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Abstract—We discuss the importance of careful 

energy requirement planning in Wireless Sensor Networks 

(WSN) to optimize and reduce cost. Different cellular 

discrete-event models of WSN are presented and 

visualized. An experiment is carried out using the CD++ 

tool. Different results are presented, showing a range of 

realistic scenarios. The scenarios show the importance of 

energy management in these networks.  
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I.  Introduction  

A Wireless Sensor Network (WSN) consists of 

spatially distributed set of nodes that are able to 

communicate in an ad-hoc manner with no need for 

infrastructure [1]. Each node includes processing power, 

multiple types of memory, an RF transceiver, a power 

source (e.g., batteries and solar cells), and variety of 

sensors and actuators [2]. Each node functions as a 

wireless router connected to a set of neighboring nodes 

with packet routing capability. A routing algorithm tries 

to optimize the path based on selected parameters, such as 

the number of hops or energy consumed.  

One of the potential applications that drive research 

in WSN is data collection. This application is envisioned 

as being able to deploy hundreds or thousands of enabled 

nodes in random or specific locations, where the nodes 

are able to auto-configure by setting up ad-hoc 

connections. For example, nodes could be thrown out of a 

helicopter in human non-accessible areas such as volcanic 

centers or rainforests. Other data collection applications 

include air quality monitoring in cities, water quality 

monitoring, structural health as in building and bridges, 

and emergency planning. 

The WSN nodes usually have constrained resources 

to reduce costs, and limited energy consumption. Each 

node usually has a microcontroller chip, and a lightweight 

operating system such as TinyOS [3] or ContikiOS [4], 

which makes creating new applications much easier. A 

node is usually equipped with certain sensors to collect 

data about its environment in a specified variable rate.  

A sink is used to collect the data gathered by the 

nodes. All data collected is forwarded to the sink, which 

acts as a gateway to the WSN; or alternatively, it forwards 

all the data using some other technology such as GPRS 

mobile data network or IEEE 802.11 WLAN to be stored 

in a database. A sink is able to do that because it is 

usually a more powerful device and is able to handle 

higher data transmission rates and energy consumption. 

Such a node has either power connectivity or is equipped 

with an energy collection method such as a solar panel.  

Energy efficiency is one of the most important 

factors in WSNs, since nodes must run for longest 

possible period of time while powered by a constrained 

battery. It is impractical to change the batteries of a big 

number of nodes, a process that needs to be done for 

hundreds or thousands of nodes, which could be difficult 

or inefficient to access in individually. Energy is 

consumed by a number of activities or states within a 

node, for example, computation activity in the MCU, data 

transmission, data reception, idling and sleeping. The 

most energy consuming activity is data transmission, and 

the other factors fade in comparison. This is why, it is 

considered more efficient to do more computation, if it 

can reduce the size of the data transmitted. Therefore, a 

node’s lifetime is measured by the amount of data it 

transmits.  

The sink connects the WSN to the outside world; thus, 

data collected is forwarded to a sink either continuously 

or on-demand. Energy requirements of the nodes around 

the sink are asymmetrical, since, the closer nodes will be 

forwarding more traffic towards the sink. In addition, 

obstacles in the field create additional variance in energy 

consumption. This will be illustrated in our model and 

will be discussed later.  

The variance of energy requirements of nodes makes 

it harder to plan the power source capacity. It creates a 

compromise between the early death of nodes around the 

source, or wasted battery nodes away from the sink. There 

are many possible solutions such as deploying larger 

number of nodes around the sink, which are put to sleep 

according to a topology control algorithm.  



Wireless Sensor Network modeling and simulation is 

a very active research area due to the complex analysis of 

the applications envisioned for these networks, as well as 

the high cost of deployment and maintenance of the 

sensors. However, the large amount of intensive research 

dedicated to this area is generated by unique problems 

that require novel solutions. This is because WSN is 

different from the other types of conventional networks 

that have been developing for the last three decades [2]. 

Simulation tools are commonly used to predict the 

behavior of WSNs; in fact, they are used for all kinds of 

distributed and real-time systems, since it is very difficult 

to prove their behavior deterministically. Besides, it is too 

expensive and time consuming to test actual 

implementations. 

DEVS is a well-known formal discrete-event M&S 

methodology, which is based on generic dynamic systems 

theory. The discrete-event nature of DEVS provides 

event-driven response to external stimuli, which can 

represent sensor reaction to the environment and resource 

limitations. On the other hand, discrete-event 

methodologies provide continuous timing of the events. In 

particular, DEVS includes well-defined coupling of 

components, hierarchical, modular construction, support 

for discrete event approximation of continuous systems 

and support for repository reuse.  

Cellular state-machines (such as Cellular Automata 

(CA) [6]) are efficient spatial modeling alternatives for 

M&S of WSNs. In this branch of discrete dynamic 

systems, which space is represented by a regular grid, 

with each cell being a state machine, the time advances in 

a discrete manner, triggering state changes in the cells, 

based on the value of their neighboring cells. This theory 

is used in physics, complexity science, theoretical biology, 

microstructure modeling, and spatial modeling. The Cell-

DEVS formalism [7] is derived from both CA and DEVS. 

The Cell-DEVS formalism solves the problem of 

unnecessary processing burden in quiescent cells, and it 

allows for a more efficient asynchronous execution.  

The energy requirement of the nodes is one of the 

topics receiving the most research attention due to the fact 

that, it is the most limiting factor when it comes to 

implementing WSNs. In this paper, energy requirement 

variance of nodes in a WSN is modeled using the 

Discrete-Event System Specification (DEVS) formalism 

[5]. The goal is the use of modeling and simulation (M&S) 

to test and understand the operation of networks. This is 

done by emulating certain behavior up to the point where 

we could say that it matches real behavior within the 

experimental frame of interest. The use of simulation has 

become so popular due to the complexity of implementing 

and proving the correctness of distributed and real-time 

systems, which makes it very convenient to model and 

simulate this behavior since it reduces the time, effort and 

associated costs. 

 

II. Related Work 

The energy management issue in WSN is considered as 

an important requirement in these networks such that low-

power hardware components and customized system 

architectures are required to build them [8]. In WINS 

project developed in University of California in Los 

Angeles [9] the specific parameters of WSNs namely 

higher tolerance to latency and low sampling rates are 

taken into account to develop low-power hardware. The 

advance of hardware along with software in these 

networks has made it very difficult for engineers and 

programmers to predict the behavior of large WSNs such 

as Smart Dust [10] networks. Therefore, M&S can play a 

great role in providing a realistic representation of these 

networks that allows for more efficient assessment of the 

performance and efficiency of these networks in the field 

as well as reducing the costs of testing and providing a 

safe and practical test bed for verification of the sensors in 

the actual environment [11].  

Analytical computational are also investigated in [12] 

where two network scenarios are studied: one including 

arbitrarily located nodes and traffic patterns, the other one 

with randomly located nodes and traffic patterns. Another 

study presented in [13] provides mathematical 

computations on solving the problem of optimal data 

distribution and data collection, and analytically evaluate 

the time performance of the solutions. However, 

analytical solutions are mostly focused on network 

routing and data distribution and do not provide tangible 

or visual representation of the networks and are limited by 

many factors.  

A number of WSN simulators exist that are mostly 

concerned with the node management and routing 

protocols in these networks. J-Sim [14] is a java-based 

object-oriented WSN simulator that provides scripting 

language for defining network topologies and routing 

algorithms like NS-2. It is built on the WSN simulation 

framework of both the ACA and INET simulation tools 

[15] and implements several well-known localization, 

geographic routing, and directed diffusion protocols. 

These protocols can be readily implemented by extending 

the object classes defined in the framework and 

customizing their behaviors.  

In [16] a Markov model of a sensor network is 

presented in which sleep mode in nodes is used to 

investigate the system performance in terms of energy 

consumption, network capacity, and data delivery delay. 

The model is limited to analytical model and does not 

provide a simulation of the network. 

Based on the existing works, most of the efforts are 

either analytical calculation of network parameters or 

simulation of the network routing protocols and data 

transfer. Therefore, our motive here is to provide a 

tangible and configurable cellular simulation of WSNs to 

analyze the power management as well as efficiency in 

these networks by using a discrete-event approach. Our 

model also provides a visualization of the environment 



and field-base conception of the sensors. This will allow 

us to measure the performance factors and be able to 

modify network parameters easily to investigate different 

scenarios.  

Cell-DEVS is an extension to DEVS that allows 

defining cellular models with explicit timing delays. A 

Cell-DEVS model is a lattice of cells holding state 

variables and a computing apparatus, which is in charge 

of updating the cell states according to a local rule. This is 

done using the current cell state and those of a finite set of 

nearby cells (called its neighborhood). Cell-DEVS 

improves execution performance of cellular models by 

using a discrete-event approach. It also enhances the 

cell’s timing definition by making it more expressive. 

Each cell is defined as a DEVS atomic model, and it can 

be later integrated to a coupled model representing the 

cell space. Cell-DEVS models are informally defined as 

shown in Figure 1. 

 

Figure 1. Cell-DEVS model [7]. 

CD++ [17] is an M&S tool that provides a 

development environment for implementing DEVS and 

Cell-DEVS models. DEVS atomic models can be 

developed and incorporated into a class hierarchy 

programmed in C++. Coupled models can be defined 

using a built-in specification language. Cell-DEVS 

models are built following the formal specifications for 

DEVS, and a built-in language is provided to describe the 

behavior rules. The language is based on the formal 

specifications of Cell-DEVS. The model specification 

includes the definition of the size and dimension of the 

cell space, the shape of the neighborhood and borders. 

The cell’s local computing function is defined using a set 

of rules with the form POSTCONDITION DELAY 

{PRE-CONDITION}. These indicate that when the 

PRECONDITION is satisfied, the state of the cell will 

change to the designated POSTCONDITION, whose 

computed values will be transmitted to other components 

after consuming the DELAY. If the precondition is false, 

the next rule in the list is evaluated until a rule is satisfied 

or there are no more rules. CD++ was used to simulate 

and visualize the energy requirement variance in WSNs. 

An advanced version of CD++ [19] was also used to 

provide this functionality, which enabled the 

improvement of the original model and allowed the 

execution of more realistic test cases.  
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Figure 2: Cell neighborhood Cell-DEVS model 

implemented in CD++  

The model uses three planes, each containing a 

different behavior.. The first plane is used to control the 

number of packets to be forwarded in the next step 

(packets in buffer). The second plane is monitoring 

energy consumption. The third plane is used to generate 

new packets. A multi-plane neighborhood definition 

connects the cells of all planes together to easily access 

data from the associated cells in each plane. Figure 2 

illustrates this design.  

The first plane is a rotation plane in which all nodes 

are initialized to a random number, and they rotate from 0 

to 9. The other plane is set to 1 when the corresponding 

node in the rotation plane is equal to 1. Thus, all nodes 

generate packet with the same period; however, they are 

not synchronized.  

The sink is located in the lower left end in the 

suggested model, because it is simpler to follow the 

shortest path in such a scenario correctly. To be able to 

locate a sink, we would require additional planes, which 

will increase the computation time of the simulation (as 

the number of cells would increase). 

In addition, nodes in the main plane read the states of 

energy and blocked planes included in the neighboring set. 

This is to make the decision on where to forward packets. 

Cells in the energy plane set themselves to a very large 

number, if the associated cell in the blocked plane is set. 

Therefore, other nodes will not assume that packets are 

forwarded by the blocked cells. 

The three extra planes simplify and reduce the rule-

set because they help account for many special cases in an 

ingenious way. For example, the new packet plane 

reduced the set of rules to half. In addition, before adding 

the blocked plane, a blocked cell was represented by 

setting a cell in the main plane to -1. However, the model 

required more than 20 rules to account for special cases. 



After introducing the plane, the cell in the main plane 

remains zero. This, in addition to setting corresponding 

cells in the energy plane to a very large number, 

eliminated all but one special case because they fit 

correctly.  

III. Models Definition 

The model defined involves a single plane of cells and 

each cell has 8 state variables. A size of 20x20 cells was 

chosen. To simplify implementation, a modular design is 

used where forwarding is separated from routing to 

simplify the implementation.  

An initialization phase starts by setting up the routing 

parameters or nodes. Each node that does not have routing 

information looks if one of its neighbors sends the rout 

information to it or if one of them is a sink. Then, it 

defines the route by setting a route variable pointing at 

that node. There are actually three routing variables: one 

is used for forwarding, and two others, which are 

alternative options. The main routing variable is evaluated 

at each time-step according to the energy consumption of 

possible destinations. It chooses the one that has 

consumed less energy. The first alternative is the first 

route found by the node as described earlier, while the 

second alternative is any other possible path that is not the 

same as the first one and where the other node does not 

point back to the original one. 

After the initialization phase is done for some cell, 

new packets start being generated one for every 10-time 

steps. At the beginning, a rotation is set up and for each 

10 time steps, all the cells send a single packet at a 

random point in that period. This is why a rotation 

variable is required.  

At each time-step, each node checks the routing of 

neighboring cells and collects packets that are pointing 

towards it by looking at the neighbors’ packet variable in 

addition to packets generated by it. Then, it sets that 

number to its own packet variable.  

The energy consumed by each node is evaluated to be 

the total number of packets a node forwarded; thus, the 

energy consumed variable counts that number and this 

variable is used to visualize the results of the model. 

An additional entity variable is required to be 

initialized at the beginning to distinguish between regular 

nodes, empty cells, and blocking cells. This variable is 

used to create various test cases that will be shown later.  

The model was implemented in CD++ defined as in 

Table 1. The rules are organized in sets to facilitate 

explanation: 

Set 1: sets route for exceptional cases according to 

entity, if blocked, set to -1 and if sink set to 1. These are 

preset constants not required for operation, but are used 

for visualization. 

Set 2: if routing is not set yet, and is set at one of the 

neighbors, set routing to that neighbor. This is the initial 

phase that establishes shortest path reachability. 

Set 3: This phase establishes the alternative paths. 

route2 is set to the next neighbor that is reachable to the 

sink. It makes sure that none of the routing alternatives of 

that neighbor direct traffic at the original cell. 

Set 4: In the rare occasion of two neighboring cells 

directing traffic at each other, the following set of rules 

takes care of fixing that. 

Set 5: The following rules take care of choosing a 

route from the two alternatives. It attempts to create some 

sort of load balancing be forwarding the neighbor with the 

lower total energy consumption. 

Set 6: This rule is the last resort; it is executed if no 

other previous rule is. 

 
type : cell                   dim : (20,20)           

delay : transport           border : unwrapped 

neighbors : wsn(-1,-1) wsn(-1,0) wsn(-1,1) 

neighbors : wsn(0,-1)  wsn(0,0)  wsn(0,1) 

neighbors : wsn(1,-1)  wsn(1,0)  wsn(1,1) 

localtransition : wsnrule 

statevariables : route route1 route2 entity energy 

packets rotation newPacket 

neighborports : route1 route2 route entity energy 

packets rotation newPacket 

initialvariablesvalue : wsn.stvalues 

 

[wsnrule] 

#set 1 

rule : {~route := $route1; ~route1 := $route1; 

~route2:= $route2;#macro(routinePort)}{$route1 := -1; 

$route2 := -1;#macro(routineAssign) } 10 {$entity = 1} 

rule : {~route := $route1; ~route1 := $route1; 

~route2:= $route2;#macro(routinePort)}{$route1 := 1; 

$route2 := 1;#macro(routineAssign) } 10 {$entity =2} 

 

... 

 

#set 6 

rule : {~rotation := 

$rotation;#macro(routinePort)}{ #macro(routineAssign) } 

10 { t} 

Table 1: Model implemented in the enhanced CD++. 

The model uses a set of rules defined as macros as 

follows:: 
#BeginMacro (routineAssign) 

$rotation := remainder ($rotation+1,10);  

$newPacket :=  ifu($rotation = 1 and $route != 

0 ,1,0,0);  

$packets := if ( $entity != 1, $newPacket  

+ ifu( (0,1)~route = 4 , (0,1)~packets ,0,0) 

+ ifu( (-1,0)~route = 5 , (-1,0)~packets ,0,0)  

+ ifu( (0,-1)~route = 2 , (0,-1)~packets ,0,0)  

+ ifu( (1,0)~route = 3, (1,0)~packets ,0,0),-1); 

$energy := if ( $entity != 1 , $energy + 

$packets  , 10000 ); 

#EndMacro 

 

#BeginMacro (routinePort) 

~rotation := $rotation; 

~newPacket := $newPacket; 

~packets := $packets; 

~energy := $energy; 

#EndMacro 

Table 2: The macros 



The ―routineAssign‖ macro takes care of assigning 

the correct values to a set of variables; this macro is 

executed every time since it is included with all the rules. 

The rotation variable is incremented at every time step, 

and is initialized to random number between 0 and 9 at 

initialization. 

The packets variable indicates the number of packets 

queued at the cell in that time step; it is calculated at each 

time step by collecting the packets destined to it from the 

neighboring cells. The energy variable indicates the total 

number of packets forwarded. 

IV. Simulation Results 

Various testing scenarios were considered to cover best 

cases and realistic situations. The rest of this section 

shows the results produced by these scenarios in the 

following figures. Note that the most interesting results 

produced for each scenario are shown here. The following 

were the chosen results: 

1- The number of packets queued at each node at 

the chosen time step, where a darker red color indicates a 

larger number of packets. 

2- Total energy consumption at each node at that 

time step, where a darker red color indicates higher total 

energy consumption. 

3- The routing map at that time step, where each 

color refers to forwarding in a certain direction: red refers 

to the right, green to the left, yellow to upwards and pink 

to downwards. The blue color indicates a sink. 

In Scenario 1, no blocked cells are considered and all 

nodes are allowed to forward packets naturally. In 

addition, only one sink is set at the lower left corner 

similar to the old model. This should provide a uniform 

fade of the level of energy consumption from the lower 

left corner (the sink) to the upper right corner. 

 

   
Figure 3: a) Number of packets queued at each node on 

time step 80 b) Energy consumption c) Routing map at 

time step 80 for the basic case 

The results shown in Scenario 1 are as expected; the 

routing map is dynamic and the one shown is a snapshot. 

There is a higher packet density towards the upper left 

cells (which represent the WSN nodes) in Figure 3a. This 

explains the higher energy consumptions at the higher left 

cells than the lower right in Figure 3b, as the latter 

forwarded fewer packets. The routing map shows that 

most of the cells are forwarding upwards or to the left, 

and this makes sense. The few cells that behave 

differently forward to the right in order to distribute 

energy consumption. This is done this way because they 

detect higher total consumption at the upper cell than the 

one to the right.   

Another two scenarios (scenario 2 and 3, shown in 

the following figures) use multiple sinks. The first 

includes two sinks at the upper left and right corners and 

another midway of the lower row, while the other has a 

sink at each corner of the model.  

 

   
Figure 4: a) Packets at time step 80 for the multiple sinks 

case; b) Energy consumption and c) Routing map for 

Scenario 2 

   
Figure 5:  Packets queued at each node at time step 80; 

energy consumption; and c) Routing map for Scenario 3. 

These test cases (Scenario 2 and 3) show a much 

better distribution of packets and energy consumption. 

Figure 5a shows that the density of packets is higher 

towards the corners, which means that those cells forward 

more packets. This is also conveyed by the energy 

consumption distribution in Figure 5b. Figure 5c shows 

the four sinks in the four corners (the blue cells); in 

addition, it shows the forwarding directions at that 

instance. 

Our following test (scenario 4) included blocking 

obstacles to the scenario 2. 

 

    
Figure 6: a) Number of packets queued at each node 

at time step 80; b) Energy consumption; and c) Routing 

map with obstacles. 

The black cells in the three figures above represent 

dead regions; they could either represent a dead node, a 

barrier preventing communication or just an empty space 

with no nodes deployed; in any case, no forwarding 

happens through these cells.  

This simulation result shows an interesting routing 

map established, and the longer paths taken by packets.  



In addition, in scenario 5, one sink is centered at the 

middle of the cell space. This shows how placing the node 

in the middle changes the variance of energy consumption.  

 

    
Figure 7: Number of packets queued at each node at 

time step 80; b) Energy consumption; c) Routing map. 

 Figure 7b shows an energy consumption distribution 

similar to scenario 1.  

Finally, we show a bad blocking case (scenario 6) in 

which the sink has been placed in the middle, and an 

almost closed circle of blocking cells is around it.  

 

    
Figure 4: The number of packets queued at each node 

at time step 80; b) Energy consumption; c) Routing map. 

Finally, we include the simulation results of two 

realistic cases (scenarios 7 and 8). In the first example, 

there are four sinks placed strategically in the cells (5,5), 

(5,15), (15,5), (15,15). This shows how such a WSN 

implementation can reduce variance.  

 

   
Figure 5: a) Number of packets; b) Energy 

consumption; c) Routing map for a better location 

scenario for sinks. 

Figure 9a shows how a better choice for the location 

of the sinks results on a smaller number of packets in the 

network.  

In addition, a realistic blocking case was simulated in 

a field with almost 25% randomly placed blocked cells. 

This case shows how packets are forwarded around the 

blocked nodes; and thus, further energy consumption 

variance can be seen in those areas. 

    
Figure 10: a) Number of packets; b) Energy 

consumption; c) Routing map for a randomly distributed 

set of obstacles. 

 In a realistic scenario, a certain ratio of dead spots 

should be expected. In addition, as shown in the routing 

map in figure 10c, some cells that do contain active nodes 

are not active (the white cells); this is because these cells 

are surrounded with dead cells. 

After implementing an improved version of the 

model using a new version CD++, and collected some 

basic performance metrics in order to evaluate the 

performance the different models.  

 

 
Figure 6: The total time required for simulation by 

the CD++ tool (comparison between original and 

enhanced tools) 

As illustrated in the figures above, the total number 

of messages actually increased using the enhanced 

version of CD++; however, the execution time required to 

simulate the model was reduced significantly to almost 

30% of the original time required. 

V. Conclusion 

In this paper, we modeled WSNs using the enhanced 

version of Cell-DEVS in which multiple values are 

allowed in each cell. In the experiments provided, the 

variance of energy requirement of WSN nodes was 

illustrated and various deployment cases were tested as 

planned. It was showed that careful planning of energy 

requirements is needed to reduce and optimize costs.  

In addition, the possibilities provided by the 

enhanced version of CD++ are demonstrated. It was 

shown how scenarios can be built and tested rapidly due 

to the tool’s unique architecture. In addition, the enhanced 

version provided significant CPU time improvement. 
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