated in the figures above, the total number

of messages actually increased using the enhanced

version of CD++; however, the execution time required to

simulate the model was reduced significantly to almost

30% of the original time required.

V. Conclusion

In this paper, we modeled WSNs using the enhanced

version of Cell-DEVS in which multiple values are

allowed in each cell. In the experiments provided, the

variance of energy requirement of WSN nodes was

illustrated and various deployment cases were tested as

planned. It was showed that careful planning of energy

requirements is needed to reduce and optimize costs.

In addition, the possibilities provided by the

enhanced version of CD++ are demonstrated. It was

shown how scenarios can be built and tested rapidly due

to the tool’s unique architecture. In addition, the enhanced

version provided significant CPU time improvement.

VI. References

[1] W. Dargie, and C. Poellabauer, "Fundamentals of wireless sensor
networks: theory and practice", John Wiley and Sons, 2010 ISBN
978-0-470-99765-9, pp. 168–183, 191–192.

[2] J. A. Stankovic, "Wireless sensor networks." computer 41.10
(2008): 92-95.

[3] TinyOS official website available at: http://www.tinyos.net/,
accessed Aprill 2013.

[4] ContikiOS official website available at http://www.contiki-os.org/,
accessed April 2013.

[5] Zeigler, B., T. Kim, and H. Praehofer, ―Theory of Modeling and
Simulation‖, Academic Press, ISBN: 0127784551, 2000.

[6] Wolfram, S. (1986). Theory and applications of cellular automata.

[7] Wainer, G. A. (2009). Discrete-event modeling and simulation: a
practitioner's approach. CRC.

[8] W. Rabiner Heinzelman, A. Chandrakasan, H. Balakrishnan,
―Energy-efficient communication protocol for wireless
microsensor networks,‖ Proceedings of the 33rd International
Conference on System Sciences, January 2000.

[9] G. Asada, M. Dong, T.S. Lin, F. Newberg, G. Pottie, W.J. Kaiser,
H.O. Marcy, ―Wireless integrated network sensors: Low power
systems on a chip,‖ Proceedings of the 24th IEEE European Solid
State Circuits Conference, 1998.

[10] Smart Dust project website available at:
http://robotics.eecs.berkeley.edu/~pister/SmartDust. Accessed
April 2013.

[11] Liu, Jason, et al. "Simulation modeling of large-scale ad-hoc
sensor networks." European Simulation Interoperability Workshop.
Vol. 200. No. 1. 2001.

[12] P. Gupta and P. R.Kumar, ―The Capacity of Wireless Networks,‖
IEEE Trans. on Information Theory, vol. 46, Mar. 2000.

[13] C. Florens and R.McEliece, ―Packet Distribution Algorithms for
Sensor Networks,‖ IEEE Infocom, San Francisco, CA, Mar. 2003.

[14] Sobeih, Ahmed, Jennifer C. Hou, Lu-Chuan Kung, Ning Li,
Honghai Zhang, Wei-Peng Chen, Hung-Ying Tyan, and Hyuk Lim.
"J-Sim: a simulation and emulation environment for wireless
sensor networks." Wireless Communications, IEEE 13, no. 4
(2006): 104-119.

[15] H.-Y. Tyan and J. C. Hou, ―JavaSim: A Component-Based
Compositional Network Simulation Environment,‖ Proc. Western
Simulation Multiconference — Communication Networks and
Distributed Systems Modeling and Simulation (CNDS’01), Jan.
2001.

[16] Chiasserini, C-F., and Michele Garetto. "Modeling the
performance of wireless sensor networks." INFOCOM 2004.
Twenty-third Annual Joint Conference of the IEEE Computer and
Communications Societies. Vol. 1. IEEE, 2004.

[17] G. Wainer: "CD++: a Toolkit to Define Discrete Event Models",
Software, Practice and Experience, Wiley, Vol. 32, No 3. pp.
1261-1306. November 2002.

[18] Blerim Qela, Gabriel A. Wainer, Houssein Mouftah, "Simulation
of Large Wireless Sensor Networks using Cell-DEVS",
Proceedings of the Winter Simulation Conference, Austin, TX,
2009.

[19] A. López, G. Wainer. Improved Cell-DEVS model definition in
CD++. P.M.A. Sloot, B. Chopard, and A.G. Hoekstra (Eds.): ACRI
2004, LNCS 3305.Springer-Verlag. 2004.

[20] E. Glinsky; G. Wainer: "Performance Analysis of Real-Time
DEVS models", In Proceedings of Winter Simulation Conference,
San Diego, U.S.A, 2002.

http://www.tinyos.net/
http://www.contiki-os.org/

