Computational Fluid Dynamic Solver based on
Cellular Discrete-Event Simulation for use in
Biological Systems

By

Michael Van Schyndel, B.Eng.

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfilment of the requirers for the degree of

Master of Applied Science in Biomedical Engineering

OttawaCarleton Institute for Biomedical Engineering (OCIBME)
Department of Systems and Computer Engineering
Carleton University
Ottawa, Ontario, Canada, K1S 5B6
January 2014

© Copyright 2014 Michael Van Schyndel

Abstract

The use of computer simulations in biology and the medical research field has gained in
popularity. These simulations are providing researchers the opportunity to better predict the
behavior of biological systes before performing long and expensive physical trials. The
modeling of large biological systems would benefit from a method of approximating fluid flow
quickly and accurately. Currently, no analytical solution exists; instead, many different
numerical mé&hods attempt to provide accurate approximations. They are referred to as
ComputationaFluid Dynamic solvers (CFD).

The Discrete Event System Specification (DEVS) has rarely been used for modeling the
physics of fluid flow. In this thesis we show how CBEVS, a derivative of the DEVS
formalism that conforms to the Cellular Automata parameters, can be used to provide realistic
approximations of fluid flow. The algorithms used in the CFD presented in this thesis are based
on the NavieiStokes equations forontl i near flui d fl ow, which are
Second Law of motion. The goal of the GBEVS based CFD model will be to accurately
approximate the fluid flow with minimal computational effort. Furthermore, the design of the

solver should beush that it can be easily adjusted for use in a wide range of biological systems.

Acknowledgments

| would like to thank my supervisor, Dr. Gabriel Wainer. His dedication, support and
advice has helped me tremendously over the last two yearg gfaduate studies and made
them a rich and rewarding experience. | would like to thank Rhys Goldéi=am Khan and Jos
Stamat Autodesk fohhis help and support during the last year. Finally, | would like to thank my
family and friends, whose love asdpport has helped guide me through my entire graduate

studies.

Contents

Abstract i
Acknowledgements i
Contents iv
List of Tables v
List of Figures v
List of Equations Vi
I 1 o o 11T £ [o 1
I B 1Y Y 1
2 @ o1 g1 o] 180 L= 3
2 Review Of the State Of Ar......cooe e e 5
2.1 Simulating a Computational Fluid Dynamic Solver as a Cellular Automata............. 5
2.2 DEV S e e 12
2.3 CEEDEVS ... e 13
2.4 Implementation of €I-DEVS models uSing CD+t....uvviiiiiiiiiiii e 15
2.5 CFD and CelDEVS modeling of Biological Systems and the Medical Field........... 20
S ProbIlemM STAtEMENT.cciiiiii e 24
4 Model Definition & Implementationoiiieiiiieiiiee e e e 27
4.1 MOAEIDETINILION ...t e et e e e e e e b e e e e aeeeenanes 27
4.2 DIffuSION FUNCHIOM ...ttt e et e 32
4.3 ADVECTION FUNCHION. ...ttt ettt ettt e et e e e e e es 36
4.4 Proj@tion FUNCHION.ciii et e e e e e e e e rann e 40
4.5 BoUNAry FUNCLION.........ouuiiiiiiie e e e e e e et e e e et e e e eennn s 43
4.6 Implementing the Algorithm as a CGENEVS in CD++......ocovvvevviiiieeviiieeeeeeeeeennn. . 45
5 SIimulations Of CFD MOUEL..........uiiiiiiiii et eaees 57
5.1Testing the MOAEL.......coounni e 57
5.2 COronary Artery DISEASE.uiiiiiiii ettt ee et e e et e e e e e e e 69
B DISCUSSIONS. ...ttt e ettt et ettt e e e ettt st e e e et e be et e e e e e eesba e e e e e esss s e e e e eesbsnneeeeeenne 76
4 ©Z o] T (1] o] o TSP 80
o R (] (] (=] 1ot S PP SUPPPPTT 383
Appendix A Building Evacuation MOdelccoouiiiiiiii e 87

List of Tables
Table 1 Timing Breakdown for a Single Iteration................ccccccceeiiieveeeeiiiiinne..... 46
Table 2 Cell States and DefiNItiONS........ouiiuiieiiieii e e 87

List of Figures

Figure 1. Wrapping a grid space to create a seemingly infinite system................. 8
Figure 2: Particles dispersing in a édirection LGA over increasing periods............ 9
Figure 3: A hexagonal grid with motion in SiX direCtionsS............coooeviiviiiiiiieneeneenns 10
Figure 4: Orthogonal directions for Lattice-Boltzmann method............c........ccc.. 10
Figure 5: Cell-DEVS MOUEL......ccooiiiiiieiieei e 14
Figure 6: Building Evacuation Model of a 3Story Buildingccooooviviiiiinneennn. 19
Figure 7: Snapshot of TUMOr MOdel.............iiiiiiiiii e 21
Figure 8: Snapshot of Nerve Synapsis Model............coovviiiiiiiiineiiii e 21
Figure 9: DENSIty SOIVEr STEPSccuuuiiieiiiiiii e ee e 27
Figure 10 VeloCity SOIVEr STEPS.....uuuiii ittt 28
Figure 11 Tracing backwards to the source of the density............ccccccevieiiiiiennnnn 39
Figure 12 moving densities through a fixed velocity field.............cccccoeeevviiiinennnn. 30
Figure 13 Model of Boundary Fluid Interactions with Boundaries Represented as dark
cells and Fluids as light CelIS...........o o 31
Figure 14: Diffusion DIr€CHIONS.......ccvviiiieeiie e e e e e 32
Figure 15: Diffusing densities over 25 iterations with a viscosity of 0.05.............. 34
Figure 16: Values for the ' frame of the diffusion function...............cc.coeevveeenen. 35
Figure 17: Values for the 18" frame of the diffusion function.............ccccceeveevene.n. 35
Figure 18: Results of the advection calculation...............cccoooviiieeerii e, 38
Figure 19: Break down of the possible sources of the density for the adviemn step39
Figure 20: Convergent and Divergent Velocity FieldS............cccooeviviiiiiiveeiiieneees 41
Figure 21: Snapshots of density cloud being advected with the frames progressing from left
to right, tOP 10 DOtEOMeii e e 58
Figure 22: Resulting VelOCIty VECION..........c.oviiiiiii e 59
Figure 23: Initialization for non -uniform velocity fieldcccooooiiiiieenn. 60
Figure 24: Testing for non-uniform velocity field with frames representing progression of
time from left to right and top to bottom.ccoooeiii i, 61
Figure 25: Results for velocity vectors u and v for noruniform velocity field with frames
representing progression of time top to bottoM...........c..coiii i 62
Figure 26: Diffusion of densities in a horizontal velocity field with barriers with time
progression from top t0 DOttOM.............oiiiiii i 64

Figure 27: Velocity Component Vectors u and v: initial values and mid simlation values

with green square representing the obstacle.............cccocooii i 65
Figure 28 Diffusion of densities in a horizontal velocity field with barriers with time
progression from top t0 DOIOM..........coiiiiiiii e 66
Figure 29 Vertical velocity component for first simulation: green square shows the
location Of the ODSIACIE...........uuei e 69
Figure 30 Simulation of CAD after 25 iterations: 0%, 17%, 35%, 53% and 70% blockage
TESPECTIVEIY. ...t e et e e e e 70
Figure 31 Simulation of CAD after 50 iterations: 0%, 17%, 35%, 53% and 70% blockage
TESPECTIVEIY. ... ettt e e e e 71
Figure 32 Vertical Velocity Field for 53% blockage after 50 iterations................. 72
Figure 33 Simulation of CAD after 125 iterations: 0%, 17%, 35%, 53% and 70% blockage
TESPECTIVEIY. ... ettt e e s 73
Figure 34 Simulation of CAD after 150 iterations: 0%, 17%, 35%, 53% and 70% blockage
TESPECTIVEIY. ... ettt e et e e s 74
Figure 35 two of the eight possible cases for the advection function.................. 81
Figure 36: Neighbourhood definition..............uuiiiiiiiiiiiii e 88
Figure 37: Pathway initializationcooviiiiiiiiieee e 89
Figure 38. Basic Building design at t=00:00:00:000...........ccccotiiimiiiiiinreeieeiiinn 92
Figure 39. Modified Building (Top) and Original Building (Bottom) at t=00:00:250:000
... 92
Figure 40. Building Occupancy vs. Exacuation Time.........c.ccceveiiiveiiiieeieeineeeennnnnn 93

List of Equations

Equation 1. Compact Vector Notation of NavierStoker Equation for solving the velocity

L1 o PSPPSR 6
Equation 22 Compact Vector Notation of Navier-Stoker Equation for solving the Density
L1 o RS SUPTPPRY #
Equation 3: DEVS Atomic model definition.............cccooeviiiiiiiieer e, 13
Equation 4. Cell-DEVS Atomic model definitionc.ccoooeeeiiiiiieecin e, 13
Equation 5: Definition for a Coupled Cell-DEVS model.............c.ccocoovviieiiennnn..n. 15
Equation 6: Diffusion Calculationcooeiiiiiii e e 28
Equation 7: Calculating the new density values...............cccooiiiiiiiieeiciin e 33
Equation 8: Weighted averages for new density............c.cccoiiiiiiieeeeeiiiineeeennnne, 38
Equation 9: Weighted Average for new density Case #1..........c.ccccevviieiviinceeens 39
Equation 10 Weighted Average for new density Case #2...........ccccoevevevvieeeennnnnn. 39
Equation 11: Weighted Average for new density Case #3...........cccoveviiieviiieeennnnn. 40

Vi

Equation 12 Weighted Average for new density Case #4........c.ccoeeiieieiiineeenennnn 40

Equation 13 Generating the gradient field............coooiiiiii e 41
Equation 14 Averaging the gradient field...............ooooiiiii e A2
Equation 15 Subtracting the gradient field from the horizontal field42
Equation 16 Subtracting the gradient field from the vertical field 42
Equation 17: Boundary EQUAatION..............iiiiiiiiiiiiiee e 44
Equation 18 Adjusted diffusion equation for 3 dimensions..............c.oceevveevennnnn. 81

Vil

1 Introduction
1.1 Overview

The use of simulations has become a paxpaihd powerful tool among medical
researchers. The results generated by simulations can be used to complement experimental data
and can be used to further develop a hypothesis. The use of simulations can aid the researcher by
providing theoretical resultiat can be used to improve upon an existing hypothesis. These
simulation results can then be validatedrbyitro andin vivo studies.

Currently, many different types of simulations are used in a wide range of medical fields.
For example, simulatiorare used to model forces generated by artificial hip joints. The focus of
this thesis is the modeling of fluid flow within biological systems. These flows can be anything
from blood circulating through the body, to air flow in the respiratory systemedtotiv of
fluids in cartilage joints. Such a model is referred to as a Computational Fluid Dynamic solver
(CFD). CFD solving is the process of calculating and describing the physics of the movement
and interaction of fluid flow with the use of numericalthus [1].

With the advancement of computer technology we now have the ability to run larger
more complex simulations of biological systems. One approach to resolving complex systems is
to represent them as a sum of more simple systems. The DiscreteSpeeification System
(DEVS) is a formalism that implements this approach. The DEVS formalism, as described in
Theory of Modeling and Simulati¢g], allows for multiple DEVS models to be easily coupled
representing systems that are more complex, evée Eamponent models exhibit different time
advancement patterns. A key principle of DEVS is that a model, the computer code which
pertains to a specific realorld system, is separated from the simulator, the computer program

which advances time.

Althoughthere are numerous applications of DEVS for artificial systems, environmental
systems, and both biological and physical processes, the formalism has been rarely applied to the
physics of motion in two or three spatial dimensions. Simulations involvingnp@ases,
liquids, rigid bodies, deformable solids, or a mixture of substances are usually implemented
using traditional simulation techniques. The primary rationale for DB&%d models of 2D
and 3D solids, as well as fluids in motion, is the ease wiiticimthey can be coupled with other
DEVS-based models. For example, researchers and engineers in the field of biomechanics could
simulate an implanted medical device by coupling a DEVS model of the device with a DEVS
model of the surrounding tissue usitng tsame simulator. Another benefit of DEVS is the
formal i smdés support of d{3f Foeexanple, the medical devider a n c e
model might be based on an evdniven approach, whereas the tissue model might use either
fixed time steps otime steps that shorten in response to fast motion.

Most CFD solutions make use of different cellular methods. One particular method,
Cellular Automata (CA) theory] is a branch of discrete dynamic systems. In these systems the
reatworld space is repsented by a cellular grid, where each cell is treated as a finite state
machine. In the CA formalism time is treated in a discrete manner, triggering state changes in the
cells. The new state value for the cell is calculated based on the value of igigioniag cells.

The CellDEVS (Cellular Discrete Event System Specification) formalighig a related

formalism in which each cell evolves asynchronously using explicit timing delays, which helps
improve the efficiency by removing the burden of unneagsgrocessing. This allows for a

more efficient asynchronous execution, using a continuoushase, without losing accuracy.

In this methodology, each cell is represented as a DEVS atomic model that changes state in

response to the occurrence of evemtan everdriven fashion.

Cell-DEVS was originally introduced for the modeling and simulation of spatial systems;
however, not until current research has anyone proposed using tH2EM3lI methodology to
implement physicdased CFD equations to sim@diuid dynamics. The continuous time
advance of CelDEVS can contribute to the seamless simulation of CFD, in comparison with the
discrete timing in CA that lacks the smoothness of fluid flow. Finally, the formal I/O port
definitions in the formalism alws for information to be exchanged between different atomic
and coupled models.

A model that was capable of realistically describing the physics of fluid flow and
implemented using CeDEVS would have a wide range of applications. As previously
mentionedhe DEVS formalism allows for models to be easily coupled, while thebaded
nature of CeDEVS makes it easy for models to be adjusted. This means such a model could
easily be adapted for use in any system that has fluid flow which needs to bedebothe past
the description of the flow of fluids was crude, unless the fluid flow was the main concern of the
model, then a CFD algorithm would be created specifically for that model. Now, models can be
created using realistic fluid flows with minaheffort. Between the CFD model and the DEVS

formalism, there now is a framework for simulating large, complex biological systems.

1.2 Contributions

In this thesis, we will introduce a Computational Fluid Dynamic solver that will help fill
the gap in poviding realistic approximations for fluid flow in biological systems. The CFD
solver will be implemented as CE&IEVS model using the CD++ Toolkit. Aside from the fact
that a DEVS based CFD solver is a novel application, it will also contribute to thelingpdf
biological systems as a whole. As discussed later, many biological models will benefit from

having a method of providing realistic approximations of the fluid flow to improve their results.

3

Furthermore, the model presented in this thesis willdsggthed in such a way that it will be easy
to adapt for use in a wide range of applications. This will be done by simulating the effect of
narrowing coronary arteries during Coronary Artery Disease, and observing the effect on the
flow of blood to the heamuscles.

The following list of publications describe the algorithms presented in this thesis, the
evolution of the algorithms to work as a GBEVS based model and the implementation of the

model with the CD++ toolkit:

- Michael Van Schyndel, Mohammad Mteami, Gabriel WainerComputational Fluid
Dynamic Solver Based on Cellular Discréigent Simulatiorin Proceedings of
SIMULTECH2013 Reykjavik Iceland, 2013.

- Michael Van Schyndel, Gabriel Wainé€thys Goldstein, Jeremy Mogk, AnakKhan.On
the Definition of a Computational Fluid Dynamic Solver using Cellular Discietent
Simulation To appear in a special editiafournal of Computational Science:
SIMULTECH 2013.

- Michael Van Schyndel, Gabriel Wain€omputational Fluid Dynamic Solver Based on
Cellular DiscreteEvent Simulatiomo appear ifProceedings of the Symposium On

Theory of Modeling and Simulatid®, Tampa, FL, USA

2 Review of the State of Art

Fluid dynamics is the study of the fluid mechanics involved in fluid flow. At any given
poirt in our lives, we are surrounded by countless flows: the breeze blowing across your face,
blood coursing through your body, or even the water running through the pipes beneath your
feet. For a long time, we had no way to model these phenomena. Equzisted that tried to
approximate the flows, however, the technology did not exist to make them of any real use until
the advent of the computer. The computer was better suited to handle the intense amount of
calculations required to implement these equati@nd soon methods of solving these fluid
flows were created. These methods were called Computational Fluid Dynamics (CFD). Today
CFDs are used in labs and research to aid understanding of why fluids behave the way they do.
They are used by engineershielp in the design process. In the video game industry, CFDs are
used to create incredibly realistic physics for massive virtual environments. As the demand
grows for CFDs so does the need for them to provide more realistic physics and faster. The

possibleapplications of a CFD are only limited by ones imagination.

2.1Simulating a Computational Fluid Dynamic Solver as a Cellular Automata

In simulations our goal is to create a model that can imitate or describeveor&hl
system. A good simulation is enwhose results accurately match those of aweall system
under a certain set of parameters. If the model works well it can even be used to predict
behaviors of systems and draw conclusions from these results without having to be performed in
the realworld. With the advancement of computer technology came an increase in the use of
simulations and the ability to create more complex models for more complex systems, with the

key component still being accuracy. Fluid dynamics had always been a diffstdtrsio model,

requiring a large amount of calculations that were impossible to perform before computers, even
though there were equations predicting their behavior. Now with the aid of computers we are
finally able to model fluid flows. These models aedled Computational Fluid Dynamic (CFD)
solvers.

There exist many approaches to solving for fluid flow. They may vary in the methods
used in the calculations and their accuracy of their physics; however, they all have the same goal
in mind. That goal isa create the most accurate model possible oflifeadituations: whether it
is examining the stresses on an aircraft wing at 50,000 feet or smoke rising from the tip of a
cigarette in a video game. The metlubwservaries and is based on many differeriteria. For
exampleon the level of physical accuracy dediend the level of computational power
available. Most models use some derivative of the compact Naio&es equations, equations
1&2, to solve for the evolving fluid®].

()

Yo

= o816 vt 6 Q
Yo

Equation 1 Compact Vector Notation of NavierStoker Equation for solving the velocity
field

The NavierStokes equations, named after Clalideiis Navier and George Gabriel
Stokes, make use of Newt on dlev, aBcassomirdythatthey by
stress on the fluid is proportional to the diffusing viscous term and the pressufB]teFire
first equation is for solving the velocity vectors; the sum of which is hereafter referred to as the

velocity field. The equatiorsia rearrangement of the incompressible flow of Newtonian fluids.
The acceleration%—) is equal to the sum of: the negative continuity equatiog\(o,

responsible for the conservation of mass), the viscasityd) and any body forces presefit (

In other words, the change in the evolution of the velocity field ischasehe viscosity and any

other forces that may act upon it, such as a heating vent. While this is the most important part of
any good CFD solver, it provides very little visually. To make it more useful, we must
demonstrate particles moving through tledoeity fields. To move objects, we must simply
determine what forces are going to be acting on it and in what direction. These forces are
extracted from the velocity fields. Most of the objects we wish to move are relatively light and
the only relevant fices are those applied by the velocity field, such as dust or dBjokane

could simply apply these forces to the particles and see how they move, however, for more
complex models it would be taxing to perform these calculations for a large numbeticdé par
Instead, we could treat the matter as a density of particles, where instead of either being 0 or 1(no
particle, particle respectively); we would treat it as a gradient value that ranges from no particles
present to some maximum number of partipiessent. The forces on these densities are applied
using equation 2, which is similar to the equation used for evolving velocities but more

simplified since the only forces present are solely generated from the velocity vector field.

()

m

35 o&n an I

Equation 2 Compact Vector Notation of NavierStoker Equation for solving the Density
field

Cellular Automata (CA) theory existed well before computers were popular and its
guiding principle being emergenf®. Emergence is the idea of highlyraplex features being
derived from rules and properties of low complexity. To understand what CA is start with an
infinite grid space of cells, with (n) dimensions, which can be used to represent an enclosed
universe or system. These cells can take anyatkshape, for example squares, triangles or
hexagons can be used for 2D spaces. Often with models we desire cell space to behave as a
closed continuous system; i.e. if one were to travel through thesidghboundary they would
appear at the lesideboundary. True to the principle of CA the solution to this is simidde

7

the grid space and wrap it so that the cells of the first column and the last column re neighboring
and again so that the first row is neighboring the last row. The result issageeufigure 1, a

seemingly continuous 2 dimensional grid space.

Figure 1: Wrapping a grid space to create a seemingly infinite system

The next characteristic is that after each time step, each cell must be a discrete state from
asetofdeterminedastt es. The cel |l 6s state is determined
and each cell contains its own local computing method, that is to say, the method for determining
its new state.

The most basic of fluid model for a CFD implemented as a CAeisdttice Gas
Automata (LGA)[7]. The particles can travel in one of four directions through the square lattice,
as shown in figure 1. Only one patrticle is allowed to enter any given site for any given direction.
When modeling such a system, we usuallyhedt in two steps: the collision and the
movement. For this modetldits of information is all that is required to represent the changes
during the movement phase. Each bit is used to represent a particle moving in fredefineck
direction. The firsbit could represent a particle entering from the bottom, second bit from the

left and so forth.

This simple method of modeling is a prime example of the Emergence theory of CA.
From a series of case definitions to determine the new state of a cell, al#eate create a
complex model. As seen in figure 2, this method is suitable for modeling the diffusion of simple
particles through a given spa®&y assigning random initial movements and defining the
behaviors of particle collisions, the particles evaltiy diffuse to take the shape of the container.
While the results behave similar to the diffusion of gas molecules in a closed space, it is still far
from a functioning fluid dynamic solver capable of simulating real fluid flbhat is to say, no
matterhow complex we define the movements, 4, 6 or 9 directional, and no matter how complex
we make the definitions for particle collision, it will still require a method for adding external

forces to the particles.

Figure 2: Particles dispersing in a édirection LGA over increasing periods

The model could be further adapted a hexagonal or triangular grid space and have six
possible movement directions instd8fl as seen in figure 3. The added directions of motion
allow movements that are more realisfibie number of bits required increases to six, once again
with each bit representing a specific direction of travel. With the increased number of directions
comes an increase in the number of cases that must be defined to determine the new cell states.

Instead of having to only worry about two and three patrticles collisions, now cases must be made

for four and five particle collisions as well. Add the fact that there is more than one way for two
or three particles to collide with each othiis gives rie toa significant number of cases will

be required to handle all the partiglarticle and partickbarrier collisions.

Figure 3: A hexagonal grid with motion in six directions

Finally the most advanced of these models is the LaBalzmann methodLBM) [9].
Similar to before, it is comprised of two steps: collision and movement. The more advanced
models return to a square grid space with eight directions of movement and a rest state, see

figure 4.

Figure 4: Orthogonal directions for Lattice-Boltzmann method

With additional movement directions comes an increase in the number of possible

collisions whose behavior must be defined. Instead of the random movement used in previous

10

methods, the movement is now calculated from a velocity field, whidbtermined using one
of several computational methods, which one depends on the exact nature of the model. For
example, an LBM for turbulent flow would either make use ofdinect numerical simulatioor
large-eddy simulatiorf9]. Thedirect numericakimulation(DNS) method is when the Navier
Stokes equations are numerically solved without any turbuld@®¢eThe range of scales
required to accurately compute the flow is based on the physics of the fluid and represented as
the Kolmogorov length scaléMoin et al. showed that it was possible to produce results with
larger scales than thélmogorovnumbers. The DNS method is computationally intensive and
is best suited for aero acoustics, hgpeed flows and reacting flofB0]. Largeeddy simulation
(LES) work by reducing the length of the scales required to compute the {$aviers
equations. This is done by applying a lpass filter to the equations to eliminate the smaller
scales of the solution. This method resolves the larger scales of thiywieddd and decreases
the computational cost. The range of the small scales that are filtered can be adjusted to reflect
the desired resolution and the computational power avajlableThe LES method has been
successfully implemented to simulate tudmt combustioni12] and in the simulation of the
stable atmospheric boundary lay&8].

As previously mentioned, there are wide varieties of CFD solvers that make use of an
equally wide variety of methods. One patrticular algorithm was created foetisabuse in
video games and it was based on the N&aStekes equation$]. The algorithm was an attempt
to create a realistic CFD with minimal computational effort since it would be primarily run with
an average PC or gaming console; it should be ffaalistic and not consume too much power.
The algorithm was not created as a Cellular Automata; however, it did share some similar

characteristics. The system was broken into a grid space of square cells, where the density and

11

velocity information was stred at the center of the cells. The new cell states were calculated
based on the surrounding cells, however the neighborhood was not rigid. While the cells were
updated synchronously, there were a large number of calculations to be performed between time
steps before the cells were updated. Additionally multiple layers were required to store additional
information, instead of being stored in a single cell.

While Cellular Automata models are simulated in discrete time steps and have discrete
state valuespthers may benefit from the use of changing time steps. In many biological systems
a single event may trigger a cascade of eviddis For example, when simulating a neuron the
state remains constant until an input/event occurs. This will cause a $estige @whanges to
occur until once again the neuron returns to its resting state. At this point it could be a significant
period of time until the next event, in which case it would be exhaustive to be constantly trying
to update the cell. Similarly, ttepeed at which an event occurs may differ significantly. When
breathing the flow of air is greatest during the inhale and exhale, while dropping very low in
between the events. With a lower flow rate it would not be necessary to have the same time
resoluton during the resting period as that of the inhalation or exhalation period. This method of

simulation is referred to as nNndiscrete event

2.2 DEVS
The Discrete Event System Specification (DEVS) came about as a way to model such

types of simwtions. The formalism was first introduced in 1976 by Bernard P Z¢R]jlass an
extension of the Moore machine formalism. This was done by adding a lifetime associated with
each cell state as well as adding a hierarchical method callgding

The buiding block to any DEVS model is the Atomic Model. The atomic model is

defined as a septuple, as follojd5]:

12

0 oifiYo B A R

Equation 3: DEVS Atomic model definition

Where:
X is the set of input events

Y is the set obutput events

S is the set of sequential states

ta is the time advance function

1 is the external transition function
1 is the internal transition

_is the output function

2.3 CellDEVS

Cell-DEVS is an implementation of the DEVSrisalism that conforms to the parameters
of a Cellular Automatfl6]. The definition for a CelDEVS atomic model is as follow&5]:

~

YOO8 oOhHEY) AQQafthe A AthFO
Equation 4: Cell-DEVS Atomic model definition

Where:

X is the set of external input events

Y is the set of external output events

S is the set of sequential states

| is the model interface

N is the set of input events

delay defines the type of delay for the cell

d is the duration of the delay

1 is the external transition function

13

1 is the internal transition
_Is the output function
D is the state duration function
As before, these atomic models can be combined in a hierarchical method as a coupled
model. The definition for a CelDEVS coupled model is as followy$5]:
06 6 &G T coROE h cpheagd &hd ho o hid
Equation 5: Definition for a Coupled CelFDEVS model
Where:
Xlist is the input coupling list
Ylist is the output coupling list
| is the model interface
X is the set of external input events
Y is the set of external output events
n is the dimensions of a cell space
{t1... tn} is thenumber of cells for each dimension
N is the neighborhood set
C is the cell space
B is the boarder cells
Z is the translation function
The atomic models are arranged in an array with each being connected to its neighboZand the

function defining the internal and external couplings.

14

2.4 Implementation of CeltDEVS models using CD++

Cell-DEVS models areunlt using the CD++ toolkit. The toolkit includes a hifgvel
scripting language, a simulation engine, a testing interface, as well as a basic 2D and 3D
visualization of the simulation results. Figure 5 shows an atomieBEAHS model in its most

basic fam:

Cell Definition

Neighbors INPUT—)F) ts)=s |=—> d |=—>p—> OUTPUT

2 v

B

Figure 5: Cel-DEVS Model

Each cell of the lattice contains information regarding its neighborhood and its local computing
function. This local computing function has 3 main paPtsstCondition, Delayand

PreCondition. That is to say, when definirige local computing function, simply define the
PreCondition that must be satisfied so that thestCondition will be applied to that cell after

the Delay has expired. By using a sourdestination method of evaluating the cells, VS
allows for the ells to be calculated asynchronously and then updated all at once. This feature

allows for the possibility of parallel computing.

15

The CD++ Toolkit provides a high level scripting language for writing-O&VS
models. By using the toolkit, the user cafie models and save tedious coding. A CHVS
coupled model is defined by equation 5. During the initialization of the model several of the
terms are defined, such as{tl... tn}, N, C andB. The following code is a sample of the
implementation of té initialization code:

[top]
components : cfd

[cfd]

type : cell

width : 75

height : 25

delay : transport
defaultDelayTime : 100
border : wrapped

neighbors : cfd(-1,-1)cfd(-1,0)cfd(-1,1)
neighbors : cfd(0, -1) cfd(0,0) cfd(0,1)
neighbors : cfd(1, -1) cf d(1,0) cfd(1,1)
initialvalue : 0

localtransition : conrad - rule

neighborports : value diffusion u v boundary p div

The first thing to appear in the code is the components used in this model. If the model
were a system of atomic models, a coupled mahislsection would be the first step to coupling
the atomic models and defining the hierarchy. For this sample, the atomic model ischidhmed
After defining the atomic model we set the cell dimensianand the number of cells per
dimension{tl... tn}. This model will only have two dimensions with the width being 75 and
height as 25. The next important step is to determine the behavior of the bouriakes,
previously discussed, it is often important that the system be continuous along all theribsunda
as described in section 2.1. If such is the case, the user selestappedoption for the
boarder, as done here. The other option is to haweappedorders, in which case the space
beyond the borders is treated as undefined. If this is tiee spscial care must be taken to ensure

the model does not attempt to access information beyond the borders, as this could lead to errors

16

in the simulation results. The principle of GBIEVS is based on the idea that during the
evolution of a model, thealues used in the local computing function are taken from the defined
set of surrounding cells called the neighborhood. This makes the definition of the neighborhood,
N, one of the more important steps when initializing a[&6ll

With the new CelDEVS simulator came two new functions that were beneficial to
developing models: the addition wdriablesandneighborport hereafter referred to as ports.
Variables are useful for storing information locally, to be accessed by the cells during the local
compuing function calculations; however, the information stored within them could only be
accessed by the cell to which it was linked and not by any neighboring cells. This causes
complications when it becomes necessary to share the information betwedmatedistored
within a variable. Theariablesmethod is useful when additional information storage is required
that is only accessed locally and can drastically improve the computational load. Alternatively,
with neighbor ports, the information is storiedvariables, similar to before; however, these
variables are accessible to any of the neighboring cells via ports. Both methods improved the
computational efficiency significantly for the model. The following is an example of how ports

and variables araitialized:

neighborports : value countl count2

statevariables: value countl count2

By this point, all that remains is defining the local computing function. The local
computing function is the set of rules located in each cell that governs cell behmavior a
determines the state changes. The local computing function is defined as consisting of a

PostCondition, DelayandPreCondition statement. The following is an example of such a rule:

rule : { ~value :=if((0, - 1)~value =1, 0,1); } 100 { (0,0)~value =1}

17

Here thePreCondition is that the state of thealueport must be equal to one. If this is true then
the state of thealueport is equal to zero if the neighboring state is one else it would retain the
state value of one. This is tR®stCondition. Finaly, thedelay is set; in this case a delay of
100ms was chosen.

The models that have been implemented using the CD++ Toolkit have varied widely in
their complexity and application. In most cases the results of the simulations were able to
provide usefulnsight to their related fields. For instance, a model for evacuation of a building
presented ifil7], as seen in figure 6, is a clear example of how, by following the CA parameters
and implementing simple local transition functions, a complex model careated. The model
included human behavior for the evacuation of a building with multiple floors.

The building evacuation model could be broken into three distinct steps. The first step is the
initialization step. During this step the walls and obstaatesadded, as well as the emergency

exits and the people. The next step is the mapping stage. Using an iterative process a map is
overlaid on the floor plan that determines the minimum number of steps it would take to reach an
exit from that cell. This n@adefines the routes that people will take to reach an exit by ensuring
the people are always heading to a cell with fewer steps to an exit. The final step was the
evacuation itself, were the people moved through the building towards the front docedicst th
floor.

The work done by Wang el[17] was to create a framework to integrate specialized
software to improve the realorld applications of the simulation. The building plans were
extracted fronRevit a software specializing in the designingoafiding. These building plans
were loaded into the modeler, where | simulation was executed. These results were then parsed

and loaded into a second specialized softwzids, Max,were the original blueprints were

18

loaded and the results superimposed tivebuilding, see figure 6. Overall this allowed for
more realistic simulations to be created with results that have an impact-arorkehtiecision
making. Finally, these results were visualized in a more meaningful mafAmeore detailed

explanatiorcan be found in Appendix A.

Figure 6: Building Evacuation Model of a 3Story Building [17]

19

The model created was flexible and could be applied to any building blueprint. By using
real building plans it was able to provide useful feedback by deternfiaimg in the building
design such as: chokepoint, obstacles and lack of necessary emergency exits, which would be
beneficial to the design process for a building. Other useful feedback included the ability to
estimate the evacuation time based on the eunmmbpeople present, which could in turn help to

establish a maximum occupancy number to ensure sufficient time to evacuate the.building

2.5 CFD and Cel{DEVS modeling of Biological Systems and the Medical Field

Even with a rising increase in DEVS foalism and simulations being used in the field of
biological systems there has been very little cmss between the two. Wainer ET al. presented
several models where both DEVS and @HVS were used to create biological models,
including a model of auman liver and synapsin and vesicle interactions in a ngi8nOne
work looked at the effect immune cells played on the growth of a tumor mass, see fi@ie 7
The model design is that of a GBIEVS with the transitional states representing diffiere
physiological conditions. First, the cells were either tunataited cells or general immune cells
responsible for attacking the tumor. The tumor cells fell into one of three categories;
proliferative, dormant and necrotic. By adjusting the saturatiemmune cells, the model
demonstrated how the immune cells were able to slow and or stop the growth of a tumor as seen

in figure 7.

20

{a) time = 38 {b) timne = G4

Figure 7: Snapshot of Tumor Model[19]

Figure 8 is a snapshot of a Nerve Synapsis model that demonstrates the binding of
Synapsin, the small particles, to the vesicles, larger particles, to form vesicle clusters that bound

to the active zone, bottom of the snapshot, of a presynaptic nerve tgfinal

Figure 8: Snapshot of Nerve Synapsis Modélsed with permission)20]

21

Most biological systems are complex and broken into definableisiih The DEVS
formalism would allow these stmits to be represented as individual atomic models, and with
the hierarchal nature of DEVS would allow these atomic models to be conmeder to model
the entire systef21]. These atomic models can beused in other systems, when applicable,
with relative ease. This ability of DEVS to represent large systems as a sum of smaller definable
parts makes it a viable option for future moxglof large biological systems.

Huang et al. proposed using a CFD approach to provide kinetic information for biological
systems. They found that enzymatic reactions are controlled by the availability of the reactants.
These reactants are transportedaviziological system. To implement this idea they modeled a
biological wastewater treatment system. This system helped provide information regarding the
metabolism of organic carbon substrates and populations of microbial. Their findings were that,
by couping a CFD model they were able to produce more accurate reaction kinetics and provide
more realistic kinetic models for biological systej23].

Aside from being coupled with biological systems to improve the calculations of flows,
CFDs have further usa the medical field. For instance, Scott et al. examined the role a CFD
model might play in the Biological Safety Environment. The goal was to provide air flow
analysis and aiborn contaminant trackin@4].

In a similar field, Xu et al. looked at hoavCFD model could be coupled to evaluate the
design of hospital UV Germicidal Irradiation Systems (UVGI) for the elimination of airborne
mycobacterid25]. The hypothesis was that the system was most effective when no airflow was
present, and therefore thevished to model different room parameters that would improve the
effectiveness of the system. They found that a CFD model was useful in judging the

effectiveness of a hospitals UVGI system and ventilation system in infection d@&frol

22

Finally, theApplied Research lab at Pennsylvania State University has a project looking
at biological and biomedical flows. One project combined 3D imaging technology with a CFD
model to simulate the oxygen uptake in the human respiratory sjbgnOther research
includes the modeling of the fluid mechanics of white blood cells and how they interact with cell
walls and cancerous ce[B6]. CFDs were also used to analyze several kessist devices,
small pumps that are used to aid in the circulation of bjaét

Currently there exist no DEVS or GEIEVS based Computational Fluid Dynamics

solvers aside from the work being described in this thesis.

23

3. Problem Statement

The problem addressed in this thesis, is the need for a ComputatioidaDfhamic
solver to be implemented using the Discrete Event Systems Specification for use in solving
dynamic fluid flows in biological systems. This CFD solver needs to provide realistic
approximations for the behavior of fluid flow with minimal compigaal effort. The solver
needs to be versatile so it can be used in a wide variety of applications. With no analytical
solutions existing for nafinear flow, numerical approximation methods are used to describe
their behaviors. Historically, these methadesd to be complex and require a lot of time and
effort to simulate, and therefore CFDs are mostly used when we wish to observe only the
behavior of the fluid. In biological systems, such as the human circulatory system, the flow of
the blood plays a laggrole in the overall behavior of the system; however, it may not be the
focus of the simulation. Having a versatile model that would be able to approximate the behavior
of the blood flow with minimal effort would allow more complex biological models, sisctie
human circulatory system, to be created.

The application of CFDs to biological systems is relatively new, with very little work
being done. This could be partly because the CFD solver would have tovbden for each
application. The CelDEVS formalism provides a method where models can be easilgaé
for a wide variety of applications with little to no changes required to be made to the model. In
addition, the hierarchal method of coupling models allows for the combining of many basic
atomic models, each representing a specific part of the system, to be combined and simulated to
solve for large systems that could otherwise not be modeled.

At the beginning of the project two choices were made. The first was that the CFD model
would behave aa Cellular Automaton and be implemented as aBENS atomic model. The

24

second was to choose to model the fluid flow using the N&tekes equations and specifically
to make implement the theoretical method for solving the N&tiekes equations outk in[5].
To summarize the problem being solved: a Computational Fluid Dynamic solver implementing
the NavierStokes equations to solve for the fluid flow, implemented as a Cellular Automata
using the cetbased Discrete Event Simulation Specificatiomfalism (CeiDEVS) to provide
a method for modeling dynamic fluid flow in biological systems.
Already there exist a large number of CFD solvers that make use of the-Stkess
eqguations to solve for fluid flow, each implemented in its own unique As&previously stated,
the goal of these CFD methods are to provide the most accurate and detailed results since it is
most likely the behavior of the fluids that is being studied. Because of this, these methods are
slow and cannot be executed with the agercomputer. The goal of the algorithms outlined by
Stam([5] was to provide the highest level of detail with the lowest computational cost. This is
important, since the goal is to create a model that can be integrated as a part of a greater whole;
for example, an entire biological system. Since the specific behaviors of the fluids themselves are
not as important as the overall behavior of the system the simulation of the fluids should be as
fast as possible.
Prior to the work in this thesis, the DEVStmalism had never been applied to the issue
to solve for the dynamics of fluid flow. DEVS based models such as those presdatid[iD]
and[20] may have benefited from an accurate method for calculating the forces generated by
fluid flow. Previous mehods to handle movement within a fluid space had been crude at best.
The AComputational FIl ui d Dy n aBventcSim8lationv er b a
for use in biological systemso is a novel pro

Although the DEVS models described in section 2 demonstrate the capabilities of the DEVS

25

formalism, they are relatively basic. They usually consist of no more than a few atomic models
and the behavior of the movement through a fluid space is often a crudeiayapicox of the

physics of realvorld behaviors of fluids simply because the fluid flow is not the focus of the
simulation. For example, the tumor model presented in section 2.5 describes the movement of
the white blood cells as random, making contact wightumor by chance. A coupled model

could be created were the CFD model provides the behavior of the circulatory system and
provides the necessary forces to solve for the movement of the white blood cells. This would
provide more significant simulationseits.

The application of this model will give rise to possible development in a wide range of
areas. These areas would include such fields as: 3D visualization of DEVS based models
[17][20],t he i ntegration of the DE\WS$vidsieanworldat or wi t |
applications for the simulations such as the work presenfddjinin addition,integrating the
DEVS based simulator with databases of three dimensional models, such as the Parametric
Human Projecf27], to model complex biological sgsms by coupling more basic DEVS atomic
models. This project also provides further evidence that the fundamental principle of Cellular
Automata, emergence, is true and allows for the possibility of even more complex models to be
implemented as CA.

Even vwhere the project may reveal deficiencies in the model, they are such that they open
a new avenue of discussion. The knowledge gained in this thesis can be used as a foundation for
developing a better implementation of a CFD. Future works can refer fwrolgst for examples
of how to recreate what is a complicated set of calculations as a simple set of rules. The

framework for how to handle fluid flows in CA will be useful to many fields of study.

26

4. Model Definition & Implementation

In this chaptewe will be describing the implementation of the model presented in this
thesis as a CeDEVS model using CD++ Toolkit. We will begin by presenting the Navier
Stokes based algorithms that are used to approximate the behaviors of fluids. Then we will
descibe how these algorithms are implemented to create the rules that will define the behavior

of the model.

4.1 Model Definition

The algorithms being presented in this thesis can be conceptually broken into two main
parts: the density solver and the velg&olver. Each of these sections is responsible for
resolving one of the two NaviStoker equations, equations 1 and 2. Both equations can be
further broken into discrete steps (functions) that resolve individual terms within the two

eguations, as seemfigure 9 and 10.

1 DENSITY

3 ADVECT |g————— 2 DIFFUSION

Figure 9: Density Solver Steps

27

Step 1: / VELOCITY \

Step 2: DIFFUSE "V" DIFFUSE "U"
Step 3: PROJECT
Step 4: ADVECT "v" ADVECT "U*

Step 5: \ PROJECT /

Figure 10: Velocity Solver Steps

As seen in figures 9 and 10, several of the functions appear in both solvers. This will be
important when we implement the model since functions can-bsee in botlsolvers.

In figure 9, the density solver is the more basic routine with just the three steps: diffuse,
advect, and update. The two functions used ardithesionand theadvectionfunctions. The
diffusionfunction is responsible for resolving the radiatof the system and is solved using the

following equation:

Equation 6: Diffusion Calculation

Equation 6 states that the new density in the cell sitipa (, j) is equal to what will remain in
the cell from the original density x 6p{us what Wwill enter the cell from the four cardinal
neighborsx(i-1,j), x(i+1,)), x(i,j+1), x(i,;1). The rate at which the density moves between the
cells is thaught of as the viscosity and is represented by the vam@abl® increase the

resolution of the model this step is run multiple tirfigs

28

Next, theadvectionfunction is responsible for applying the forces generated by the
velocity fields. The informadn for the forces is stored in two ports: the horizontal velocity
component (u) and the vertical velocity component (v). Therefore, the force acting on the density
at any location is equal to the magnitude of the respective velocity component veaiors,

To apply the forces is significantly more complicated. The first approach would be to say,
if this is the force acting on me | will end up here. However, since the system is treated as a cell
space and the densities are thought to exist in theeratier, when advected it is highly unlikely
that the destination lies at the center of the new cell. To resolve this issue it would be possible to
then average the density out to the 4 surrounding cells, but this is method is complicated and
prone to insthility; instead, a more simple apgch exists. To move the densisynply trace
backwards from the cell center to determine where the density would have to come from to end

up exactly in the center of the current cell space, as seen in fig{g 11

O,\H

-
o, | [

ﬁ-\\

-

:
"
I‘
“'--_;:0.
.1
Ly
o
L]

-

o+

Figure 11: Tracing backwards to the source of the density

In figure 11, the solid circles are thought of as the destination and the dashed circles the source.
To determine what densisere arriving at this locatioexamine the velocity field and

determire, based on its magnitude, where the densities would have to originate from. Then,

29

simply take a weighted average of the four cells the densities will be arriving from to calculate
the new density at the destination. Once this is done the cell statgglatecuwith their new
densities and the process repeated. Figure 12 shows the movement of densities through a fixed

vector field.

Figure 12: Moving densities through a fixed velocity fieldused with permission)5]

At this point the density values arpdated and the density solver is complete.

The velocity solver has several additional steps to resolve the evolution of the velocity
fields. The first steps make use of th#usionandadvectionfunctions. What is nice about this
algorithm is that the foctions are identical when diffusing or advecting the densities as it is for
the velocities. As previously mentioned the velocities are stored in their component form;
therefore, when they are diffused they are calculated separately. The next stepafethiem
stage which is unique to the velocity solver.

During the calculations of the previous steps the results were rarely mass conserving; an
important characteristic to maintain realism and stability in the model. Therefore the purpose of
the projecton step is to help conserve the mass and add some desired visual effects: swirls and
eddies. In order for this to occur, the velocity field is defined as the sum of a mass conserving

30

field and a gradient field. To get the mass conserving field, the gtdiilehis subtracted from
the current velocity field. The gradient field is calculated using a linear Poisson system. The
projection step is repeated twice to help maintain accuracy after the advection step.

Finally, the behavior between the fluids andibdaries must be defined. For this thesis,
theno-slip conditionis chosen to model the fluid boundary interactions. The theory oictsép
conditionstates that the fluid velocity is always zero at the bounrthaiy interface[22]. For
instance, at th surface of the interaction between ée(lboundary) and ceB a fluid, in figure
13, the velocities in these cells need to average to zero. The velocities are never actually
averaged; instead, the velocity for o&lbecomes the negation of cBll This way, the two cells

averaged the result would be zero.

Figure 13: Model of Boundary Fluid Interactions with Boundaries Represented as dark
cells and Fluids as light cells

The interactions between cefsandB and between cell§ & D are straightforwat

since the interaction is between one fluid cell and one boundary cell. The interaction between

31

cellsg, J andF is more difficult. The value for celf becomes equal to the average of the
negation of cell&€ andJ. The worst situation is when there isiateraction between three fluid
cells and a single boundary cell, as seen betWedén M andP. However, such a situation can

be avoided by not allowing boundaries or passage ways to be one cell wide.

4.2 Diffusion Function

The diffusion function is rgponsible for calculating the natural flow of the particles
regardless of the forces exerted by the velocity fields. This natural flow, or diffusion, is
represented in the Navi&tokes equations (presented in equations 1 and 2 of section 2.1) as the
radigion term. In addition to resolving the radiation of the densities, it is also responsible for
resolving the radiation of the velocity field.

To calculate the new state value for the cell we must first determine two factors: the
particles leaving the dednd the particles entering the cell from the immediately adjacent cells,
as seen in figur@4. Therefore the new cell value will be equal to the previous state value minus
the densities leaving to the surrounding cells plus the particles enteringlilas selen in
equation 7, which is derived by taking the existing densities and adding and subtracting the

densities that are leaving and entering the cell space respectively.

(-1,

Figure 14: Diffusion Directions

32

0 "MQ O0@Q O "AQ O Q phQ p

Equation 7: Calculating the new density values
In other words the total change in density would be equal td:,ghd(i+1,))+d(i,}1)+d(i,j+1)

4*d(i,j), the sum of the densities frotihhe four adjacent cells, minus the densities leaving to the
adjacent cells. A further adjustment must be made to incorporate the rate at which the densities
diffuse. By multiplying the values by a factor of a, we can then adjust the rate of diffusion.
Ther efore, to calcul ate t heilald(m,)ede+td,g+d(tfi es i s as
1)+d(i,j+1)4*d(i,j)]. This simple method, however, can lead to some instability for larger
diffusion rates. Therefore, a more stable approach is to use a-8adskrelaxation to solve for
the linear system [5] and the result equation 6. This is an iterative process and must be repeated
until a stable solution has been acquirBlae rate at which the densities radiate between cells is
referred to as the viscogiaind is incorporated into equation 6 as the value.f&y
incorporating the viscosity into the equation, it is possible to simulate particles with different
behaviors. A low viscosity would cause the densities to have very little diffusion, similar to a
liquid; while a high viscosity would rapidly radiate to the surrounding cells and take the shape of
the container, which is similar to the behavior of a Gass equation ensures that densities are
always travelling from a high concentration to a lowenaentration.

The implementation of equation 7 with the AeEVS formalism is straightforward. The
x(i,j) term is replaced with the port for which the state value is calculated. For example when the
values stored within theiffusionport are being diffusd, thex(i,j) term is replaced by
(0,0)~diffusion, similarly thex(ix1,jt1)t er ms ar e replaced by the cor
diffusionport values. Finally, for this example, thed (id repjaded with the state value stored in

thevalueport.

33

The fdlowing is an example of the execution of the diffusion function in a zero velocity
field. The viscosity had a value of 0.05 and the initial density field was a block of four by four

with densities equal to one.

Figure 25: Diffusing densities over 25 iterations with a viscosity of 0.05

Figure B shows how the diffusion function is produces the desired results. With no external
forces acting upon the density fAcloudo the na
evenly b the surrounding cells. Another important feature to note is that there is no change in the
overall mass of the system, ensuring that the diffusion function is mass conserving. For example

the following are the values for the first and second frame shofigure 14:

34

Line : 1 — Time: 00:00:00:020:0

o 1 2 3 4 5 6 7 8 9 10 11
——————

+

ol
I

1] 0.00 0.00 0.00 0.00 0.00 0.00
I

2] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
I

3 0.00 0.00 0.00 0.04 0.04 0.04 0.04 0.00 0.00 0.00
I

4| 0.00 0.00 0.04 0.92 0.55 0.55 0.%2 0.04 0.00 0.00
I

3 ¢.00 0.00 0.04 0.9%5 1.00 1.00 0.55 0.04 0.00 0.00
I

6| ¢.00 0.00 0.04 0.9%5 1.00 1.00 0.55 0.04 0.00 0.00
I

71 ¢.00 0.00 0.04 0.9%92 0.595 0.95 0.5%2 0.04 0.00 0.00
I

8| ¢.00 0.00 0.00 0.04 0.04 0.04 0.04 0.00 0.00 0.00
I

9| 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
I

10| 0.00 0.00 0.00 0.00 0.00 0.00
I

11|
I

e

Figure 16: Values for the T frame of the diffusion function

Line : 1 — Time: 00:00:00:060:0

o] 1 2 3 4 5 & 7 8 9 10 11
PR
+
o] 0.00 0.00 0.00 0.00 Q.00 0.00
I
1] 0.00 0.00 0.00 0.00C 0.00 0.00 0.00 0.00
I
2| 0.00 0.00 0.00 0.01 0.01 0.01 ©.01 0.00 0.00 0.00
I
3| 0.00 0.00 0.00 0.02 0.10 0.11 0.11 0.10 0.02 0.00 0.00 0.00
I
4| 0.00 0.00 ©0.01 0.10 0.79 0.88 0.88 0.7% 0.10 0.01 0.00 0.00
I
5| 0.00 0.00 ©0.01 0.11 0.88 0.98 0.58 0.88 0.11 0.01 0.00 0.00
I
&| 0.00 0.00 0.01 0.11 0.88 0.98 0.58 0.88 0.11 0.01 0.00 0.00
I
7! 0.00 0.00 ©.01 0.10 0.79% 0.88 0.88 0.7% 0.10 0.01 0.00 0.00
I
g| 0.00 0.00 ©0.00 0.02 0.10 0.11 0.11 0.10 0.02 0.00 0.00 0.00
I
9 0.00 0.00 0.00 0.01 0.01 0.01 ©.01 0.00 0.00 0.00
I
10| .00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
I
11| 0.00 0.00 0.00 0.00 0.00 0.00
I
PR

Figure 17: Values for the 18" frame of the diffusion function

The initial values used for this simulation was a 4 by 4 square with values of 1, which
means the mass of thessym is equal to 16. If we were to find the total mass of the first frame,

35

figure 16, it would be as follows: 4(1.00) + 8(0.95) + 4(0.92) + 16(0.04), for a total of 15.92. The
total mass for the'sframe, figure 16, would be found as follows: 4(0.98) 8.88) + 4(0.79) +
8(0.11) + 8(0.1) + 4(0.02) + 12(0.01), for a total of 16. The slight discrepancy, 0.5%, from the
initial values to the first frame is most likely due to rounding the results. It is important to note,
that this rounding occurs after thensilation is complete, the values are stored in their entirety

throughout the simulatiori-his small discrepancy is gone for the results of tHeftsme.

4.3 Advection Function

As previously mentioned in section 4.1, the advection funéten pur pose i s t o
the densities and velocity fields. This movement generated is caused by either the forces acting
upon the density field from the velocity fields, or, in the case of the velocity solver, the
momentum of the velocity fields. The veiocfield is composed of velocity vectors which are
stored in component form, hereafter referred to as velocity component vectorsieresents
the horizontal component andepresents the vertical component. In other words, the advection
function resolves the last term of the Nawi8tokes equations, section 2.1 equations 1 and 2,
which is the forces applied to the system. While there are many methods for which the forces
could be interpreted to resulting movements, the method used in this thesis ssable and
works with the CelDEVS formalism.

The approach to moving densities presented in this thesis is to determine the densities
entering the cell instead of where the densities currently in the cell will end up. The method of
tradng the origins of the densities is described in section 4.1. To implement this process we must

first ensure that the origin of the densities lie within the defined neighborhood.

36

One approach would be to create a suitably large neighborhaioddahld ensure that,
regardless of the magnitude and direction of the forces generated by the velocity field (hereafter
referred to as velocity vectors), the densities would originate from within the neighborhood
boundaries. This is however, is an impreaitapproach. The neighborhood would have to be
extremely large to ensure the vectors did not exceed their boundaries and even then, the
possibility does exist that with the addition of external forces, they might. Instead, if we can
ensure that the veldg vectors will remain within a set range we can define a neighborhood with
100% certainty that the displacements will not exceed the neighborhood boundaries. In our
model, the maximum absolute value of the magnitudes for the velocities is set to be one,
therefore the neighborhood was defined as the 8 cells surrounding the cell being computed
(called a Mooredbs Neighborhood). The magnitud
to one for several reasons. First, as mentioned in section 2.1, if theden® not careful, large
movements can cause instability in the model. The backwards tracing method is supposed to lead
to a more stable model. Our method has no chance of becoming unstable since there is no risk of
movements becoming too large. Secaasldiscussed later, larger velocities would require a
larger neighborhood; this would result in the need for additional cases and overall increase the
computational effort.

The probability that the location the densities originated fromalieése cell center is
rare. For this reason, the densities that wil
come from 1 or more cells. Therefore, the new density state value is calculated as a weighted
average of the four closest cells te thrigin location. For example, let us assume the velocity
component vectors at the current cell are u = 0.6 and v = 0.4l€Nsity values are represented

by thed array

37

(-1,0) | (0

t-llll l:DJl]

Figure 18: Results of the advection calculation

By drawirg a square with the same dimensions as a cell, centered about the origin of the
velocity vector, it is clear that the densities must come from all four cells. The amount of the
densities coming from each cell is proportional to the area of each celleshtlpshe square.
The following equation is used to determine these amounts for this case:

O mim 6 0V Q plm p U Q pip p 0 O Qmm p O Qi
Equation 8: Weighted averages for new density

Using the values previously described the resudisldvbe as follows: 36% of the density
originates from the cell locatiorl(,1), while 24% from both-{,0) and (0,1) cells and the
remaining 16% comes from (0,1) cell; this totals to 100% therefore the formula is mass
conserving. These values correspamthie theoretical values from figur&.1

As previously mentioned, the magnitudes for the velocity component vectors were
restricted to fall between 1 antl. These forces would translate to the maximum distance
traveled to the cell being 1his means there are four different combinations for which the

velocity components could be. Therefore, four versions of equation 8 must be defined to

38

represent the possible outcomes. Figl@sHows these four possible cases and the regions that

they cover

\
(-1-1) I (0,-1) |(L-1) || CASE#1
o :1— ~ : CASE#2
(-1.0) (0,0) (1,0}
I S/ S—
CASE#4
1) |1 faa)
[

o —

Figure 19: Break down of the possible sources of the density for the advection step

The first case is for when the velocity component vectors are befvee® 1 awnwd 0 O

o 1. The resulting equation is shown in equa

O mim 6 0V Q php p U Q pht p 0 O Qmp p O Qi

Equation 9: Weighted Average for new density Case #1

The second case is for when the velocity vectors are betwiee u> 0 and 0 <

v > 1. The resulting equation is shown in equation 10.

O 1t Hs 0 Qmhp p U Qi p Ps O Qphp p 0 Qph

Equation 10: Weighted Average for new density Case #2

The third case is for when the velocity vectorsketveen:1 u@® 0 -la v@ O .
The resulting equation is shown in equation 11.

39

omm s Ps Qmm p Ds Q mip p Hs Ds Qpm p Ds Q php

Equation 11: Weighted Average for new density Case #3

The final case, case 4, is for when tledocity vectors are between; Qu< 1 and-1 <v> 0. The

resulting equation is shown in equation 12.

omn 6 s Q pp p P Q pmw p 6 Ps Qmp p Ps Qnw
Equation 12: Weighted Average for new density Case #4
The advection functiors therefore represented by these 4 equations. These same

eqguations are used for moving the velocity vectors as well, with the only difference being that

instead of density values being used, the magnitudes of the velocity vectors are being averaged.

4.4 Projection Function

The projection function is responsible for calculating the first term of the NSuies
eguation, as seen in section 2.1 equations 1. The main role of that term is to ensure the solution
to the equation remains mass conserving. grgection function is the most complex function
of the entire model and therefore, the information generated during the execution is stored in two
separate ports, while the remaining information from the function is stored within the two vector
componenports. These two parts are hereafter referred to atittandp functions.

Thediv function is responsible for creating a gradient map. A gradient map shows
changes in the velocity fields, with small values representing a uniform field with littleieariat
and large values representing extreme fluctuations in the velocity field. To ensure the system
remains stable, i.e. mass is not lost or created, we want to ensure that situations do not arise were

the velocity vectors all converge to a point or divergen a point, as seen in figur®.1

40

v g’, ~ 11
el «—| |~
DS ZnS

Figure 20: Convergent and Divergent Velocity Fields

Figure 20 shows two situations we do not wish to occur, hereafter referred to as
convergence and divergence. With all the velocities pointing to one cell, it @auwise
instability. For example, while the densities can theoretically exceed a value of 1 without causing
instability this may not be a desired outcome. More importantly though is this may cause the
magnitude of the velocity component vectors to exceddtisalocation and that is not allowed.
Similarly, with the divergent case, were all the velocities are leading away from the cell, the
density at the center cell would follow each velocity vector without being divided amongst all of
the vectors. This wdd result in more mass leaving the cell then was actually present in the cell,
once again leading to instability. The equation for generating the gradient map is as follow,
equation 13:

Q Qw0 T[EB)Z%Z 6 phQ 6 phQ V'AEQ p 0 'AQ p

Equation 13: Generating the gradient field
As we can see, the gradient field is calculated as the sum of the differences of the vertical
and horizontal neighbors. Therefore, a small gradient value will occur when the change in values

of the neighbdrood is small. Large gradient values will occur when the values of the velocities

make extreme changes but still maintained the same sign. The largest, and worst case, is when

41

the values are opposite signs on either side of the cell. This would be wkegé \wappening in
figure 19.

Once we have obtained the gradient field,glenction is executed. Similar to the
diffusionfunction it helps average the values out, reducing large gradient changes. The equation
for thep function is as follows, equatiort1

0 QOWNQ HQphQ R Q phQ RnEQ p n'AQ p
T

Equation 14: averaging the gradient field
This equation is run for several iterations.
The final step is to subtract the gradient field from the velocity field. The resiittera
more stable field, hopefully void of any situations such as those shown in 2igurée
following two equations, equations 15 and 16, represent the gradient field being subtracted from
the velocity field.
6AQ o6 QO ™Mz NQ phQ 7 Q phQ
Equation 15: Subtracting the gradient field from the horizontal field
DEQ 0 G0 ™Mz ATAQ p [AQ p
Equation 16: Subtracting the gradient field from the vertical field
Again, for small changes in the velbcfield, the p values will be equal and therefore the
final velocity field will not be changed. Even for large differences that occur between velocities
of the same sign, thevalue will have been averaged such that the final difference m the
values wll not be that large, and will not affect the final field significantly. Only during
situations, such as those presented in fi@Orewill the final velocity field be changed much.
This completes the projection function. Ass@esection 4.1 figure 1@he projection

function is repeated twice for the velocity solver. This is to ensure that changes made to the

42

velocity field during theliffusionor advectionfunctions do not cause any convergent or

divergent behaviors in the velocity field. For exampld, t wo #Afr ont so are abo
diffusionprocess could bring them close enough together such that a case similar todigure 1

exists. This would cause problems to occur duringatheectionprocess. Therefore the

projectionfunction is used ttelp negate this. However, this would only effect the leading edges

of these Afrontso and once again when advecte
convergent. During thdiffusionprocess these fronts would be averaged and the result could be

that they cancel each other out causing a dead space. This is not the desired effect; therefore, we

call theprojectionfunction once more to ensure this does not occur.

4.5 Boundary Function

The purpose of theoundaryfunction is to define the behaviof fluid-boundary
interactions. To implement the-slip conditionfor the boundaries in DEVS, let us look at
figure 13, section 4.1. The +&ip conditionstates that the velocity should average to zero along
the boundaries. To implement this, we addaddditional function to both solvers called the
boundaryfunction. The main goal is to ensure the system remains mass conserving and provides
the behavior of the fluidboundary interactions.

The most important role of tHeoundaryfunction is to controthe behavior of the
velocity fields around the boundaries. As previously statedydtsdip conditionstates that the
average of the velocity field should be zero along the edge of the boundaries. What is nice about
this model is that the velocities a®red in component form. This mean the only boundaries
that are of interest to thevectors are the surfaces that run perpendicular to the vectors, in this

case vertical boundaries, while theectors look at the horizontal boundaries. When running the

43

boundaryfunction for the vector ports, trace along the boundary and set the vector ports for

those boundary cells to be equal to the negative of the neighboriigoamn dar y cel | 6s
corresponding vector port. Thidite averageof the two values the resuitould be zero. This

zeroing of the velocity field will stop the densities from interacting with the boundaries. If we
ensure that no boundaries are a single cell wide, we do not have to worry about a situation

arising similar to that of L in figure13. Bysuring that boundaries are more than one cell wide,

we reduce the loss that would be generated from having to average the values of more than two
cells. When a boundary is in contact with only one-bhoundary cell, it is equal and opposite to

the state a&lue of the notboundary cell. When in contact with two nbaundary cells, it needs

to assume a state value that is equal and opp
values. This introduces the possibility for some loss of mass to occuryéoivis minimal. It is
important to note that when in contact with more than twebwumdary cells, as seen in case

it is possible foM andK to cancel each other when averaged. This would introduce the

possibility for major loss of mass to occiérsimilar situation occurs when channels are one cell
wide, and therefore, neither channels nor boundaries can be one cell wide.

As previously mentioned, the other role of the boundary function is to ensure the system
remain mass conserving, i.e. that gresence of boundaries does not negatively impact the
system. Therefore, tHBoundaryfunction is integrated when the other functions are called. For
example, to ensure no mass is lost during the diffusion of the densities, the boundary cells
assume a \lae that is equal to the average of the surroundingboamdary cells, as seen in
equation 17.

. Yo & 0€ HE O E QED A i
Nne "0¢€ 8¢ o0& QR @ i

Equation 17: Boundary Equation

44

Other times, the applications of theundaryfunction is less complex and exist solely to

ensurenotmg fAwanders intoo a cell that has been d:

4.6 Implementing the Algorithm as a CelDEVS in CD++

As previously stated, our model consists of two main parts, each consisting of several
functions. When expressing the algorithms functmsiss CeliDEVS rule in the CD++ language
several considerations are necessary. First, the amount of information being generated and stored
during the execution of this model is too great to be stored as a single state value within the cell,
as in a tradional Cellular Automaton. To deal with the different pieces of information, we used
different input/output ports to transmit the necessary state values. The first oneaugport.

Its purpose is to store the results of each iteration of the algogiémerated during the
simulation of the model: théme locationandmagnitudeof the densities (and, if needed, the
location of theboundarie$. Then, thediffusionport is responsible for executing the diffusion
function in the density solver. Thesesuéts are then advected when tadueport updates the
state values at the end of the iteration. These two ports can be thought adessityesolver
function presented in section 4.1.

The next two ports we use are thandv ports. Their main respaibility is to store the
component vectors of the velocity field, which are used to apply the forces duradvéeion
function. These two ports are also responsible for executirgdirectionfunction for the
velocity solver, as well as the last stajehe projectionfunction.

The next two are the anddiv ports. Their responsibility is to receive information related
to the two parts of thprojectionfunction, and activate the computation of such function

described earlier in section 4.4. The fipart is theboundaryport. The role of this port is to

45

simply store the location of the boundaries. These locations are necessary wWimmttay

function is called during the execution of the other functions.

Table 1: Timing Breakdown for a Single teration

Densitv Solver Ports Velocity Solver Ports
Time Value Diffusion u V P Div
1 Boundary | Boundary | Boundarv | Boundary Reset Reset
2 Diffusion Div
3 Boundary
4 P
6 .
7 P
8 Projection | Projection Reset Reset
o Boundary | Boundarv
10 Advection | Advection
11 Boundary | Boundarv
12 Div
13 Boundary
14 P
15
16 .
17 : P
18 Diffusion Projection | Projection | Boundarv
19 Boundary | Boundary Boundarv | Boundarv
20 Advection Reset Diffusion Diffusion Reset Reset

The second consideration that must be made to implement the model is the timing.

Because the algorithm used is complex and relies on functions being implemesegdsij is

not possible to complete the algorithm in a single time step. 8cdo improve the resolution

it was decided that several functions would be iterated over several time steps. Foidgig

was decided that one complete iteration/frame would last 20 time $tepspecific number of

time steps per iteration caany depending on many factors, such as desired resolution and

efficiency of the model. For this thesis, the time duration of an iteration was set at 20, since

beyond this point there was little change in the resolution fodithesionstep and it allowed

46

sufficient time for all the other steps to run till completion, Furthermore, an even number that
was also a multiple of 100 helped in programming the mdadile 1 breaks down which
functions are being executed in which ports during specific time $teps.theboundaryport is
not included since it does not implement any functions, since its sole purpose is to store the
border locations.

Some important things to note from table 1 &iest, the advectionfunction at time step
20 for thevalueport signifies the end of the iteration. However, to increase efficiency, the next
iteration has already started foandv ports. Because the cells are updated asynchronously,
changing the state values of these ports at the same time they are being usedfigitnibie
results. Next, the function is constantly running; however, with the resets and its dependency
on their being values stored in ttie port, the cell state values remain zero.

As discussed in section 2.3 the state values of a cell are detdrby the local
computing function. The local computing function consists BbstCondition, Delayand
PreCondition. As with all programming languages, the methods used vary depending on the
i ndividual programmer s s thatthealgorithmwouldbei s mode |
implemented as a single rule, and thereforePtte€Condition would is set to be always true. To
do this, it is necessary to have a method of determining which time stephisisvas done by
using a builin variable of the simlator called theime and theremainderfunction (remainder
of the long division function). By using tmemainderfunction in conjunction withf statements
we are able to define the behaviors for all the functions in section 5, based on the input ports
data, for any given time step within a single rule.

The first two ports transmit all the information generated by the density solver function.

As discussed earlier, tvalueport is responsible for transmitting the results ofateection

47

function, agdescribed in section 4.3. The following is the rule that defines the behavior of the

functions activated when an input is received invéleeport:

~value =
/I Initialization
if(time =0,
if(cellpos(1) < 20 and cellpos(1) > 5 and cellpos(0) < 6,
0.8,0) ,
/[Boundary Function
if((0,0)~boundary = 2, -1,

//Advection Function
if(remainder(time,20) = 0,
if(((0,0)~u>=0and (0,0)~u<=1),

[[This can be either be case #1 or #4
if(((0,0)~v>=0and (0,0)~v<=1),
/If yes then Case # 1
((0,0)~u*((0,0)~v*(-1, - 1)~diffusion + (1
(0,0)~v)*(- 1,0)~ diffusion) + (1 -
(0,0)~u)*((0,0)~v*(0, - 1)~ diffusion+ (1

(0,0)~v)*(0,0)~ diffusion)) ,
/If not Case#1 than it must be Case#4
((0,0)~u*(abs((0,0)~Vv)*(- 1,1)~ diffusion+ 1
abs((0,0)~v))* (- 1,0)~ diffusion) + (1
(0,0)~u)*(abs((0,0)~v)*(0,1)~ diffusion+ (1
abs((0,0)~Vv))*(0,0)~ diffusion))),
if(((0,0)~v >= -1land (0,00~v<=0),
/I Since u is negative it must be either Case#2 or #3
I'if v is negative than it is Case #3
(abs((0,0)~u)*(abs((0,0)~v)*(0,0)~ diffusion+ (1
abs((0,0)~Vv))*(0,1)~ diffusion) + (1 -
abs((0,0)~u))*(abs((0,0)~v)*(1,0)~ diffusion+ (1
abs((0,0)~v))*(1,1)~ diffusion)) ,
/'if v is positive than it is Case #2

(abs((0,0)~u)*(abs((0,0)~v)*(0, - 1)~ diffusion+ (1
abs((0,0)~Vv))*(0,0)~ diffusion) + (1 -
abs((0,0)~u))*(abs((0,0)~v)*(1, - 1)~ diffusion+ (1

abs((0,0)~Vv))*(1,0)~ diffusion)))))

)
,(0,0)~value)));

From the above cod#jree termavill affect the state value stored in thalueport.
These functins will occur either on the very first time step, or at tHet2fle step. The firsif
statement represents the initialization of the port where it may be necessary to provide some
initial values. Therefore, the firftostCondtionis that iftimeis equal to zero, i.e. the first time

step, then the density values will be initialized as a 5 by 13 rectangle with values of 0.8. These

48

initial values can be adjusted to whatever is desired. Thafregatement is for thboundary

function and will occur orhte 28 time step. As mentioned in section 4.5 bweindaryfunction

varies for each function it is integrated with. When integrated witlhdiectionfunction, as

seen here, it simply ensures that no densities are moved into cells that are definediasdsou

in this case, cells whose boundary port is equal to 2. For the purpose of visualizing the results it
was decided that the boundaries could be included walleport and would appear as a

negative value. The final seriesibStatements are fdhe implementation of thedvection

function, as described in section 4.3. This will occur on tHEti2e step of each iteration of the
model. The four cases, as presented in section 4.3 equations 9 through 12, are represented here
where (0,0)~value igsed to represent ti¥0,0) and thed ferms are represented by the
(i,j)~diffusion port values. It is worth noting that the cases do not appear in the same order as
they were presented in section 4.3. This was to optimize the efficiency of the algayithm

limiting the number off statements. Instead of using four londestatements for each case,

three shorter statements were used that grouped together like elements. For example, the long

version of thaf statement would be as follows:

if(((0,0~ wu>=0and(0,0~u<=1and(0,0)~v>=0and (0,0)~v<=1)

This would have to be repeated four times, one for each case. Instead, by sharing common
elements, as we did here, we are able to represent all four cases with three shorter statements.
While this may not result in a significant difference in the execution time, over many iterations
the small improvements in time should improve the efficiency slightly.

The final port used to store the information generated by the density solver function is the

diffusionport. As discussed earlier, it is used to store the results frodifthsionfunction, and

49

provide the state values used duringdbeectionfunction, as was just described. The

implementation of the functions triggered by data received snpihit is as follows:

~diffusion:=

if((time = 0 or remainder(time,20) =0), 0,
if((0,0)~boundary = 2,

/[Boundary Function

((0,1)~diffusion*(1 - ((0,1)~boundary)/2) + (O, - 1)~diffusion*(1
- ((0, -1)~boundary)/2) + (1,0)~diffusion*(1 -
((1,0)~boundar y)/2) +(- 1,0)~diffusion*(1 - ((-
1,0)~boundary)/2)) / (((0,1)~boundary)/2 + ((0, - 1)~boundary)/2
+ ((1,0)~boundary)/2 + ((- 1,0)~boundary)/2),

/[Diffusion Function
((0,0)~value + 0.05*((0, - 1)~diffusion + (0,1)~diffusion + (-
1,0)~diffusion +(1,0)~diffusi on))/(1.2)

)

To put the code in words, when the remainder of time is zero the state values are reset to
zero, otherwise both the boundary and diffusion functions are rurdifftsionport can be
thought of as a temporary variable and therefore imeiseset so previous values to not
contaminate the calculations performed during the next iteration of the model. If the cell is a
border cell, then it runs the boundary function; otherwise, it executes the diffusion function. In
this case the boundaryfuc t i onés purpose is to conserve mas
mass to the border cells during the diffusion prodegsation 17 from section 4.5 describes how
this is done.

The implementation of this equation could be done in one of two wags, iIFcould be
set up as a series of cases, similar to what was done fadtbetionfunction; however, with
four neighboring cells there are 16 possible cases. Instead, the equation was implemented in such
a way that it would cover all 16 cases. Asrs@bove, the equation is such that it is the sum of
the four adjacent neighbors divided by a maximum of four. However, any cell that is defined as a

boundary automatically zeroes the term so it will not affect the overall sum. To reflect this in the

50

divisor term, it is the sum of the number of cells which are not defined as boundaries; where
once again if a cell is defined as a boundary it zeroes that term.

The implementation of theiffusionfunction is straightforward. Equation 8, from section
4.1, is mplemented, where thevariable is replaced with the value from tredueport and the
xberms are the val ues diffusionports. feimpcoverthe eesojutom d i n g
of the results it was decided that th#usionfunction would be iteated 18 times. When we look
at table 1, we can see that fivejectionfunction required the most time steps. As later
discussed, it was decided that the equations used to generate the values stopepart theuld
be iterated several times as weherefore, the minimum iteration length would be 16 time
frames; this is the minimum number of frames the model can be completed in. This would mean
thediffusionequations would be iterated 14 times; 14 iterations would ensudiffilngon
function is corplete in time for the@dvectionfunction to occur. While 14 iterations of the
equation would be sufficient for low viscosities, to ensure good resolution for higher viscosities
the number of iterations was increased to 18; 18 iterations was chosen totkaseven with
high viscosities a decent resolution was obtained. Furthermore, by choosing 18 iterations as the
duration for the diffusion equation, this brought the total number of time steps for one iteration
of the entire model to 20, which is an easiumber to handle during the coding process.

Similarly, the velocity solver function requires four ports to store the results from the
execution. These ports are ey, divandp ports. As we can see from table 1, equations used to
determine thé&ostCondition for the velocity component vector ports is similar. These ports are
responsible for storing the results from thiusion, advectiomndprojectionfunction. These

functions are applied to the component vectors of the velocity field, thetb&yare stored in

51

component form wera is the horizontal vector andis the vertical vector. The implementation

of the algorithm for determining the state values of these two ports is as follows:

~u:=
if((remainder(time,20) = 1 or remainder(time,20) =9or
remainder(time,20) = 11 or remainder(time,20) = 19),
/[Boundary Function
if((0,0)~boundary = 2,
if((1,0)~boundary =2,

- 1*(1,0)~u, if((- 1,0)~boundary != 2, - 1*(- 1,0)~u,0)),
(0,0)~u),
/[Projection Function
if((remainder(time,20) = 8 or remain der(time,20) = 18),
(0,0~u - (0.5*(441)*((1,0)~p - (-10)~p),

/IAdvection Function
if(remainder(time,20) = 10,
if(((0,0)~u>=0and (0,0)~u<=1),
if(((0,0)~v>=0and (0,0)~v<=1),

((0,0)~u*((0,0)~v*(-1, -1)~u+(1 - (0,00~v)*(-1,0)~u)
+(@1 - (0,0)~u)*((0,0)~v*(O, -1)~u +(1 -
(0,0~v)*(0,0)~u)),
((0,0)~u*(abs((0,0)~Vv)*(-1,D)~u+ (1 - abs((0,0)~v))*(
1,0)~u) + (1 - (0,0)~u)*(abs((0,0)~v)*(0,1)~u + (1 -
abs((0,0)~v))*(0,0)~u))) ,
if(((0,0)~v >= -1and (0,0)~v<=0),

(abs((0,0)~u)*(a bs((0,0)~v)*(0,0)~u + (1
abs((0,0)~v))*(0,1)~u) + (1 -
abs((0,0)~u))*(abs((0,0)~v)*(1,0)~u + (1
abs((0,0)~v))*(1,1)~u)),

(abs((0,0)~u)*(abs((0,0)~v)*(O, -D~u+(1 -
abs((0,0)~v))*(0,0)~u) + (1 - abs((0,0)~u))*(abs((0,0)~v)*(1,
D~u+@ - abs((0,0)~ v))*(1,0)~u)))),

/IDiffusion Function
if(remainder(time,20) = 0 and time != 0,
((0,0)~u + 0.05*((0, -1)~u+ (0,1)~u + (-1,0)~u +(1,0)~u))/1.2,
if(time =0,
uniform(0.7,0.8) , (0,0)~u
M)

First the code for defining tHeostCondtionfor thev port is similar to the above code.
The code presented here can be separatédstatements. The first states that during the'l
9" 11" and 19'time step the boundary function is used to determine the new state values. If this
is not true then # next statement is examined. If the time step is equal to 8 or 18 then the
projectionfunctions dictates the new state values. Else if not true, then the time step is equal to

10 and theadvectionfunction will update the velocity field ports. If thisn®t true then the time

52

step is equal to 20 and the diffusion function is executed to determine the new state values. The
final term is only true during the very first time step and it is here that the initial port values for
the velocity field can be desbed.

The implementation of theiffusionfunction, as described in section 4.2, is similar to
how it was implemented for the density solver; however, instead of the particles being diffused
the magnitudes of the velocity component vectors are beingsddf Also, it was decided that
this function would only be iterated once, therefore represented by the current magnitude of
the component and the ére represented by the magnitudes of the respective neighboring cells.
As outlined in table 1, theiffusionoccurs at the 20time step. The implementation of the
advectionfunction, as described in section 4.3, is similar to how it was implemented for the
density solver. Again, the difference here is that the component vectors are being moved. The
cases remain the same, as outlined by equatiehs® fr om section 4. 3, with
value representinB(i,j) and thed 6 (térmsjcgming from the respective neighbors of the same
port. As outlined by table 1, this occurs during th& tiie ste. During the 8 and 18 time
step, the last section of tpeojectionfunction occurs. As described in section 4.4 equations 15
and 16, this is when the gradient field is subtracted from the velocity field. Again, since the
velocity field is stored in@mponent form, equation 15 is used to solve for the new horizontal
component vectors and equation 16 is used to solve for the new vertical component vectors.
Finally, during the T, 9" 11" and 14 time steps théoundaryfunction is implemented. As,
outlined in section 4.5, this is done by having the boundary cells assume a state value equal to
the negative average of the surrounding cells. An advantage to storing the velocity field in
component form is that for situations such-asom figure 13, setion 4.1, we are able to store

the negative horizontal component fr@&in theu port while the negative vertical component

53

fromJ is stored in the port. This makes it so the values do not need to be averaged, like it does

when theboundaryfunction is @lled for the density solver, which improves the overall results.
The next two ports are responsible for storing part of the results fropndjeetion

function. Specifically, theliv port stores the results generated by equation 13 from section 4.5

andthep port stores the results generated by equation 14 from section 4.5. As described in

section 4.5, théliv port is responsible for storing the gradient field generated during the

projectionfunction. The implementation dliv port is as follows:

~div:=

/IReset

if(remainder(time,20) = 0 or remainder(time,20) = 8, 0,
/I Projection Function

if(remainder(time,20) = 2 or remainder(time,20) = 12,

- 0.5%(1/4421)*((1,0)~u - (-1,0)~u+(0,2)~v - (0, -1)~v),
//Boundary Function
if((remainder(time,20) =3 or r emainder(time,20) = 13) and
(0,0)~boundary = 2,

((0,1)~div + (0, - 1)~div + (1,0)~div + (- 1,0)~div)/4
,(0,0)~div

I

Simply put, during the®land &" time step the gradient field is reset to zero. During fAarid
12" time step the gradient field émlculated and during thé’and 13' time step théoundary
function applied. Here theoundaryfunction sets the state value of cells defined as boundaries to
be equal to the average of the surrounding cells.

The final port used to store the infornmatigenerated from thgrojectionfunction is the
p port. This port is responsible for storing the results generated by eqliatioom section 4.5.
In other words, this port stores the averaged gradient field. The results are later accessed when
the gradent field is subtracted from the velocity field, as previously discussed. The
implementation of equatiois as follows:

/IReset
if(remainder(time,20) = 0 or remainder(time,20) = 8, 0,

54

/l Projection Function

((0,0)~div + (-1,0)0~p + (1,0)~p + (O, -1)~p + (0,1)~p)/4);

The averaged gradient field is reset on tharid & time step; otherwise the gradient field is

being averaged. At first glance this does not agree with what is presented in table 1, however,
after the ¥ and &' time step the &ld is reset to zero in both tpeanddiv ports. Therefore

without any values stored in either port the field will remain zero. Oncdivlport has the

values stored for the new gradient field, ghaort will begin to store the averaged gradient field.
This means, in essence, that pheort is only storing new results during tHethrough #' and

14" through 17 time steps, which is in agreement with table 1. The averaging of the gradient
field was chosen to be iterated more than once to impreveetiolution. The specific number of
iterations was to round out the total length of the algorithm to 20 time steps.

The previous four ports store all the information that is generated by the velocity solver
function. Together with the first two ports, lwave completed both functions.

The final port to define is theoundaryport. Oddly enough it is one of the two ports in
which theboundaryfunction is not called. Instead the role of this port is to define a cell as either
a boundary or neboundary cellThis is done by setting the corresponding state value to 2 or O
respectively. It is also in this port that the design/shape of the boundaries can be implemented.

For example, the following code implements a hollow square of 50 by 50 cells:

~boundary :=
i f(time =0 and
(cellpos(1) = 0 or cellpos(1) = 49 or cellpos(0) = 0 or
cellpos(0) = 49),
2, (0,0)~boundary);

A more complex example of the definition of the boundaries is shown in the following:

~boundary := if(time = 0 and

(cellpos(1) = 0 or cellpos (1) =24 or (
(cellpos(1) < 3 or cellpos(1) > 21) and cellpos(0) > 15 and
cellpos(0) <60)

or (

55

(cellpos(1) < 5 or cellpos(1) > 19) and cellpos(0) > 20 and
cellpos(0) <55)

or (
(cellpos(1) < 7 or cellpos(1) > 17) and cellpos(0) > 25 and
cellpos(0) <50)

or (
(cellpos(1) < 9 or cellpos(1) > 15) and cellpos(0) > 30 and
cellpos(0) <45))

This example provides the boundaries that appear in the simulation presented in section 5.2

All together this is the implementation of the rule that provitiesbehavior of the algorithms

presented in section 4.1.

56

5. Simulations of CFD Model

As stated in section 2, the goal of this thesis was to create a CFD that was able to provide
realistic results. Therefore, in this chapter we baldemonstrating that our model is able to do
so. This will be done by presenting different test results for each of the algorithms used in
developing the model, and providing a realrld application for the model. We will look at the
effect the narrowin@f the coronary arteries due to plaque buildup will affect the flow of blood
to the heart muscles. The simulations presented in this sectiorexemated remotely on the
RISE servef28] using CD++ v 2.Q29]. The results are then downloaded and visadlizsing

the visualization engines of the CD++ Toolkit.

5.1 Testing the Model

Before running complex simulations, it was necessary to see if all the components and
functions of the model were functioning properly. The first test scenario, as seeuréniy
was to test thdiffusionandadvectionfunctions. It was executed with a grid space of 75 cells by
75 cells and was exposed to a uniform velocity field indicated by the red arrow.

The exact values wera:between 0.8 and 1.0 amdetween 0.1 and.4. The simulation
was run for 175 iterations. The boundary conditions were setajopedto simulate a looped
grid. The viscosity for both the densities and the velocities were set to 0.05.

From figure 20, we can see that th#usionfunctioned peiormed as expected. The
density foci expanded outwards uniformly with a relatively low viscosity. There appears to be no
loss of mass either. Near the end of the simulation, the size of the density foci began to remain
constant. At first glance, it woulgppear that the densities were no longer diffusing. This,
however, is not the case; instead, the magnitudes of the densities near the edge of the foci were
becoming too small, i.e. less than 0.1, and therefore cannot be seen in the visualization. This is

57

animportant feature of this model, which demonstrates how its flexibility and how the model can
be implemented for a wide range of applications. Often when the densities become too low, we
no longer wish to keep track of them (smoke, for example), andahegy not storing these

low values we can help reduce the computational load. However, in some scenarios the densities
might only exist in small quantities, like drugs circulating in the blood stream. If this is the case,

the threshold can be adjustedie model and even the smallest of amounts can be tracked.

\ \
»

eI
Heiniet

Figure 21: Snapshots of density cloud being advected with the frames progressing from left
to right, top to bottom

Theadvectionfunction worked well in the uniform velocity field. With the aage
component vectors being 0.9[S] and 0.25[E], the resulting displacement should be 0.934 units
[S15°E], as seen iRigure22. This magnitude and direction clearly match the results seen in

figure 20.

58

x = 0.92+ 0.25%2 =0.934

. 4,035, e
8 = sin (0.934)_ 15

0.25

Figure 22: Resulting Velocity vector

In addition,the density foci made approximately two rotations through the cell space.
With a height of 75 cells that mean the foci travelled approximately 150 cells vertically during
the simulation. The simulation lasted 175 frames which means the foci moved are afed&6
cells per frame which corresponds to having a vertical velocity of 0.9. Overall the two functions
worked seamlessly together and provided great results with a strong resolution.

The next simulation that was executed was to test the veloctiyafiel to see how it
would behave under naimiform velocity conditions. The parameters were the same as the first
test with only the initial velocities being different. Figui@shows the initial values for the
simulation.

The goal was to determine theHavior of the evolution of the velocity field when two
distinct velocity fronts came into contact. As before, the first regions average velocity was 0.934

[S15°E] while the second regions average velocity was 0.814[E11°N].

59

a=10.05

Density = 0.8 to 1.0

u (blueregion) = 0.8 to 1.0
v (blue region) = 0.3 to 0.6

u (red region) =-0.3to 0

v (red region) = 0.6 to 1.0
\ / _ /

Figure 23: Initialization for non-uniform velocity field

The results of this simulation can be seen in figuteThe red arrow in the top right
corners represents the approximate forces acting on the density cloud.

In this test, we were interested more in how the densities moved wider notuniform
conditions, in order to provide insight into how the velocity fields evolved. In the first frame, the
forces were as expected, and the advection path of the cloud was similar to the one seen in figure
20. By the second frame, the clowduld be entering the red section, as outlined in figGre 2

Here again, the forces seemed to be as expected: the horizontal velocity increased and the large

60

downward force was slowed by the smaller upward force present in the second section. By the
4" frame, the cloud had passed through the region of horizontal velocity and returned to the

region with the downward forces.

Figure 24: Testing for non-uniform velocity field with frames representing progression of
time from left to right and top to bottom.

The most interesting were the last two frames, where a region of upward forces survived
and was able to provide visible forces on the cloud. What is surprising about this is the time at
which it occurred. This was near the very end of a long simulatidrit was believed that the
velocities would have approached a more uniform distribution of magnitudes. This clearly is not

61

