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I
n the past few decades, computers have ascended to a po-
sition of prevalence in our lives. In fact, the machines in 
our homes and offices now outnumber the people who 
use and live with them. Most of these computers go un-

noticed, however—these embedded computing systems are 
composed of tightly coupled hardware and software designed 
for a specific purpose. Embedded systems are found in a wide 
range of applications, from common electronic devices (cell 
phones, portable video games, camcorders) to home appli-
ances (microwave ovens, home security systems, lighting sys-
tems) to business equipment (cash registers, alarm systems, 
card readers) to automobiles (cruise control, antilock brakes, 
fuel injection).

Embedded systems have specific characteristics that 
differentiate them from other computing systems1:

■■ They usually execute one program repeatedly, and they 
perform one particular task during their lifetime. 

■■ Many of them must continually react to changes in the 
system’s environment and compute certain results in real 
time. Responses after a strict deadline could result in cata-
strophic consequences—for example, an airplane’s flight 
controller must respond correctly within the required 
deadline, or the result could be serious injuries or death.

■■ They often cost a few dollars, fit on a single chip, pro-
cess data in real time, and consume minimum power.

Embedded computing systems have grown not only in 
popularity but also in complexity. But are current software 
development methods still suitable? Can they cope with this 
increased complexity? In a word, no—current development 
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methodologies don’t measure up to the task. Their 
shortcomings make software the most costly and 
least reliable part of an embedded system, with defi-
ciencies originating from  inconsistencies in the devel-
opment cycle and problems with system verification 
because no single robust development framework 
offers an optimal solution. Formal methods have 
shown promising results in dealing with these issues, 
facilitating system verification through their strict 
mathematical foundations. However, most formal 
methods don’t scale up well, and they usually don’t 
consider the physical environment that the embed-
ded system controls, resulting in expensive testing 
efforts with no guarantees of bug-free products. In-
stead, systems engineers usually rely on modeling 
and simulation (M&S) techniques that provide the 
means to solve these problems, even though most 
M&S methods are at best semiformal and don’t have 
the robust foundation that’s essential to proving the 
properties inherent to a system. 

Here, we describe a new methodology based on 
discrete-event modeling and simulation that lets us 
model the physical system in which the embedded 
system works and the software that controls the ap-
plication. Our approach offers a systems-theoreti-
cal methodology that uses an engineering-based 
approach to integrate multiple views at different 
levels of abstraction. 

Embedded Software
The embedded systems industry generally uses de-
sign approaches based on earlier experience with 
similar products and, in many cases, on ad hoc 
techniques because the emphasis is on backward 
compatibility to reduce costs. However, this design 
rigidity leads to overly complicated systems and 
system management, along with skyrocketing cost. 
In the automotive industry, for example, cars now 
have an increasing number of electronic control 
units that have escalated software complexity to the 
extent that current development tools make it dif-
ficult to build reliable systems.

New abstract and visual design methods at-
tempt to deal with this complexity and increase 
embedded systems’ reliability and performance. 
Formal methods in particular provide mathemati-
cal models and use transformations, formal proofs, 
and validation of model specifications to prove sys-
tem properties. Timed Automata (TA), for instance, 
provides a sound theory to specify models using a 
timed state-based notation. System verification is 
easy in this case because states’ space exploration 
or tools that rely on computation tree logic such 

as UPPAAL can ensure that system properties are 
correct. Research in this area has advanced steadily, 
but most formal methods work best on medium-
scale designs with well-defined interfaces. Another 
restriction is that formal models of real-time con-
trollers (which usually have discrete variables) must 
interact with models of the physical environment 
(which are better modeled with continuous variable 
methods such as differential equations). Building 
such hybrid models is anything but simple.

Consequently, systems engineers often rely on 
M&S because it provides a flexible and risk-free 
method for analysis, regardless of application size 
(including external environment). Products built 
using M&S are of better quality and have an overall 
reduced cost because the risk-free virtual environ-
ment allows extensive verification and testing. This 
is an especially useful approach when you consider 
that verification under actual operating conditions 
isn’t cost-effective and could be impractical (or im-
possible) in some cases. However, its lack of a math-
ematical foundation means that M&S isn’t as ro-
bust as formal methods: you can’t guarantee design 
properties with it. So how do we find a solution 
that provides the benefits of both formal methods 
and M&S? Will that solution respond to the in-
creasing complexity and heterogeneity of embedded 
systems? 

Our research team focuses on how to bridge for-
mal methods and M&S to analyze embedded sys-
tems and study their interaction with the physical 
environment, all while making the original models 
become part of the target platform. To achieve this 
goal, we introduce a methodology called discrete-
event modeling of embedded Systems (DEMES), 
based on a mathematical M&S theory called DEVS 
(discrete-event system specification).2 

DEMES
DEMES uses M&S in its initial stages, replacing 
models with hardware surrogates and new software 
components without altering the original models. 
This transition happens in incremental steps, in-
corporating models in the target environment after 
thorough testing in the simulated platform, which 
allows model reuse throughout the process. 

DEMES combines the advantages of a practical 
approach with the rigor of a formal method, in which 
you consistently use the same models throughout the 
development cycle following the DEVS formalism. 
DEVS is an increasingly accepted framework that 
provides an abstract and intuitive way of modeling, 
independent of underlying simulators, hardware, and 
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middleware. It’s based on a hierarchical and modular 
construction of models, which fits our needs because 
we define models at different levels of abstraction 
 independently and later integrate them into a hierar-
chy. Indeed, the DEVS formalism decomposes com-
plex system designs into basic (behavioral) atomic 
models and composite (structural) coupled models, 
following a precise ruleset to define state changes in 
modeled systems.2

DEVS is suitable for embedded systems be-
cause it provides a rich structural representation of 
components and a formal means for explicitly speci-
fying their timing. It can also be used to model the 
system environment. DEVS is the most generic 
discrete-event formalism, and most existing real-
time techniques (from finite state machines to state-
charts) are transformable to it. Thus, developers can 
conveniently combine advanced models with differ-
ent methodologies. 

Figure 1 shows the DEMES architecture. A 
designer starts by modeling the system of inter-
est using formal specifications, and these models 
are then converted into a DEVS representation, 
transformed into timed automata, and verified 
using model-checking tools. In parallel with this 
formal verification phase (which can take a long 
time, especially if state explosion happens during 
formal verification), the same models are used to 

test the components in a simulated DEVS envi-
ronment. The physical environment can also be 
simulated with the embedded system model under 
 particular loads. Instead of obtaining general an-
swers for all possible cases (like those provided by 
model-checking), we can simulate individual sub-
model behaviors under specific conditions before 
incrementally deploying these tested submodels 
into the target platform. If the hardware isn’t read-
ily available, software components can still be de-
veloped incrementally and tested against a model 
to verify viability and make early design decisions. 
As the design process evolves, both software and 
hardware models can be refined by progressively 
setting checkpoints in real prototypes. The execu-
tive allows dynamic model execution and static 
and dynamic task scheduling. At this point, those 
parts that are still unverified in the formal and 
simulated environments are tested, increasing the 
engineer’s confidence in the implemented system. 
Most of the testing phase can be done via simu-
lation (with faster-than-real-time performance), 
even if the hardware is unavailable. With DEMES, 
design changes are done incrementally in a spiral 
cycle, providing a consistent set of tools through-
out the development cycle. The cycle ends with 
the embedded system fully tested and every model 
deployed on the target platform.

System of interest DEVS specification models

Environment RTS

Model-Checking engine

RTS model
simulation

Target platform

RTS in DEVS Executive

RTOS

Environment
Model simulation:

QSS/Cellular/
ParallelRTS

requirements

(1)

(2) (8) (8)

(8) (5)

(6, 7)

(6) (9)

(9)

(4)

(6)

(3)

Physical
environment

Figure 1. Discrete-Event Modeling of Embedded Systems (using DEVS). A designer starts (1) by modeling the system with formal 
specifications; these models (2) are then converted into a DEVS representation, transformed into timed automata, and verified using 
model-checking tools. In parallel with this formal verification phase, (3) the same models are used to test the components in a simulated 
DEVS environment. The (4) physical environment can also be simulated together with the (5) embedded system model under particular 
loads. Instead of obtaining general answers for all possible cases, we can simulate an individual submodel under specific conditions. 
Then, we deploy (6) incrementally these tested submodels into the target platform. Most of the testing phase (7) can be done with 
simulation, even if the hardware is unavailable. With DEMES, design changes (8) are done incrementally in a spiral cycle, providing a 
consistent set of apparatus throughout the development cycle.
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This approach has various advantages when com-
pared to existing methodologies, especially because 
most M&S methods are semiformal and don’t  provide  
direct model continuity. For  instance, researchers3 
comparing DEVS and UML-RT found that fea-
tures such as time, scheduling, and performance 
coded with UML constructions aren’t formally de-
fined, whereas formal modeling methods such as 
DEVS provide sound syntax/semantics for struc-
ture, behavior, time representation, and compo-
sition. Model continuity refers to preserving the 
model specification as much as possible through 
the development process, and it’s usually missing in 
common approaches. One approach4 showed an ex-
ample of how to manage the development and test-
ing complexity of a leader-follower robotic system 
by applying model continuity in a DEVS-based 
process. With DEMES, we place model continuity 
at the core by using the same models throughout 
the entire development process.

Model Checking in DEMES
Model-checking lets designers verify model cor-
rectness and eventually produce formally correct 
software. One advantage of executable models is 
that they can be deployed to the target platform, 
thus providing the opportunity to use the con-
troller model not only for simulations but also as 
the actual code executing on the target hardware. 
Thus, the verified model is itself the final imple-
mentation executing in real time. This prevents 
any new errors that might appear during transfor-
mation of the verified models into an implementa-
tion, hence guaranteeing a high degree of correct-
ness and reliability.

To verify DEVS models, we use a class of ra-
tional time-advance DEVS called RTA-DEVS,5 
transforming these RTA-DEVS models into equiv-
alent TA that are then used to formally verify de-
sired properties using the UPPAAL model checker 
tool. RTA-DEVS was introduced to provide the 
modeler with a formalism that’s both expressive 
and sufficient to model complex system behav-
ior while being verifiable through formal model-
checking techniques. RTA-DEVS is a subclass of 
DEVS that restricts the time advance function 
to nonnegative rational numbers and the elapsed 
time in a state used in the external transition to 
be a nonnegative rational number. These restric-
tions mean that we’ll have nonnegative rational 
constants in the resulting TA model and ensures 
termination of the reachability analysis algorithms 
implemented in UPPAAL. 

In previous work,6 we presented a case study 
using a controller for an e-puck robotic application 
and demonstrated this approach’s practicality.

Simulation
The DEVS formalism proposes a framework for 
model construction and defines an abstract simulation  
mechanism that’s independent of the model itself. This 
mechanism provides a high-level implementation de-
tail for the DEVS framework and can be feasibly im-
plemented by computer software.

The simulation/execution process involves two 
primary subsystems: the modeling subsystem and the 
runtime subsystem. The modeling subsystem allows 
the modeler to define atomic and coupled models by 
extending the basic model classes. The runtime subsys-
tem is hidden to the modeler and contains execution 
classes associated with modeling classes that execute 
specific algorithms (defined by the abstract simula-
tor) to render model behavior. Although the modeling 
subsystem remains the same, the execution subsystem 
varies to allow faster-than-real-time simulation, real-
time simulation, or hardware-in-the-loop simulation. 
Therefore, the execution engine used for physical en-
vironment models will differ from the one associated 
with real-time simulation because the latter ultimately 
has to allow models to run on the target hardware. 

We have different simulation tools dedicated to 
real-time simulation as well as faster-than-RT simu-
lation. The CD++ toolkit, in particular, is a DEVS-
based framework that lets users run different types 
of simulation.7 It’s especially useful for environment 
model simulation and supports QSS (quantized 
state systems) and cellular and parallel DEVS:

■■ QSS approximates partial differential equa-
tions. Various efforts have integrated continu-
ous models and DEVS, but QSS theory showed 
how to approximate hybrid systems through 
DEVS, and QSS’s main advantages (controlled 
error, performance, parallelism, and so on) still 
hold in the presence of discontinuities.8

■■ Cellular models9 represent physical systems as 
lattices of elements (each including a simple 
computing apparatus) that can reproduce a 
real system’s complete behavior. Cellular com-
puting10 has received a big push, and many re-
searchers now use these methods.

■■ Parallel discrete-event simulation (PDES)11 deals 
with executing discrete-event simulations on mul-
tiple interconnected processors. Various existing 
methods (optimistic, conservative, and so on) are 
starting to appear in the DEVS methodology.12
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All of these methods are useful to build physical 
environments models that interact with the em-
bedded system model and to explore diverse sce-
narios in a risk-free environment.

Figure 2 illustrates our DEMES embedded 
framework. The environment supports embedded 
system modeling by converting the virtual time-
advance functions to real time and providing a 
real-time execution platform to verify such mod-
els. Specifically, the figure highlights the embed-
ded platform with the external environment in 
this layered approach to represent cross-platform 
development. The modeler uses a high-level DEVS 
language combined with C++ code if needed, 
which provides the application layer. The Eclipse 
IDE layer also allows for the graphical develop-
ment of models.

The DEVSRT engine interprets and executes 
these models. To allow for direct replacement of 
models with external entities, I/O ports implement 
the formal interfacing mechanism of DEVSRT in 
the driver interface layer, which enables communi-
cation with the target hardware’s components. The 
user models and the driver objects run on the tar-
get platform. If the user defines specific drivers to 
communicate or gather data from the external en-
vironment or external simulations, the models will 
also be able to process this data according to their 
specification.

Case Study: A Line-Following Robot Model
The system of interest for our case study applica-
tion is a line-tracking robot that has a light sensor 
facing the ground and absorbing the light reflected 
off a small ground surface. The controller considers 
a medium percentage of reflected light as a detected 
path and initiates the robot to move forward. When 
the robot goes off track and doesn’t pick up a path 
trail, it stops, turns, and tries to detect a trail again. 
The robot can also receive manual signals to start 
and stop.

As shown in Figure 1, the first step in the 
DEMES-based development cycle is to specify a 
model for the system of interest using DEVS. Fig-
ure 3 illustrates the resulting DEVS model hierar-
chy for this example.

The line-tracking robot’s top model consists 
of three coupled models (sensor unit, control unit, 
and movement unit) and two input ports (MOVEL 
_OUT and MOVER_OUT). LIGHT_IN is the 
input port through which light sensor values are 
read, and START_IN is for start/stop commands. 
We use the output ports to send commands to the 
robot’s left and right motors. 

The sensor unit contains an atomic model—the 
light sensor—which reads the amount of light re-
flected and transmits those readings to the control 
unit. In this coupled model, the sensor controller 
activates or stops the light sensor (sctrl_start_out), 
receives the light sensor readings (sctrl_light_in), 
and sends messages to the movement controller 
(sctr_mctrl_out) specifying whether the robot is on 
track, off track, or reached the destination. When 
the robot reaches its destination—that is, the light 
sensor reads an all-dark surface—the sensor control-
ler sends a “stop reading” command to the light sen-
sor (sctrl_start_out) and a stop signal to the move-
ment controller. 

The movement controller receives on/off-
track and stop signals from the sensor controller 

Environment

Development environment

Eclipse

Modeler

Hardware (PCs/HW/
boards/robots/FPGAs...)

Target platform

Network

DEVSRT driver interface

Real-time DEVS model

E-CD++ DEVSRT engine

Software

Figure 2. DEMES embedded framework. The embedded platform with the 
external environment in this layered approach represents cross-platform 
development. The modeler uses a high-level DEVS language combined with 
C++ to build the application.
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(mctrl_sctrl_in) and sends appropriate commands 
to the motors (mctrl_movel_out and mctrl_mover 
_out). The movement unit is made of two atomic 
models: motor left and motor right. Essentially, 
it’s a collection of the robot’s  actuators that move 
in response to commands received from the con-
trol unit. The motor models control the robot 
treads: they can only move forward,  reverse, or 
stop according to the signals they receive from the 
control unit. 

The model we’ve just described indicates the 
robot’s hierarchical structures, so let’s now look at 
how to build one of those components using the 
DEVS formal specification. As mentioned earlier, 
the control Unit model has two atomic models, the 
sensor and movement controllers. We formally de-
fine the control unit as follows:

CM = <X, Y, D, {Md}, EIC, EOC, IC, select>,

where

X = {(CU_START_IN_TOP, N); (CU_LIGHT_
IN_SU, N)}

Y = {(CU_START_OUT_SU, N); (CU_MOVEL_
OUT_MU, N); (CU_MOVER_OUT_MU, N )}

D = {Sensor Controller, Movement Controller}

Md = {M(sensor controller), M(movement 
controller)}

EIC = {((Self, CU_START_IN_TOP), (Sensor  
Controller, sctrl_start_in)); ((Self, CU_LIGHT_
IN_SU), (Sensor Controller, sctrl_light_in))}

EOC= {((Sensor Controller, sctrl_start_out), (Self, 
CU_START_OUT_SU)); ((Movement Controller, 

START_IN

ControlUnit

sctri_start_in

sctri_start_out sctri_mctri_out

sctri_mctri_insctri_light_in

Is_start_in Is_light_out

SU_LIGHT_IN_TOP

LIGHT_IN

SensorUnit

Is_light_in

CU_LIGHT_IN_SU

SU_LIGHT_OUT_CU

CU_MOVEL_OUT_MU

MU_MOVEL_IN_CU MU_MOVER_IN_CU

MU_MOVER_OUT_TOPMU_MOVEL_OUT_TOP

MOVEL_OUT MOVER_OUT

Light sensor Motor left Motor right

MovementUnit

SU_START_IN_CU

mctri_sctri_in

mctri_sctri_out

mctri_mover_out

mctri_movel_out

motor_in motor_in

motor_out motor_out

CU_MOVER_OUT_MU

CU_START_OUT_SU

CU_START_IN_TOP

Sensor
controller

Movement
controller

Line tracking robot

Figure 3. Model hierarchy diagram for line-following robot case study. The top model consists of three coupled models (sensor unit, 

control unit, and movement unit), two input ports (LIGHT_IN and START_IN), and two output ports (MOVEL_OUT and MOVER_OUT).
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mctrl_movel_out), (Self, CU_MOVEL_OUT_
MU)); ((Movement Controller, mctrl_mover_out), 
(Self, CU_MOVER_OUT_MU))}

IC = {(Sensor Controller, sctrl_mctrl_out); (Move-
ment Controller, mctrl_sctrl_in)}

Select = {Sensor Controller, Movement Controller}.

In this above specification, X represents the set 
of input events, Y the set of output events, and D 
each model’s component name. Md is the set of 
DEVS basic (atomic or coupled) models, EIC the set 
of external input couplings, EOC the set of external 
output couplings, IC the set of internal couplings, 
and select a tiebreaker function used for simultane-
ous events.

The DEVS formal specification for the move-
ment controller model shows how we define atomic 
models:

M = <X, S, Y, δext, δint, λ, ta>,

where 

X = {(mctrl_sctrl_in,{OFF_TRACK,ON_
TRACK,STOP_PROC})}

S = {“IDLE”, “WAIT_DATA”, “PREP_MOVE_
FWD”, “MOVE_FWD”, “PREP_TURN”, 
“TURN_ALPHA”, “PREP_STOP”, “MX_STOP”}

Y = {(mctrl_mover_out, {O_GO_FWD, O_GO_
REV, O_STOP}); (mctrl_movel_out, {O_GO_FWD, 
O_GO_REV, O_STOP}); (mctrl_sctrl_out, {Ø})}

ta = S → R+
0,∞ and is usually defined as part of δext 

and δint.

Figure 4 illustrates a DEVS graph representing the 
movement controller behavior. A state diagram sum-
marizes the behavior of a DEVS atomic component 
by presenting the states, transitions, inputs, outputs, 
and state durations graphically. The circles represent 
states—the double circle is the initial state—and in-
clude the state’s name and duration. The continuous 
edges between the states represent the external transi-
tions, which include the names of the input ports, the 
input value, and any condition on the input (with for-
mat “port?value”). The dotted lines represent the inter-
nal transitions and the associated outputs (with format 

“port!value”). Other components of the line-tracking 
robot are defined in a similar fashion.

Subsequent model-checking involves the following 
steps13,14:

■■ Replace all models with their RTA-DEVS ver-
sions. For our line robot, the RTA-DEVS model 
is identical to the provided model definition be-
cause it complies with RTA-DEVS restrictions. 

■■ Define a clock variable for each atomic RTA-
DEVS model.

■■ Replace every state in the RTA-DEVS model with 
a corresponding TA one. A location is created for 
each state with the same name in the TA model.

■■ Model the RTA-DEVS internal transitions  
using TA.

■■ Model the RTA-DEVS external transition  
using TA.

■■ Verify properties in the resulting TA (such as 
absence of deadlocks, liveness, bounded time) 
via UPPAAL.13

After the formal specification and model-check-
ing phases, we use E-CD++ to run simulations, test 
individual components under different loads, gath-
er results, and derive different test cases. E-CD++ 
provides a mechanism to program DEVS hierarchi-
cal structures. The model definitions and couplings 
are written in a specific format, and state transi-
tions and output function are overwritten in C++ 
as part of each model’s class definition. Figure 5  
shows excerpts of the movement controller’s transi-
tion and output functions, in accordance with the 
state diagram in Figure 4.

Lines 25 to 38 show a portion of the inter-
nal transition function describing the transition 
from PREP_MOVE_FWD to MOVE_FWD and 
PREP_MOVE_FWD to TURN_ALPHA, whereas 
lines 40 to 48 show a portion of the output func-
tion’s behavior for a different state. The output 
function sets the output signal (O_GO_FWD, O_
GO_REV, and O_STOP) to send to the motor unit 
through mctrl_mover_out and mctrl_movel_out. 

Using these models, we can test different scenar-
ios early on by using event files that generate events 
for the input ports. Once the developer is satisfied 
with the results, the components can be incremen-
tally moved to the target platform. To do this, each 
driver is associated with specific commands related 
to the hardware component with which it inter-
acts. Once the model and driver implementation is 
complete, different tests progressively integrate the 
hardware components and check the entire system. 
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Model Verification and Execution
To test our line-tracking application, we first use a vir-
tual time simulation and perform tests on individual 
components to ensure that they behave as expected in 
different environment settings. Then, we perform the 
tests in real time and integrate hardware components 

 progressively. Table 1 shows a port-mapping table and 
the description of each value to test the model’s behavior. 

Table 2 shows an extract of a unit test performed 
on the movement controller, and Table 3 shows an 
example of the input events we injected in the sys-
tem and the resulting outputs.

mctrl_mover_out!O_STOP

mctrl_sctrl_in?ON_TRACK

mctrl_sctrl_in?ON_TRACK

mctrl_mover_out?!O_STOP
mctrl_movel_out?!O_STOP

mctrl_mover_out!O_GO_FWD mctrl_sctrl_in?
STOP_PROC

mctrl_sctrl_in?
STOP_PROC

mctrl_movel_out!O_GO_REV

mctrl_sctrl_in?OFF_TRACK

mctrl_sctrl_in?STOP_PROC

mctrl_sctrl_in?STOP_PROC

mctrl_sctrl_in?STOP_PROC

mctrl_sctrl_in?OFF_TRACK

MOVE_FWD
infinity

PERP_STOP
Zero

MX_STOP
Zero

PREP_MOVE_FWD
movePrepTime

TURN_ALPHA
turnTime

PREP_TURN
movePrepTime

IDLE
infinity

WAIT_DATA
infinity

mctrl_movel_out!O_STOP

mctrl_mover_out!O_GO_FWD
mctrl_movel_out!O_GO_FWD

mctrl_mover_out!O_STOP

mctrl_movel_out!O_STOP

Figure 4. Movement controller state diagram. The circles represent states—the double circle is the initial state—and include the state’s 
name and duration. The continuous edges between the states represent the external transitions, which include the names of the input 
ports, the input value, and any condition on the input (with format “port?value”). The dotted lines represent the internal transitions and 
the associated outputs (with format “port!value”).
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1 Model &MovementController::externalFunction( const ExternalMessage &msg ){  

2   if (msg.port() == mctrl_sctrl_in) {   // Sensor Controller signal received   

3     sctrl_input = static_cast<int>(msg.value()); 

4     if (sctrl_input == ON_TRACK) { // The robot is on the right path 

5       if (state == WAIT_DATA || state == IDLE) { // Waiting for data or Idle 

6         state = PREP_MOVE_FWD;         // Prepare to move forward 

7         holdIn( Atomic::active, movePrepTime ); 

8       }   

9     } 

10     else if (sctrl_input == OFF_TRACK) { // The robot is not on the right path

11       if (state == MOVE_FWD) {     // if it was moving forward 

12         state = MX_STOP;       // stop immediately 

13         holdIn( Atomic::active, ZERO_TIME ); 

14       } 

15       else if (state == WAIT_DATA || state == IDLE) { // Waiting or idle 

16         state = PREP_TURN;      // prepare to turn to detect the path  

17         holdIn( Atomic::active, movePrepTime ); 

18       }   

19     } 

20     ...// Remaining case STOP_PROC, go to PREP_STOP in that case 

21   } 

22   return *this; 

23 } 

24  

25 Model &MovementController::internalFunction( const InternalMessage & ){ 

26   switch (state){ 

27     case PREP_MOVE_FWD:   // Preparing to move forward 

28       state = MOVE_FWD; 

29       passivate(); 

30       break; 

31     case PREP_TURN: 

32       state = TURN_ALPHA; 

33       holdIn( Atomic::active, turnTime ); 

34       break; 

35     ... // Instructions for remaining states 

36   } 

37   return *this; 

38 } 

39  

40 Model &MovementController::outputFunction( const InternalMessage &msg ){   

41   if(state== MX_STOP || state==TURN_ALPHA || state== PREP_STOP){ 

42     sendOutput( msg.time(), mctrl_mover_out, O_STOP) ; 

43     sendOutput( msg.time(), mctrl_movel_out, O_STOP) ; 

44   } 

45   ...// Remaining cases: state==PREP_TURN, send O_GO_FWD and O_GO_REV 

46     //         state=PREP_MOVE_FWD, send O_GO_FWD to both motors 

47   return *this ; 

48 } 

Figure 5. Excerpts of the movement controller’s transition and output functions from Figure 4.
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After one second, an input to the START_IN 
input port starts the system. Then, at 2 seconds, 
a value of 1, meaning the line is detected, is sent 
through the LIGHT_IN input port. To illustrate 
situations when the robot gets off track, a value of 0 
is sent through the LIGHT_IN port. The system is 
then manually stopped by sending 11 through the 
START_IN port. Different values are sent through 
the LIGHT_IN port to test how the system behaves 
after a manual stop. 

The resulting behavior is similar to the one 
defined in the controller models. Indeed, when 
the robot goes off track and doesn’t detect a line, 
it stops, turns counterclockwise slightly, and then 
tries to detect a trail again. If a line is detected, the 
robot moves forward again; otherwise, it continues 
to turn until it finds a path to follow. The destina-
tion is considered to be a wide dark ground surface. 
Once this surface is detected, the robot will stop 
and go into an idle state.

When porting the same models to be executed in 
real time on an ARM microcontroller, we observed 
the same behavior. After running various scenarios to 
verify the model behavior on the board, we mapped 
the driver interfaces with the robot sensors and actu-
ators. Figure 6 shows the robot shield and the board 
used for this application. A button and a reflectance 
sensor are connected to the shield.

The START_IN driver is attached to the but-
ton for starting/stopping the robot and acts as an ac-
tive device in this case. The LIGHT_IN driver is as-
sociated with the reflectance sensor for sensing surface 
brightness and acts as a passive device because polling is 
needed to collect the sensor values. The output drivers 
MOVER_OUT and MOVEL_OUT are connected 
to two servomotors. The same models can be reused on 
another hardware platform without any modification. 
We performed the tests on both the Lego (http://youtu.
be/mTtlSV7WbuI) and ARM robots (http://youtu.be/
X2itlznkoVw)—the robot followed the line as expected.

Table 1. Port mapping.

Port name Port value Hardware command Description

START_IN
10 START Manual start command

11 STOP Manual stop command

LIGHT_IN

0 BRIGHT No line detected

1 DARK Line detected

2 ALL_DARK Destination reached

MOVER_OUT/ 
MOVEL_OUT

0
1
2

STOP
FORWARD
REVERSE

Stops the motor
Spins clockwise
Spins anticlockwise

Table 2. Movement controller’s simulated input events and resulting output.

Input Output Comments

00:00:01:030  sctrl_mctrl_out  ON_TRACK
00:00:01:080 mover_out 1
00:00:01:080 movel_out 1

ON_TRACK received
Moving forward

00:00:02:000  sctrl_mctrl_out  ON_TRACK – No change in commands

00:00:02:050  sctrl_mctrl_out  OFF_TRACK

00:00:02:050 mover_out 0
00:00:02:050 movel_out 0

OFF_TRACK received
Stop motors immediately
Turn
Stop motors after turn

00:00:02:100 mover_out 1
00:00:02:100 movel_out 2

00:00:03:100 mover_out 0
00:00:03:100 movel_out 0

00:01:03:50  sctrl_mctrl_out  STOP_PROC
00:01:03:050 mover_out 0
00:01:03:050 movel_out 0

STOP_PROC received
Stop immediately
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The increasing demand for new features and qual-
ity combined with decreasing budgets and time 

to market pose great challenges to embedded system 
designers. Building these products is technologi-
cally and economically feasible, but software design, 
testing, and integration are still the most expensive 
tasks. Our methodology addresses these challenges, 
but we acknowledge there is much to be done. 
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