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Abstract

With the rising popularity of embedded systems came new challenges due to ever-

growing market application demands, increasing complexity and widening productiv-

ity gap. To deal with these issues, model-driven development promotes a higher level

of abstraction during design and uses models as the primary artifacts that guide the

product development. In fact, the fundamental principle is to construct a model of a

system and then transform it into the real system.

We focus on DEMES, a model-driven development methodology based on the

Discrete Event System Specification (DEVS) — that defines a formal Modeling and

Simulation framework for discrete event dynamic systems —, and especially the tran-

sition from simulated platform to execution platform, i.e. the embedded hardware. In

this dissertation, we present bare-metal real-time executives that allow DEVS models

to be executed on a target platform without the need of an operating system. This

is particularly important for target platforms with limited resources. In addition to

the real-time executives, we introduce a hardware abstract layer that supports sev-

eral hardware peripheral libraries and fosters fast prototyping. We also illustrate

the DEMES-driven development cycle with a particular case study: a line tracking

robot application. Our contributions have resulted in a reduced footprint, increased

performance and enhanced platform portability.
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Chapter 1

Introduction

1.1 Overview

Over the last few decades, embedded systems have ascended to a position of preva-

lence in the world. They are ubiquitous, diverse, and present in various industries

such as aerospace, consumer electronics, defense, medical equipment and transporta-

tion. Embedded systems are generally defined as computing systems with tightly

coupled hardware and software designed for a specific purpose. Real-Time Embed-

ded Systems (RTES) [1], in particular, are not only subject to functional and logical

correctness; they must also produce results within strict timing constraints. Missing

these deadlines may lead to significant loss and in some cases catastrophic conse-

quences. For instance, an airplane’s flight controller must respond correctly within

the required deadline, or the result could be serious injuries or death. Besides, RTES

usually operate in limited resource environments, are required to have a small memory

footprint, be low-cost solutions and have low power consumption.

In addition to dealing with timeliness requirements, RTES design needs to deal

1



CHAPTER 1. INTRODUCTION 2

with hardware/software partition, and cope with target systems increasing scalabil-

ity and complexity. However, there is a real shortage of effective design and imple-

mentation practices. Indeed, besides the inherent challenges of embedded systems,

the ever-increasing demands for new applications and technological advances have

caused system complexities to grow at an exponential rate. Therefore, traditional

design methodologies that conquer hardware and software are becoming infeasible

and making software the most costly and least reliable part of RTES [2], with de-

ficiencies originating from two main weak areas: the development cycle and system

verification. Model-based development offers a promising solution by raising the level

of abstraction and promoting models to principal artifacts that drives development.

Yet, most model-based techniques do not have a formal foundation and struggle with

system verification.

Formal methods, on the other hand, facilitate system verification since they have

a strict mathematical foundation. However, most formal methods are hard to scale

up [3], and they usually do not consider the physical environment that the embedded

system controls. A practical solution to the above problems is the use of formal

Modeling and Simulation (M&S) that combines the advantages of a simulation based

approach with the rigor of a formal methodology [4].

The Discrete Event Methodology for Embedded Systems (DEMES) [5] [6] is one

such approach. It is based on the Discrete Event System Specification (DEVS) [7],

a formalism that decomposes complex systems into basic (behavioral) models, and

composite (structural) models. DEVS is especially suitable for RTES since it provides

a rich structural representation of components, and formal means for explicit time

specification, which is essential to RTES. The formal part of DEVS allows model-

checking essential to verifying of the system properties and building provably correct
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software; while the M&S aspect is useful to handle complex system designs, inter-

act with the physical environment models, and perform extensive testing in risk-free

environments. In addition, DEMES has various advantages when compared to ex-

isting methodologies, especially because most model-based methods are semiformal

and do not provide direct model continuity. Model continuity, in particular, refers

to preserving the model specification as much as possible through the development

process. With DEMES, models are consistently used through the entire development

cycle. They are formally defined in the design/specification phase, used to perform

model-checking, run simulations, and incrementally replaced with hardware surro-

gates. The original models end up being deployed on the target hardware where they

act as controllers.

One particular component essential to models deployment on the embedded plat-

form is the real-time executive. This latter executes original models on the particular

hardware. In this thesis, we present two DEVS-based kernels (composed of a real-time

executive, a microkernel, and a hardware abstraction layer) that run original models

directly on bare-metal. The objective is to be able to execute models directly on the

target system hardware without the need of an Operating System. The new real-time

execution engines provide functionalities similar to those of a real-time kernel, with

formal models operating as system processes. The development of these DEVS-based

real-time kernels involved the following tasks:

1. The development of stand-alone real-time executives able to run on bare-metal

without the need of an intermediate operating system.

2. The design of a hardware abstraction layer that provides an interface between

hardware specific components and general real-time executive components.
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3. The integration of different tools (compiler, hardware debugger, embedded reg-

ister viewer, etc.) into an IDE in order to effectively develop embedded bare-

metal applications.

4. The development of applications on top of the designed real-time execution

engines.

1.2 Contributions

In this thesis, we introduce two main contributions. The first is the development

of DEVS-based real-time kernels that run on bare-metal. The second is the design

of a hardware abstract layer that allows the execution engines to run on multiple

microcontrollers.

The first contribution extends the applicability of M&S driven development by

providing an OS independent DEVS execution engine. As a result, target devices

such as low power microcontrollers where an operating system would require excessive

resources, are now covered. Since RTES are pervasive and varied, we believe that

solutions addressing current development shortcomings should be applicable to a wide

range of devices in order to properly replace traditional techniques and be appealing

to industry. We have designed DEVS-based kernels able to execute models on bare-

metal on different ARM-based boards without the need of middleware RTOS.

Two real-time executives were developed: one that reuses the components of E-

CD++ [4] [8], an existing DEVS real-time executive that required the services of a

Linux real-time kernel, and another one built around a new Parallel DEVS (PDEVS)

sequential architecture [9]. This latter improves the performance of the executive by

using a different message-passing concept between model execution engines.

The second main contribution is the design of a hardware abstraction layer that
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provides a clear separation between the execution engine components and hardware

specific services. We have designed a wrapper around the popular ARM MBED

library [10] and integrated it with DEVS components in order to provide rapid pro-

totyping and ease the development task. This library also allows the user to build

Internet of Things (IoT) applications since MBED provides such a platform.

Finally, to illustrate and test the new real-time executives, we have built different

applications among which is a line tracking robot. We present its development cycle,

show how to build its application on the E-CD++ “legacy” version, as well as the

new real-time executive. We also extend it with IoT capabilities to demonstrate the

connectivity possibilities offered by the wrapper library.

1.3 Publications

Three papers that describe our work have been either published or accepted for pub-

lication. Listed below, these papers present the design of the bare-metal execution

engines, the design of the new simulator around a PDEVS sequential architecture,

and the discrete event methodology for embedded systems.

• [11] Daniella Niyonkuru and Gabriel Wainer. “Towards a DEVS-based Operat-

ing System.” In Proceedings of the 2015 ACM SIGSIM conference on Principles

of advanced discrete simulation, London, UK, 2015.

• [9] Damian Vicino, Daniella Niyonkuru, Gabriel Wainer and Olivier Dalle.

“Sequential PDEVS Architecture.” Proceedings of the 2015 Spring Simulation

Multiconference, Alexandria, VA, USA, 2015.

• [6] Daniella Niyonkuru and Gabriel Wainer. “Discrete Event Methodology for
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Embedded Systems.” Computing in Science & Engineering vol.17, no.5, pp.52-

63, Sept.-Oct. 2015.

We are also currently working on the following journal articles:

• Daniella Niyonkuru and Gabriel Wainer. “A DEVS-Based Framework for Bare-

Metal Embedded Applications.” ACM Transactions on Modeling and Simula-

tion, vol.(TBD): pp (TBD). (in progress)

• Daniella Niyonkuru and Gabriel Wainer. “Embedded CDBoost, Executing

DEVS models in embedded systems.” Journal (TBD), vol.(TBD): pp (TBD).

(in progress)

1.4 Thesis Organization

The first three chapters of this document are introductory in nature. Chapter 3

describes the scope and purpose of the project, referring to the previous research

outlined in chapter 2.

Chapter 4 and 5 describe how the problem stated in chapter 3 was tackled. Chap-

ter 4 describes the real-time executives. We start by introducing the common bare-

metal design in section 4.1. Section 4.2 is then related to the legacy version and

outlines the software architecture and changes that were made to the existing design

in order to remove existing Linux dependencies and allow bare-metal execution. Next,

section 4.3 presents the real-time executive built around the new PDEVS Sequential

Architecture. We explain the architecture and algorithms used to build this executive

and the hardware integration process. After, chapter 5 presents the hardware related

layers of our solution.

Chapter 6 studies extensively the development cycle of one of the applications

we built: a line tracking robot. The system of interest, its model specification and
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simulation results are respectively presented in section 6.1, 6.2 and 6.3. Section 6.4

and 6.5 show how to build the system application on top of the new executives, and

also assess their performances in 6.6. We describe in 6.7 how to port easily the built

application from one platform to another. Finally, in section 6.8 is an Internet of

Things (IoT) application that illustrates how devices can be easily interconnected

using our platform.

The remaining chapter (7) concludes the dissertation and discusses future work.



Chapter 2

Review of the State of the Art

The traditional design approaches — where systems are directly designed at the low

hardware or software levels — that are still used in most embedded system designs

may be passable for small and medium sized systems; however, they are quickly

becoming infeasible due to the ever-increasing complexity and new application market

demands. Technology advances allow the integration of a rising number of components

on a single chip; and Moores law that states that the number of transistors on a chip

doubles every 18 months, still holds. In contrast, design methods improve at a much

slower rate. This has resulted in a problem known as the productivity gap. Traditional

methods cannot reduce the productivity gap; therefore, alternative approaches that

can improve the quality, correctness, and modularity of systems by advancing the

analysis and verification of properties as early as possible in the design flow are

needed. Model-based techniques are today the most promising solution [12] to lessen

the productivity gap and enhance the quality, correctness, and modularity of software

systems and subsystems. In the following section, we will first revisit traditional

design techniques and briefly describe how model-based design ascended. Afterwards,

we will focus on model-based development.

8



CHAPTER 2. REVIEW OF THE STATE OF THE ART 9

2.1 The Evolution of Embedded System Design

2.1.1 Traditional Design Methods

Since RTES are partly made of hardware and software, three important design as-

pects [13] have to be considered: the hardware design, the co-design of hardware and

software, and the design of embedded software. Traditional design divides hardware

and software design to conquer them separately. The design starts with an infor-

mal specification and then the decision is made on how functionality will be split

between hardware and software [14]. Most embedded systems are designed from a

register level description for the hardware part on one hand, and the embedded soft-

ware code on the other hand [13]. The implementation is obtained using classical

top-down methodology (synthesis and compilation) [15]. Two types of methodologies

subsequently emerged from traditional design: language-based (software-centric) and

synthetic-based (hardware-centric) methods. Language-based methods are centered

on a specific programming language with a particular target run-time system. C

and RT-Java are such examples. Synthesis-based originates from hardware design

techniques. The development starts with a system description, usually structural,

in a tractable fragment of a Hardware Description Language (HDL) like VHDL and

Verilog [2]. Moreover, in this type of design, system architects may use C and C++

to describe the system at the system-level [16]. The C/C++ description is refined;

and then translated into synthesizable HDL [17]. In a nutshell, traditional design

methodologies trace their origins from either software or hardware traditions [2] but

do not cover hardware-software co-design, and remain hard to verify against the initial

specification. Consequently, long testing phases, error-prone products, and increased

time to market are common. On the other hand, co-design [18] is essential in order to

design complex applications since hardware components are diverse in heterogeneous
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systems and software-hardware interface should be handled earlier in the development

cycle.

Methods centered on the semantics of abstract system description were later in-

troduced in an attempt to gain independence from specific implementation platforms.

They combine both language and synthesis-based techniques [19] in order to enable

hardware/software co-design. Examples include SpecC, ImpulseC and SystemC [20].

The latter, for instance, combines synchronous hardware semantics with asynchronous

execution mechanisms from C++. Although the previous co-design description lan-

guages were quite effective in system-level design, they were not enough.

Recent methodologies offer higher levels of abstraction and go beyond implemen-

tation platform independence. They are built on modeling languages such as the

Unified Modeling Language (UML) [21] and the Architecture Analysis and Design

Language (AADL) [22] [23]. These approaches are system architecture focused and

model-centric, and therefore referred to as model-based techniques.

2.1.2 Model-Based Design

Model-Based Design (MBD) seeks to address heterogeneity, and targets system’s in-

creasing scalability and complexity early in the development cycle by using models

to describe the system. Model-Based Engineering (MBE) [23] [24], more generally,

refers to engineering practices where models are the central and indispensable artifacts

throughout the products development cycle enclosing concept, development, deploy-

ment, operation and maintenance. MBE has emerged in a variety of guises including

model-driven engineering(MDE) [25], model-driven development (MDD) [26], model-

driven architecture (MDA) [27] [28] and model-centered development (MCD) [29]. In

these processes, models drive the development process by going through a series of

transformations - a more abstract model is refined into a less abstract one - until
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they reach a final state where they are made executable either by code generation

of model interpretation and ready to be deployed [30]. Model-driven development

is therefore “simply the notion that we can construct a model of a system that we

can then transform into the real thing” [31]. Examples of available commercial MBD

tools are Matlab/Simulink [32], Rational Rhapsody [33], SCADE [34], Modelica [35]

and NI LabView [36]. In the academic context, we can cite Ptolemy [37] and Metro

II [38]. The previous modeling languages/tools have powerful capabilities and some

have been successfully adopted in industry. However, most companies had to create

or develop small domain-specific languages to compensate for the limitations of cur-

rent techniques [39]. We will take a closer look at Matlab/Simulink and UML-based

profiles to illustrate some of the existing shortcomings.

Simulink [32] is one of the most extensively used model-based toolchain. It is a

block diagram environment for multidomain simulation and MBD. It supports sim-

ulation, automatic code generation, continuous test and verification of embedded

systems [40]. Hierarchical subsystems are modeled with predefined library blocks. In

particular, stateflow charts (discrete logic and model behavior definition) and simulink

(for continuous dynamics) models are used to represent the system. To simulate the

dynamic behavior of the modeled systems, Simulink provides fixed-step and variable-

step ordinary differential equation solvers. Simulink models can also be configured to

generate code in C/C++, HDL and PLC. The tool also supports model connection to

hardware and hardware-in the-loop (HIL) simulation; Simulink provides built-in sup-

port for prototyping, testing, and running models on various target hardware(FPGA,

low-cost embedded hardware such as Arduino and Lego Mindstorms). In addition,

several toolboxes (e.g. Simulink Design Verifier, Simulink Verification and Validation,

SystemTest, and Simulink Code Inspector) are available in Simulink for model check-

ing, algorithm verification and validation according to certain industry standards (e.g.
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DO-178D [41] and IEC 61508 [42]) [43].

Although the Mathworks development suite has powerful capabilities, its modeling

languages lack formal and rigorous semantics for its models. Several initiatives such

as [44], [45], [46] and [47] used different methods (communicating pushdown automata,

tabular expressions ) in an attempt to define formal semantics for the popular tool.

However, only a subset of the modeling languages is covered, and models remain

susceptible to interpretation errors that can be fatal for safety-critical embedded

systems. Instead, SCADE (Safety Critical Application Development Environment)

is sometimes preferred for safety-critical applications since it has formal pedigree

(based on data flow graphs and finite state machine) and strong analysis capabilities.

In addition to the absence of rigorous semantics, Simulink lacks a publicly accessible

meta-model that would enable the integration with a larger metamodeling language

such as UML [48].

UML, on the other hand, is already well established in software engineering and

comes naturally as the de facto standard for MDD. A number of UML profiles have

been proposed for modeling embedded systems, and include SysML (Systems Model-

ing Language) [49] and MARTE (Modeling and Analysis Real-Time and Embedded

systems) [50]. SysML is for specifying, analyzing, designing, and verifying complex

systems that may include hardware, software, information, personnel, procedures,

and facilities; while MARTE supports specification of real-time and embedded sys-

tems [51]. In addition to functional design, this profile adds constructs to describe

the hardware and software (e.g. OS services) resources and defines specific properties

to enable designers to perform timing and power consumption analysis. MARTE is

very general and supported by several tools. However, due to the complexity it has

to support, MARTE is still a work in progress [12] subject to evaluation and exten-

sion proposals [52] [53] [54]. Alternatively, SysML and MARTE tend to be combined
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because there is complementarity of technology coverage [55] [56]. Indeed, SysML

supports modeling of a whole spectrum of diverse engineering technologies (e.g. me-

chanical, electrical, and hydraulic), and MARTE focuses primarily on real-time and

embedded systems software and supporting platforms. Plus, the two can complement

each other in terms of the level of abstraction they cover: the broader scope of SysML

makes it a natural choice for representing systems at a higher level, whereas MARTE

is better suited for finer grained modeling (e.g. the software aspects) [57]. However,

because the two profile definitions are not yet fully synchronized with each other,

combining them may lead to syntactic and semantic conflicts [57] [58]. The other

main drawback of UML-based MDD is the gap between models and their execution.

This step was particularly hindered by the lack of precise semantics that makes UML

models hard to verify and can lead to model implementation inconsistencies. This

lead to the adoption of fUML (foundational UML) [59] - the first precise operational

and base semantics for a subset of UML encompassing most object-oriented and ac-

tivity modeling- and ALF (Action Language for Foundational UML) [60] - a textual

action language designed to specify executable fUML behaviors. Now, efforts such as

in [61] are being directed towards defining formal semantics for UML profiles such as

MARTE and SysML since they remain specified in prose (at best) and their seman-

tic definitions stay informal. This considerably limits interest of profiles and their

practical usability in a context in which engineers look for rapid prototyping. Other

researchers, such as [62] [63] and [64], focus on providing mechanisms to further bridge

the gap between model and code, and alleviate the burden associated with learning

an extra action language, i.e. ALF.

Another approach used to tam heterogeneity in RTES design is the use of different

Models of Computation (MoC) to cover a wide spectrum of domain. It is specifically

referred to as Model-Integrated Development [65] and based on the idea that one
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language cannot be enough to cover all domains and regroups several existing meth-

ods instead. Ptolemy II is a framework based on this concept. It is a structured

and hierarchical approach, uses specific MoC that defines how computation takes

place among a structure of computational components and supports discrete event,

process networks (PN), dataflow (SDF), synchronous/reactive (SR) and continuous

models. In Ptolemy II, real-time systems are modeled using DE; however Ptolemy II

DE models don’t have a formal specification and need to be transformed into a formal

specification to enable model-checking. In [66], Real-Time Maude is integrated with

Ptolemy II to enable formal verification. This way of integrating formal methods with

MDE is also referred to as formal model engineering. This latter combines the conve-

nience of using an informal but intuitive modeling language with formal verification.

Nonetheless, useful information might be lost in the process of transforming informal

models into formal models. Another alternative to preserve consistency would be to

use methods that are natively formal and model-based.

Although model-based approaches handle well modern systems complexity and

heterogeneity by raising the level of abstraction and allowing a hardware-software

co-design, research remains to be done in the areas of development cycle — to re-

duce the model-to-execution gap — and model specification semantics — to enable

formal verification. Indeed, direct model continuity should be supported and efficient

model transformation provided to ensure that initial models are reused through the

development cycle, maintain consistency, and offer a unified development framework.

In addition to being effective at the high level (system description), model-based

methods should also be effective at lower levels (implementation) and be applicable

to devices with limited resources (e.g. memory) as well as large systems in order to

compete with traditional methods. In terms of system verification, formal methods

are needed to help with system verification and prove the system correctness.
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To meet the previous considerations, a formal methodology that provides model

continuity can be applied. In the following sections, we will introduce DEMES [5],

a formal model-based development methodology based on Discrete-EVent System

specifications (DEVS) [67]. DEVS is a well-defined formalism that is expressive,

operates at a high level of specification, and can be used to represent both computing

systems and the physical systems they control. DEMES offers a practical approach

with a formal rigorous method in which models are consistently used throughout the

development cycle.

2.2 Embedded System Design with DEVS

DEVS (Discrete EVent System Specification) is a Discrete Event Simulation formal-

ism for modeling and simulating dynamic systems. The DEVS formalism decomposes

complex system designs into basic (behavioral) models called atomic and composite

(structural) models called coupled [67] (See Appendix A for details). It follows a

precise rule set to define state changes of the modeled systems with regards to input

events or time delay triggers. DEVS is particularly suitable for RTES as it provides

a rich structural representation of components, and formal means for explicitly spec-

ifying their timing, which is central for real-time systems. It has been proven to be

successful in different complex systems (e.g. [68], [69], [70], [71])

Besides, DEVS is the most general Discrete Event Formalism and many exist-

ing formalisms (e.g. Statecharts, Petri nets, Timed Automata ...) can be expressed

as DEVS [5] (See figure 2.1 [72]) and allows existing system description transla-

tion(Verilog [73], VHDL [74] transformation to DEVS). Plus, DEVS theory does not

only provide a rigorous methodology for model construction but also proposes an

abstract simulation algorithm independent of the simulation mechanisms and the
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Figure 2.1: DEVS Transformation Graph

underlying hardware and middleware.

2.2.1 DEMES

DEMES focuses on bridging formal methods and M&S in order to analyze real-time

systems and study their interaction with the physical environment while enabling

original models to be part of the final product. This is achieved by using M&S for

the initial stages, and replacing models incrementally with hardware surrogates and

new software components without altering the original models. The transition can

be done in incremental steps, incorporating models in the target environment after

thorough testing in the simulated platform, allowing model reuse throughout the

process.

Figure 2.2 shows the architecture of the DEMES methodology. A designer starts
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Figure 2.2: Discrete-Event Modeling of Embedded Systems (using DEVS)

(1) by modeling the System of Interest (a real time system and its environment) us-

ing formal specifications (DEVS or alternative techniques such as Statecharts, Mod-

elica...). These models are converted into a DEVS representation, then transformed

into Timed Automata, and verified using model-checking tools (2). In parallel with

this formal verification phase (which can take a long time, in particular if state ex-

plosion happens during formal verification), the same models are used to test the

components in a simulated DEVS environment (3). The physical environment can

also be simulated (4) together with the RTS model under particular loads (5). Instead

of obtaining general answers for all the possible cases (like those provided by model-

checking), we can simulate individual behaviors of the different sub models under

specific conditions. In brief, we can study system properties analytically, and com-

plement the proofs using simulation, which can also be used for hardware/software

co-design (and later, for training). These tested submodels can then be deployed in-

crementally into the target platform (6). A real-time executive executes the models on

the particular hardware. If the hardware is not readily available, the software compo-

nents can still be developed incrementally and tested against a model of the hardware

to verify viability and take early design decisions. As the design process evolves, both
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software and hardware models can be refined, progressively setting checkpoints in real

prototypes. The executive allows to execute dynamic models and to schedule static

and dynamic tasks. At this point, those parts that are still unverified in the formal

and simulated environments are tested, increasing the confidence of the engineer into

the implemented system. Most of the testing phase (7) can be done using simulation

(with faster than real-time performance), even if the hardware is unavailable. Simu-

lation provides a risk-free testing environment; and will be applicable in cases where

real-life testing is impossible due to risks, ethical or practical issues. With DEMES,

design changes are done incrementally in a spiral cycle (8), providing a consistent set

of apparatus throughout the development cycle. The cycle ends with the RTS fully

tested and every model deployed on the target platform.

This approach has various advantages when compared to existing methodologies.

For instance, the methods discussed in section 2.1. were at most semi-formal and

do not provide direct model continuity. In [75], the authors presented a comparison

between DEVS and UML-RT showed that features such as time, scheduling and per-

formance coded using UML constructions are not formally defined. Instead, formal

modeling methods like DEVS provide sound syntax/semantics for structure, behavior,

time representation and composition, which lend themselves to well-defined compu-

tation [76] [4]. Its expressiveness also allows to span multiple domain while remaining

publicly accessible for integration with common standard modeling language such as

UML [77] and some of its popular profiles [78]. DEVS has also been used in the past

to bridge the gap between UML models and their execution such as in [79] and [80].

Moreover, the DEMES approach offers the following advantages [5] [81]:

• Reliability: logical and timing correctness rely on DEVS system theoretical

roots and sound mathematical theory;
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• Model reuse: DEVS has well-defined concepts for coupling of components and

hierarchical, modular model composition, supported by the formal concept of

closure under coupling;

• Hybrid modeling: different methods can be used while keeping independence

at the level of the executive, using the most adequate technique on each part

of system architecture and reusing existing expertise, which allows knowledge

reuse;

• Process flexibility: hybrid modeling capabilities are transparent for the execu-

tive, which is defined by an abstract mechanism that is independent from the

model itself;

• Verification and validation: the definition of experimental frames can be par-

tially automated and formal verification is possible. Formal verification will be

discussed in the next section.

2.2.2 Model-Checking with DEMES

Model-checking allows the designer to verify models correctness and eventually pro-

duce formally correct software. Therefore, deployed systems will have a very high

reliability as the formal verification permits error detection at the early stages of

the design. When models used for M&S are formal, their correctness is verifiable.

Another advantage of executable models is that they can be deployed to the target

platform, thus providing the opportunity to use the controller model not only for

simulations but also as the actual code executing on the target hardware. Hence, the

verified model is itself the final implementation executing in real time. This prevents

any new errors that might appear during transformation of the verified models into

an implementation, therefore guaranteeing a high degree of correctness and reliability.



CHAPTER 2. REVIEW OF THE STATE OF THE ART 20

To verify DEVS models, we use a class of rational time-advance DEVS called RTA-

DEVS [82] and then transform RTA-DEVS models into equivalent Timed Automata

(TA) that are then used to formally verify the desired properties using the UPPAAL

[83] [84] model checker tool. RTA-DEVS was introduced to provide the modeler with

a formalism that is expressive and sufficient to model complex systems behavior while

being verifiable through formal model-checking techniques. RTA-DEVS is a subclass

of DEVS that restricts the time advance function to nonnegative rational numbers and

the elapsed time in a state used in the external transition to be a nonnegative rational

number. These restrictions mean that we will have nonnegative rational constants in

guards of the resulting TA model and ensure termination of the reachability analysis

algorithms implemented in UPPAAL.

[85] presents a case study using a controller for an e-puck robotic application and

showed the practicality of our approach.

Apart from formal verification, the other essential aspect that new approaches

ought to offer is model execution on the hardware target. From this point on, we will

focus on this feature and explore existing solutions.

2.2.3 Applicability to Low Level Applications

Recent research has focused on DEVS application to low-level applications com-

monly found in embedded systems consisting of computer hardware and real-time

software. Existing DEVS based development environments for RTES include, for

instance, DEVSJAVA [69], a Java DEVS-based simulator that supports high-level

modeling; RTDEVS/CORBA [70] [86], a DEVS implementation based on real time

CORBA communication middleware; and PowerDEVS [87] a tool for hybrid system

modeling and real time simulation. In [76], the authors show how model continuity

can be used in the design of dynamic distributed real-time systems. [88] presents
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an application of the DEVS framework to the design and safety analysis of a RTES

(a railroad crossing control system). In [71], an embedded control system model is

built and its exhaustive verification temporal analysis done using Uppaal timed au-

tomata. In [89], model reuse and interoperability were shown by interfacing ECD++

and PowerDEVS. A System-On-Chip FPGA implementation of Embedded CD++

was presented in [90] and a M&S-based design of embedded controllers on network

processors in [91]. The platform limitations remain significant compared to the tradi-

tional methods: In [76], [69], [70], [81] and [92] where implementation requires Java,

the target hardware should be able to support the Java-implemented DEVS real-time

execution environment. In [93] the authors presented a DEVS based real-time system

on a TINI chip which has limited memory and processing ability. However, this re-

quires Java Virtual Memory and Java class libraries availability on the chip. In [87],

Linux RTAI kernel is required for PowerDEVS. The Embedded CD++ (E-CD++)

developed by our team [8] relied on a variant of the Linux kernel. In [91], E-CD++

was embedded on the Core processor of an Intel IXP2400 Network Processor that

runs RT Linux. Hence, it ran in the Linux User Space and requires Linux Kernel

services. In [90], a configurable Linux kernel was downloaded to the SDRAM mem-

ory blocks on the AP1000 FPGA board. This dependency also included the use of

the Xenomai real-time framework for Linux [94]. This latter provided hard real-time

functionality to the Linux kernel. In the next section, E-CD++ software components

will be presented and its implementation explained.
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2.3 Embedded CD++, a DEVS-based Tool

The DEVS formalism proposes a framework for model construction and defines an

abstract simulation mechanism that is independent of the model itself. This mech-

anism provides a high-level implementation detail for the DEVS framework, and

can be feasibly implemented by computer software. E-CD++ [8] is a real time im-

plementation, based on the CD++ simulator [95] (a DEVS-based framework), and

RT-CD++ [96] (an extension of CD++ for real-time simulation). E-CD++ supports

modeling real-time systems by converting the CD++ virtual time-advance function

to real-time, and provides an RT simulation platform for verification of such mod-

els. Figure 2.3 [4] illustrates the E-CD++ development framework. The embedded

Figure 2.3: E-CD++ Layers
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platform with the external environment is shown in this layered approach represent-

ing the cross-platform development of models. The modeler defines models using a

high-level DEVS language combined with C++ code if needed, which provides the

application layer. These real-time models are then interpreted and executed by the

DEVSRT (DEVS in Real-Time) engine [97].

2.3.1 Features and Software Components Overview

To allow for direct replacement of models with external entities, the I/O ports of E-

CD++ models implement the formal interfacing mechanism of DEVSRT in the Driver

Interface layer. The underlying middleware is a real-time kernel and the runtime ob-

jects are imported to this platform as RT tasks. The E-CD++ execution engine uses

the Xenomai real-time kernel [94] with multi-tasking services to implement DEVSRT.

The user models and the driver objects were merged with the E-CD++ core objects;

and the entire combination was compiled to produce an executable.

E-CD++ also include several features. The Eclipse IDE layer shown in figure 2.3

also allows for the graphical development of models. Through the IDE, the Generic

Graphical Advanced environment for DEVS modeling and simulation (GGAD) [8]

allows the developer to use a graph-based representation to specify models hierar-

chy, interconnections and behaviors to automate model generation. At the execution

engine level, various features have been implemented in order to improve the soft-

ware including DEVSRT simulation algorithms, a Flattened Coordinator technique

and a Time Interval function. The simulation algorithms allow correct handling of

simultaneous events through the implementation of a messaging behavior for model

interaction (See next section for details). The Flattened Coordinator technique im-

proves the efficiency of the DEVSRT messaging behavior through the removal of

superfluous messages that are generated for communication between coupled models.
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Finally, the Time Interval function enforces real-time constraints through the use of

wall-clock time advancement and execution deadline checking.

E-CD++ has four main components [Figure 2.4]: the Main Runtime System, the

Modeling Subsystem, the Runtime Subsystem and the Messaging Subsystem [4]. The

Main Runtime System manages the overall aspects of the real-time execution and pro-

vides timing functions with microsecond precision. The Main Runtime System is the

first object that is created in non-real-time context, and it launches the Runtime Sub-

system [4] [8]. In general, the Main Runtime System first register Atomic component

objects, then the Top coupled component ports that are connected to the external

environment, reads in the external events (from an existing event-file) and builds an

external event table. After that, the Main Runtime System reads in the model-file

and builds the model hierarchy. Finally, it spawns the main real-time task in which

the Root Coordinator (RC) is created to start the DEVSRT execution cycle.

The Runtime Subsystem consists of Simulators, Coordinators, and the Processor

Admin. In E-CD++, simulators are run-time engines that correspond to atomic

components, and they perform the main job of executing the internal transition and

output function after receiving the proper messages. Coordinators are coupled models

execution engines. The RC is a special Coordinator that manages the real-time event

scheduling. It initializes the global Driver object which launches the real-time input

driver tasks (which are associated with input ports of the Top coupled component in

the DEVS model hierarchy) declared by the user.

The Modeling subsystem is generated in order to define the atomic and coupled

models, as well as the relationships between them. For each of these models, a

processor is defined within the Runtime Subsystem in order to manage the behavior

of the model and drive the execution. The Messaging subsystem provides the PDEVS
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Figure 2.4: E-CD++ Software Components

behavior [8]. PDEVS models as well as their execution are explained in the following

section.

2.3.2 PDEVS Model Definition

The original DEVS formalism was extended to resolve serialization constraints and

allow simultaneous events, defining what is called Parallel DEVS (PDEVS) [98]. As

with classic DEVS (Appendix A), systems are described using states that change

upon the reception of an input event or the expiration of a delay. To tackle the

complexity of the system, PDEVS decomposes the system into behavioral models

called atomic models and structural models called coupled models similar to classic

DEVS. Two types of events - internal and external events - influence the behavior of

atomic models and cause state changes. When an external event occurs, an external

transition function is executed and determines the new state of the model. In the
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absence of external events, the model stays in a state s for a certain time ta(s).

When ta(s) expires, e.g. an internal event occurs, the model outputs a value and

then changes to a new state given by an internal transition function. In classic

DEVS, whenever two models are scheduled for state transitions at the same time,

one of the models is chosen according to a select function provided in the coupled

model specification. This function provides a tie-breaking mechanism by defining

an ordering over all the components so that only one model is picked in the case of

simultaneous events. Hence, collision behaviors cannot be represented properly and

serialization is introduced in the execution of components. With PDEVS, atomic

models provide an additional confluent function specifying what to do under such

collisions, and it uses bags of events for receiving inputs and collecting outputs.

Therefore, external and output functions handle bags of events allowing simultaneous

processing of multiple events and eliminating the necessity for the select tie-breaking

function used in classic DEVS.

A parallel atomic DEVS is specified as follows [98]:

M = {X, Y, S, δext, δint, δcon, λ, ta}

Where X is the set of input events, S the set of sequential states, Y is the set of

output events, δext is the external transition function, δint is the internal transition

function, δcon is the confluent function, λ is the output function and ta is the

time advance function. In this specification, the confluent transition function s′ =

δcon(s,e,x) computes the next state using the current state s, the elapsed time e and

the input events x when the internal and external events occur simultaneously. The

rest of the PDEVS specification follows the classic DEVS specification [7].
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A parallel coupled DEVS is specified as follows [98]:

CM = {X, Y,D, {Mi}, {Ii}, {Zi,j}}

Where X is the set of input events, Y is the set of output events, D is the set of

the component names, Mi is the DEVS system of component name i ∈ D, Ii is the

influences of i for each i ∈ D , and Zi,j defines the i -to-j output translation for each

j in Ii. The whole CM specification follows the classic coupled DEVS specification

except for the Select function.

The DEVSRT [4] formalism, used in E-CD++, is built on top of PDEVS and

associates a deadline to each atomic model since meeting deadlines is crucial in real-

time systems. A DEVSRT atomic model is formally defined as:

MRT = 〈X,S, Y, δext, δint, δcon, λ, ta, d〉,

Where:

• X, S, Y, δext, δint, δcon and λ are the same as PDEVS.

• ta: S → R+
0,∞, time advance function which works with physical clock of the

system

• d: S → R+
0,∞, is the relative deadline of each state for output production.

The coupled model definition is the same as PDEVS. Since DEVSRT is consistent

with the PDEVS formalism, PDEVS models can be reused for RTES.
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2.3.3 PDEVS Model Execution

Each DEVS specification can be executed by an abstract simulator that defines the

execution semantics of the models. The PDEVS abstract simulation algorithms uses

two kinds of components: Simulators (in charge of Atomic models), and Coordinators

(in charge of Coupled models), using a one to one mapping between models and

simulation components. Simulators are the engines that invoke the model transition

functions (δint, δext, δcon , ta, λ); Figure 2.5 shows a coupled model example and its

corresponding execution tree. Atomic models are associated with simulators (denoted

by “S”) while coupled models are linked to coordinators (indicated by “C”). For

instance, S:B is the simulator calling the buffer (BUF) δint if an internal transition is

needed. Coordinators on the other hand are in charge of event routing and hierarchical

scheduling. C:B+P for instance will route events to S:B and S:P.

Figure 2.5: Models and Execution Engines

Simulation/Execution advances through message exchange. Five types of mes-

sages are used: three for synchronization (i.e. *,@,done) and two for content(q,y).

Synchronization messages and the actions triggered by each message are shown

below:

• ( @, t ) : Output execution

• ( *, t ) : State transition
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• ( done , t ): End of action

For content messages,

• ( y , t ) : Output event

• ( q , t ) : External event

Parents and children communicate via this message passing mechanism. The ab-

stract simulator also provide a set of algorithms of the coordinators, and simulators

that specify how each simulation engine reacts upon the reception of those mes-

sages. The simulators and coordinators implemented in E-CD++ communicate via

this message passing mechanism, and follow the abstract algorithms explained in the

next section.

2.4 From DEVS Models to Real-Time Execution

In this section, we will mainly outline the algorithms used to run the models and the

real-time interface that allow the real-time models to interact with the surrounding

environment.

Chow [98] defines the abstract simulator that defines the execution semantics of

PDEVS models presented earlier. The simulation starts from a main loop which

drives the whole simulation by repeatedly sending (@,t) and (*,t) to the topmost

coordinator and waiting for a done message to advance the global simulation clock to

tN.

Simulator Algorithms [98]

A (*,t) is used to synchronize three different transitions on the atomic model. (@,t)

and (done,t) messages are used to invoke the output function before any transition
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function as the output function depends on a state prior a transition at the same

instance.

when a (@, t) message is received

if t = tN then

y := λ(s)
send(y, t) to the parent coordinator

send(done, t) to the parent coordinator

end if

else raise error

end when

Any content of an input message (q,t) is saved in a bag, and a done message sent

to the parent coordinator.

when a (q, t) message is received

lock the bag

add event q to the bag

unlock the bag

send(done, t) to the parent coordinator

end when

The reception of a (*,t) messages indicates an internal or external event and

will be processed according to the following (where tL is the last change time, t the

current time, and tN the next scheduled event time):

when a (*, t) message is received

case tL ≤ t < tN and bag is not empty

e := t - tL

s := δext(s, e, bag)

empty bag

tL := t

tN := tL + ta(s)

end case

case t = tN and bag is empty

s := δint(s)
tL := t

tN := tL + ta(s)

end case

case t = tN and bag is not empty

s := δcon(s, e, bag)

empty bag

tL := t

tN := tL + ta(s)
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end case

case t > tN or t < tL

raise error

end case

send (done, tN) to parent coordinator end when

end when

If the simulation time reaches tN (time of the next internal event), compute

the output function and send the output events to the parent coordinator. If the

bag is empty, only the internal transition takes place, otherwise, both internal and

external functions take place at the same time leading to the confluent function to be

executed. After this, the next tN is calculated and a done message sent to the parent

coordinator.

Coordinator Algorithms [98]

The implementation of a coordinator is guided by the following algorithms:

when a (@, t) message is received from parent coordinator

if t = tN then

tL := t

for all imminent child processors i with minimum tN

send (@, t) to child i

cache i in the synchronize set

end for

wait until (done, t) s are received from all imminent processors

send (done, t) to the parent coordinator

else raise an error

end when

Any output/input message is forwarded according to the coupling relations Zi,j

to other simulators and coordinators. Note that the (y,t) messages will be processed

within the wait statement when receiving a (@,t) message to guarantee that the

outputs of any model are routed to their immediate influencees bags.

when a (y, t) message is received from child i

for all influencees, j of child i

q := zi,j(y)

send (q, t) to child j
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cache j in the synchronize set

end for

wait until all (done, t) s are received from j s

if self is in Ii; (y is to be transmitted upward) then

Y := yi,self(y)

send(y, t) to the parent coordinator

end if

end when

Any content of an input message (q,t) is saved in a bag, and a done message sent

to the parent coordinator.

when a (q , t) message is received from parent coordinator

lock the bag

add event q to the bag

unlock the bag end when

end when

When an internal message (*,t) is received, (q,t) messages are sent to influences

first and the bag is emptied . Then, (*,t) is forwarded to all components of the

coupled model. This procedure [98] is shown here:

when a (*, t) message is received from parent coordinator

if tL ≤ t ≤ tN then

for all receivers, j in Iself and all q in bag

q := zself,j(q)

send (q, t) to j

cache j in the synchronization set

end for

empty bag

wait until all (done,t)’s are received

for all i in the synchronize set

send (*, t) to i

end for

wait until all (done, t)’s are received

tL := t

tn := minimum of components’ tN’s

clear the synchronize set

send(done,t) to parent coordinator

end if

else raise an error end when

end when

In order to run models in a real-time context, the simulator time is tied to the

underlying computing system. In a DEVS-based system, the simulation time advances
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only when there is an event to be serviced; however with the real-time mode, the

time-advance function is tied to the system clock. Therefore, the root coordinator

only waits for the physical scheduled time of the next event to arrive and sends the

appropriate simulation message.

In addition to using the physical time, DEVSRT utilizes model outputs to control

hardware and provides a formal interface between the model and its environment.

This is achieved by associating a driver object to the I/O ports of the top-most

coupled model. The driver object is an abstract function that can be overwritten to

adapt to different platforms and components.

To include the driver concept, the DEVSRT notation of the top coupled model in

the model hierarchy is defined as follows:

TOPCM = 〈X, Y,OS, IS,DX,DY,D, {Md|d ∈ D}, EIC,EOC, IC〉,

Where:

• X, Y, D, Md, EIC, EOC and IC are the same as PDEVS .

• IS = is | is is the input signals from environment is the set of environment input

signals.

• OS = os | os is the output signal to environment is the set of hardware output

signals.

• DX: IS → Xv: converts external environment input signals to input port value

(Xv).

• DY: Yv → OS: converts output port value to external environment output

signals (Yv).
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The RC algorithm in DEVSRT uses the above definition and is shown below. The

root coordinator waits for signals from the environment or an internal timeout and

then sends the appropriate message.

main():

forever for each DEVSRT model /* main loop */

wait for IS signals from environment or internal time out

if an external event then

q = DX(IS)

send (q, t) msg

send (*, t) msg

else if an internal time out then

send (@, t) msg

send (*, t) msg

else if receive (y, t)

OS = DY(y)

send OS signal to the hardware

else if receive (done, t)

tN = t

end if

end forever

Listing 2.1: E-CD++ root coordinator algorithm

Any communication between the environment and an atomic component goes

through the top model. This allows hardware-in-the-loop and human-in-the-loop

simulation by connecting DEVS models with hardware or humans.

With this approach, model continuity is integrated since the original models are

finally deployed on the hardware where they act as controllers. The incremental

hardware deployment made possible by this method offers a seamless integration

mechanism, where provably correct software is embedded in the hardware, and formal

interfaces for the communication between models and the environment. Moreover, the

same models / source code can be reused for different target platforms with only the

driver objects needing adaptation. The main goal is to directly deploy the developed

control models as the final control software. While this technique supports model

continuity, offers formal generic user implemented hardware interface, and includes
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deadline specifications; there are limitations to overcome in order to be deployable

onto a wider range of target platforms and promote fast prototyping.

Note: Some terms (e.g. scheduling, synchronization) used in this section, although

similar to the operating system vocabulary, are to be understood in the DEVS execution

context.

2.5 Hardware Execution Platform

In this section, we will review information related to the hardware target platforms on

which models are executed. We will start by introducing the deployment platforms

we chose, i.e. ARM microcontrollers.

2.5.1 ARM Microcontrollers

Advanced RISC Machines Ltd, ARM for short, designs processors and other compo-

nents that are licensed to various silicon vendors. Today, the ARM architecture has

become widely adopted, especially in 32-bit microcontrollers (MCU), in embedded

industry. MCU manufacturers that have licenses ARM processor designs (IP licens-

ing), adds to the ARM processor other design blocks like peripherals and memory

since the CPU only takes a small part of the silicon area. Such microcontrollers built

around ARM processors are often referred to as ARM-based microcontrollers or ARM

microcontrollers.

Over the past few years, ARM has diversified its products and now offers multiple

processor families. One of them is the Cortex family, divided in three profiles: A, R

and M [99] [100]. First, the A profile is designed for high performance applications

and used in devices such as iPhones that have to run high-end embedded OSes. Next,
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the R profile is designed for the higher-end of the real-time market (e.g. automotive

systems). Finally, the M profile is for smaller scale applications, fits criteria such as

low cost, low power, low interrupt latency and energy efficiency, and provides deter-

ministic behavior required in many real-time controller systems. It is ideally suited

for microcontrollers, used in consumer products (e.g. toys, electrical appliances) and

even industrial and medical systems.

The devices that we used (shown in Appendix B) are built around Cortex-M3 [101]

and Cortex-M4 [102] processors, two products from the ARM Cortex-M family. Both

the Cortex-M3 and Cortex-M4 are broadly used namely in microcontroller products,

System on Chips (SoC) and Application Specific Standard Products (ASSP) [99].

Cortex-M3 and M4 also have the great advantage of being compatible with a wide

family of other ARM devices. This allows easy migration between ARM devices.

In terms of general technical specifications, all the ARM Cortex-M processors are

32-bit RISC (Reduced Instruction Set Computing) processors with 32-bit registers,

32-bit internal data path and 32-bit bus interface. They also support 8 and 16-bit

data. Cortex-M3 and M4 particularly support some operations (e.g. accumulate, mul-

tiply) that involve 64-bit data. The two processors also have a three-stage pipeline

design (instruction fetch, decode, and execution), and both have a Harvard bus ar-

chitecture, which allows simultaneous instruction fetches and data accesses. Many

similarities particularly exist between Cortex-M3 and M4. They both contain a core

processor, a Nested Vector Interrupt Controller (NVIC), a SysTick timer, internal bus

systems, a Memory Protection Unit (MPU), and components to support software de-

bug operations. Only the Cortex-M4, however, is equipped with a floating-point unit.

The Cortex-M4 is able to deliver higher performance in DSP applications, supports

floating-point operations, and executes some instructions in fewer clock cycles.

The processors do not include memory (i.e. program memory, SRAM or cache)
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per se but include a generic on-chip bus interface to allow microcontroller vendors

to add their own memory system and components. Apart from the processor, the

rest of the silicon area of a MCU is usually occupied by program memory (e.g. flash

memory), data memory (typically SRAM), peripherals, internal bus infrastructure,

a clock generator, I/O pads, analog components such as ADC and DAC, and sup-

port circuits for manufacturing tests. Although these components may greatly vary

depending on the vendors, the main concepts to know, in order to use a Cortex-M

based MCU, are how the processor works and what peripherals are available on the

MCU. Indeed, in most cases, the processor controls the peripherals and handles the

system management both accessible from the memory map. Besides, MCU vendors

usually provide C header files and driver libraries to ease the software development

task.

2.5.2 Hardware Peripheral Libraries

As previously mentioned, microcontroller vendors provide header files and C code that

include the definitions of peripheral registers, and functions for peripherals configura-

tion and access. Because creation of software is a major cost factor in the embedded

industry, ARM has released CMSIS [103], the Cortex Microcontroller Standard Soft-

ware Interface, to provide a common interface for the Cortex M processor series

and allow microcontroller vendors to have a consistent software infrastructure. Con-

sequently, most Cortex-M MCU vendors provide device libraries based on CMSIS

which provides a small abstraction layer between the microcontroller and the rest

of the code. STMicroelectronics — the vendor of the Disco and Nucleo boards (Ap-

pendix B) and manufacturer of the eval board MCU — offers multiple device libraries

solutions with different abstraction and portability levels as illustrated in Figure 2.6.
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Figure 2.6: STMicroelectronics Device Libraries - Abstraction and Portability

Available solutions include:

• STM32 snippets [104]: These are collections of highly optimized device-specific

code examples based on STM32 peripheral registers. They are suitable for low

level embedded system developers, used to assembly or C with little abstraction.

Snippets are however not portable directly between series, and only limited to

L0 and F0 devices.

• Standard Peripheral Libraries (SPL) [105]: These are C libraries covering

STM32 peripherals and reusable within the same series (F2 for example). They

offer a higher level of abstraction compare to snippets and are ideal for embed-

ded systems developers with procedural C background. We used the SPL to

run E-CD++ on the Eval board.
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• STM32Cube [106]: STM32Cube enables quick and fast development with

STM32 devices, and provides high portability inside the entire STM32 fam-

ily. STM32Cube particularly features a graphical software configuration tool,

the STM32CubeMX, that allows the user to graphically access and configure

MCU peripherals through graphical wizards. Corresponding code is then gen-

erated and can be included in the embedded project. It allows the developers to

save time usually dedicated to MCU configuration and makes the development

task easier.

The generated code relies on HAL libraries (STM32Cube HAL) that were designed

to provide a generic interface that spans the entire STM32 family and standardizes

peripheral access. STM32Cube also include a set of middleware components for

applications based on USB, TCP/IP and graphics.

2.5.3 MBED, Rapid Prototyping and IoT Platform

In the previous section, we have seen how STMicroelectronics progressively introduced

device libraries that span the entire STM32 family, i.e. their 32-bit MCU. Here we will

present an initiative — MBED — aimed at providing a common solution to ARM

Cortex-M devices. ARM and its technology partners develop the MBED project

collaboratively and target the microcontroller applications, Internet of Things and

Wearables markets.

MBED offers an online code editor and compiler, a Software Development Kit

(SDK) and a Hardware Development Kit (HDK). The SDK provides the MBED

C/C++ software platform and tools for creating microcontroller firmware that runs

on smart devices. It mainly includes core libraries for the MCU peripheral drivers,

networking, RTOS and runtime environment. In order to support a larger range of
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devices, and not be limited to STM32 MCUs, we have included some of the core

MBED libraries to our bare-metal framework development. We will therefore take a

closer look at these internal libraries that provide a vendor independent API.

Figure 2.7 [107] shows the design overview. The first three layers (mbed API, mbed

common, and mbed HAL API ) are microcontroller independent, meaning that they

provide function definitions that span multiple products.

Figure 2.7: MBED Design Overview

The MBED HAL implementation and CMSIS-Core layers are MCU dependent.

The first one is usually from a specific vendor and can be the STM32 HAL libraries

for STM32 devices for instance. One of the main benefits of MBED is that the code

can be exported from devices to devices without any change in the code. Only the

target field needs to be updated so that the appropriate MCU dependent layers are

included; the rest remain the same. In addition, the MBED API provides a friendly

object oriented interface for fast prototyping.
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Problem Statement

The problem tackled in this thesis is standalone DEVS-based firmware development.

The objective is to be able to execute models directly on the target system hard-

ware without the need of an operating system. Three resolutions were made at the

beginning of the project that narrowed its scope. The first one was to leverage the

existing functionalities of E-CD++ in order to run it directly on the target platform

without the need of an RTOS kernel like Xenomai. No new schedulability algorithms

were included. Rather, we chose to focus on an effective message passing mechanism

between model processors by introducing a new real-time executive based on a se-

quential PDEVS architecture. Finally, to manage the hardware resources properly

while allowing rapid prototyping, we decided to introduce a hardware abstract layer

that allows users to develop easily drivers for their applications. In addition, we de-

veloped a set of applications that run on top of the developed bare-metal kernels. A

more accurate description of the problem would be the development of two bare-metal

DEVS-based kernels and a set of application that runs on top of the newly designed

kernels.

Prior to this thesis, it is improbable that DEVS real-time executives were run

on bare-metal. Indeed, DEMES portrays the real-time executive as running on top

41
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of an RTOS (Figure 1); and as reviewed in chapter 2, existing DEVS-based tools

required some real-time operating system, kernel or virtual machine to execute models

on hardware. As outlined in section 2.2, real-time extensions for the Linux kernel

were namely used in PowerDEVS and E-CD++. These approaches pose problems

since high performance microcontrollers are needed (including powerful processors,

memory, and in many cases, secondary memory in order to allow the software stack

to be executed without issues). Hence, although the DEMES approach offers multiple

benefits, tools have to be improved to overcome limitations and support different

hardware.

Our work extends the applicability of M&S driven development by providing OS

independent DEVS real-time executives. As a result, target devices such as low

power/memory microcontrollers where an operating system would require excessive

resources, are now covered. In addition, certain systems and programs, given the

trade-off between OS services and performance, err on the side of performance, as

they need to run as fast as the technology allows. In the latter case, not all OS services

are needed, and those that are needed can be included for the particular application.

With our approach, we implement only the services, needed to run DEVS model;

thus, eliminating extra unused OS features usually added by the use of a third-party

RTOS - that could be costly in resources and/or introduce overhead. Consequently,

this project further narrows the gap between the simulation and implementation

phases by enabling the utilization the same models for both simulation and execution

in limited resource and high-performance requirement environments. It also results

in a decreased kernel footprint, increased efficiency and enhanced portability.

Since RTES are pervasive and varied, we believe that solutions addressing cur-

rent development shortcomings should be applicable to a wide range of devices in

order to properly replace traditional techniques and be appealing to industry. We
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aim at providing a modular, component-based approach that addresses heterogeneity

and complexity at higher levels, allows hardware software co-design, permits formal

verification, and offers a unified and consistent development environment. Foster-

ing fast prototyping is also an objective given the increasing number of new market

applications.

In the following chapters, we will present kernels based on a formal M&S method-

ology that enables the user to run models directly on bare-metal. The new real-time

executives presented here provide functionalities similar to those of a real-time kernel,

with formal models operating as system processes. Based on the PDEVS abstract

algorithms seen in section 2.4, scheduling is done by coordinators while simulators

dictate the transition functions to be executed in order to produce the user specified

behavior in the original models. By tying the clock to a physical time, real-time

functionalities can be provided, and real-time operating system services covered. We

add input/output and hardware resources management to the DEVS core in order

to run n bare-metal. For the applications built in this project, we use ARM-based

microcontrollers to test the new kernels. The ARM architecture is the most perva-

sive 32-bit architecture and is found in all types of computing devices from real-time

safety systems (automotive braking systems) to smartphones [108].
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Bare-Metal Real-Time Executives

One of the key steps of the DEMES approach is the transition from the simulation

platform to the target hardware. To enable this passage, a DEVS real-time executive

runs DEVS models on the execution platform and allows them to ultimately control

the real system. In this chapter, we will present two bare-metal real-time executives

designed to address the problem stated in chapter 3. The first executive, referred

to as the “legacy compatible version”, preserves the same interface as CD++ and

the previous version of E-CD++ (which is based on Xenomai). The second execu-

tive is based on sequential PDEVS algorithms and uses a different message passing

mechanism. Before providing the details of each real-time executive, we will briefly

review the main limitations of the previous DEVS real-time executive, the proposed

approach used to overcome them as well as the implications of going bare-metal.

In the previous E-CD++ version (Figure 2.3), the runtime objects were running

on top of the Xenomai real-time kernel as real-time tasks. Although a RTOS like

Xenomai provides convenient services, it imposes restriction on memory capacity,

processing, and portability as the target platform must include the memory and

processing power necessary for the OS. Plus, the OS kernel must be compiled for the

target platform and should interface with the available hardware devices.

44
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Porting a Xenomai-dependent E-CD++ to embedded platforms with small mem-

ory capacities becomes therefore complicated by the application size as well as the

Xenomai kernel it runs on. Solutions used to circumvent this shortcoming include

the addition of external memory or the use of a network connection to interface with

the target platform from a simulation platform. Indeed, E-CD++ includes a Tel-

net2Target feature [90] that may be used to send commands over a network interface

for restricted memory devices. In this case, the simulation is run from a host com-

puter; only a small driver program is embedded on the target and commands may be

sent through Bluetooth or USB. Still, these solutions introduce several latencies in

accessing memory and network communication delays, and require the main program

to be run from a more powerful computer.

Besides, the dependency on the Linux kernel and the use of network drivers also

reduce the portability of E-CD++ between different execution platforms. In fact,

the target platform has to be chosen based on the availability of a kernel variant

for this particular hardware, or the presence of suitable network interface to allow

communication with E-CD++ running on a host computer.

As a solution to these limitations, we propose the new architecture shown in figure

4.1. With this approach, the development environment is used to define models, run

tests, debug hardware and software, and deploy the resulting software onto the target

platform. The final models run on the target platform without the need of a host

computer, or real-time operating system middleware.

First, the modeler defines models using the DEVS formalism and C++ code; an

Eclipse IDE is used in order to make the development task easier. These models

are then interpreted and executed by a real-time executive that directly rests on the

target platform. The driver interface layer is used to provide a formal interface for
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Figure 4.1: Bare-Metal E-CD++ Layers

I/O ports. However, this layer has been modified to communicate directly with the

underlying hardware without the need of a real-time kernel middleware.

The bare-metal real-time executives we defined follow the concepts illustrated in

figure 4.1 but differ in the model definition format and the model execution engines.

These will be presented in the sections 4.2 and 4.3 .

4.1 Execution on Bare-Metal

In a broader view, porting a RTOS application to bare-metal has several implications

as illustrated in Figure 4.2. The most left side shows an example of an application
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running on top of a Linux real time kernel: The application uses the GNU Library -

which provides the system call interface that connects to the kernel and the transition

mechanism between the user and kernel spaces - and makes system calls to request

different OS services. These OS services are provided by the Linux RT kernel, which

serves as a middleware between the application and the hardware, and is in charge of

managing and communicating with hardware.

Figure 4.2: RTOS vs Bare-Metal - An Overview

The middle part of Figure 4.2 shows the corresponding components for the Xeno-

mai version of E-CD++. In this case, the application layer is made of user models

and real-time executives in charge of executing them. These layers are in what we

named the “DEVS space” as they pertain the DEVS framework. The real-time ex-

ecutive relies on the Xenomai kernel. To switch to bare-metal, several changes are

needed, namely the real-time executive, the introduction of a microkernel — that pro-

vides functions to handle system calls, to manage memory and hardware resources

—, and the use of a small and optimized GNU library for embedded systems (in our
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case Nanolib) for code size reduction. The architecture dependent kernel and the

hardware layers will be presented in chapter 5; the new real-time executives will be

described in section 4.2 and 4.3. We will first present the microkernel that services

both real-time executives.

4.1.1 Removing OS Dependencies: From Xenomai to Bare-

Metal

To successfully run on bare-metal, all operating system dependencies needed to be

removed and a microkernel developed in order provide the essential services previously

offered by the Xenomai real-time kernel. The microkernel should mainly provide basic

file, memory, and hardware resource management.

An operating system usually manages hardware and software resources and sits

between the application and the hardware. An application commonly request OS

services by system calls. For the bare-metal real-time executive, we identified the

requested services through system calls tracking and created functions with the same

signature but with a re-designed implementation that takes into accounts the lim-

itations and environment of the target platform. These functions provide file and

input/output management and reply to system calls such as open, read and write.

These are necessary since E-CD++ needs to read the user-model file that specified

the coupled model.

System functions related to memory management (e.g. sbrk) are needed for allo-

cation/deallocation of memory. This required the run-time modification of pointers to

heap memory allocation. Indeed, E-CD++ is developed in C++, an object-oriented

language, and dynamic memory allocation is required in order to allow for the instan-

tiation of new objects.



CHAPTER 4. BARE-METAL REAL-TIME EXECUTIVES 49

Other system services associated with inter-process communications within a

multi-processing system are unnecessary. For instance, the getpid function to return

the process ID of the currently running process. As there is only a single process run-

ning, the value returned by this function can be set to an arbitrary integer that meets

the constraints of what would be expected from an application launched from an OS.

Multi-processing and multi-programming can be implemented directly at the model

level and natively handled by the execution module based on PDEVS algorithms. In

this context, models act as processes, and the RC as the scheduler. Periodic and

aperiodic actions can be managed with timers and interrupts.

To offer other useful services generally provided by the OS, we need to provide

similar functions to replicate them. This was achieved by using hardware components

such as the real-time clock, on-board memory and low power modes. Startup code,

low-level initialization, linker script and interrupt handling mechanisms were also de-

veloped to allow the bare-metal execution. With all the above changes, the replication

of key OS functionalities and complete removal of the OS becomes possible. The new

functions were developed to provide essential functionalities requested through sys-

tem calls without the overhead of a full OS kernel. The following sections will present

the real-time executives that run on top of this newly developed microkernel.

4.2 Embedded CD++, the Bare-Metal Version

The bare-metal version of E-CD++ was designed to be compatible with CD++, and

allow previous models to be executed on bare-metal and run on new target platforms.

This version preserves the existing CD++ interfaces in terms of model definition and

driver specification.
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Modifications were made to the real-time executive in order to provide stand-

alone operation. To achieve this, multiple functionalities were leveraged and new

ones added. We will start by presenting the new software architecture, explain the

functionalities adaptations, then present the alterations made to the existing subsys-

tems, and finally present the hardware interface.

4.2.1 Software Architecture

Similar to the Xenomai version, the core components of E-CD++ include the main

runtime subsystem, runtime subsystem, modeling subsystem and the messaging sub-

system. Figure 4.3 shows these subsystems and their interaction in the bare-metal

version. There are three main differences compared to Figure 2.4 (Xenomai-based

E-CD++):

• All the components rest directly on the target platform

• A flattened coordinator is used instead of multiple coordinators

• No Xenomai real-time tasks are present for the main DESVRT task and input

driver tasks.

The main runtime subsystem manages the global aspect of the real-time execution

and provides timing execution with a precision of one microsecond. In the previous

version, this was done by incorporating Xenomai native skin clock functions in the

E-CD++ Time class; for the bare-metal version we use a 32-bit hardware timer and

the onboard microcontroller clock to obtain the same precision. The main runtime

subsystem is also in charge of loading models and ports, constructing the models and

processors hierarchy, loading external events and initializing the root coordinator.
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Figure 4.3: Software Components

Contrarily to the previous version, the RC is not spawned as a real-time task, since

control is then passed to the root coordinator. Once initialized, the root coordinator

manages the rest of the model execution by sending the first message that triggers

other processors to send/receive messages, and handling real-time event scheduling.

It also manages the global Driver object that handles the user defined input/output

port drivers. These latter are associated to the hardware components (e.g. sensors,

actuators, serial peripheral interface. . . ). The global driver object calls the defined

port driver functions to get or set the port value and manages related input/out-

put DEVS messages, therefore serving as a bridge between ports and the RC. The

Xenomai real-time task communication that was used between input driver tasks and

the RC has been replaced by a combined polling interrupt driven mechanism. The

RC periodically get inputs from hardware components by invoking the global driver

while waiting for the next internal transition to occur, sends appropriate messages

in the occurrence of an external event or internal timeout, and also send outputs

to the output hardware components. The RC, along with the flattened coordinator,
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simulators, drivers, and the processor admin are part of the runtime subsystem. The

Flattened Coordinator, in particular, was used to minimize the number of message

passed between models, since embedded devices generally lack memory and process-

ing power. This is achieved during model loading by redirecting and removing the

links between coupled models and establishing direct links from the top models to the

atomic models - the flattened coordinator is therefore directly linked to simulators in

the processor hierarchy. In order to be executed, the defined models are associated

to a processor. Traditionally, each atomic model is associated with a simulator, while

coupled models are linked to coordinators. The bare-metal version uses a flattened

coordinator that directly manages simulators without the need of extra coordinators

(illustrated in figure 4.4). The flattened coordinator reduces the number of messages

passed between models. This is accomplished through the removal of coordinators

for coupled models, which are replaced with a single flattened coordinator that man-

ages the message passing between atomic models enabling direct communication and

reducing exchanged messages.

Figure 4.4: Model and Processor Hierarchy with the Flattened Coordinator

The flattened coordinator technique improves processing power and speed, which

is a limitation to execution on embedded platforms. In order to increase efficiency, the
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Flattened Coordinator analyzes the links between models on initialization and gen-

erates an influence list, establishing the relationships between models. The flattened

coordinator is able to identify the recipient of a message and passes the message di-

rectly to the atomic model. In a simple system containing only a few coupled models,

this will not have a very large effect on the overall efficiency of the system; how-

ever, as the system complexity increases, the increase in performance that is achieved

through the implementation of the Flattened Coordinator technique can be seen to

improve [109].

The messaging subsystem includes the message admin and various message classes

corresponding to the ones defined in the PDEVS abstract algorithm. Messages are

sent to processors (simulators and coordinators) through the message admin that

communicates with the processor admin. Incoming messages are first stored in the

message queue and then processed by the message admin.

Finally, the modeling subsystem holds the model hierarchy defined by the user

through the specification of atomic and coupled models. Note that coupled models

do not appear in the figure 4.3 since they are eliminated as the flattened coordinator

is systematically used for the bare-metal version. Apart from model classes, the port

admin contains a list of top ports or ports connected to hardware components. These

are later used by the global Driver object to communicate with hardware components.

In the following section, the above main changes will be detailed and their im-

plementation further explained. We will start the modeling and runtime subsystems,

the main runtime subsystem and finally the hardware components interface.

4.2.2 Modeling and Runtime Subsystems

The modeling and runtime subsystem are the main components that implement the

PDEVS formalism. The modeling subsystem contains elements necessary for model
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construction while the runtime subsystem holds the model execution mechanism.

These subsystems are respectively built around two main abstract classes: Model and

Processor. Model, on one hand, is used to define the behavior of atomic models and the

structure of coupled models. Processor, on the other hand, is used to execute atomic

and coupled models through simulators and coordinators. The root coordinator is a

special coordinator associated with the top model and oversees the simulation. The

previous entities are shown in figure 4.5.

Figure 4.5: Models and Processors

The class hierarchy shown in figure 4.5 is implemented in CD++ and in the

previous E-CD++ with an optional flattened coordinator. Note that both models

and hierarchy trees are constructed by the main runtime subsystem before invoking

the root coordinator. We will first talk about the implementation of models and then

in the context of the bare-metal version.

The users define the structure of the models in a model-file using a special format

defined in [95]. The model-file contains the components (Atomic and Coupled) in

hierarchical order, in which the top-most coupled component is declared first. For

each coupled component, its internal components (atomic and/or coupled models),

input/output ports, and links i.e. External Input Couplings (EIC), External Output

Couplings (EOC), and Internal Couplings (IC) are declared. A new internal program

converts this model file into hexadecimal in order to be embeddable on the target
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platform and part of the final executable. For the behavioral part, each atomic model

is derived from a basic atomic class, and provides state transition functions (i.e.

internal, external) and output function implementation.

As for the processors algorithms, simulators and flattened coordinator implement

the PDEVS abstract algorithms presented in section 2.4. The root coordinator im-

plements the same DEVSRT algorithm, except that obtaining signals from the envi-

ronment is achieved through a different strategy. Indeed, in the Xenomai version, a

mailbox is used for the communication between input driver tasks and the RC task.

When waiting for an internal event timeout, the RC would wait to receive a message

from a Xenomai real-time task indicating hardware input. Since Xenomai real-time

tasks are no longer available, the reception of the done message will cause the RC

to sleep until the next internal transition is scheduled, periodically verifying that an

external event has occurred when in interrupt mode. If an external event occurs, the

event will be processed prior to the internal transition and the cycle will be repeated.

In the case where there are no more internal transitions scheduled, the Root Coor-

dinator will place the microcontroller into a low power mode and await an external

event. Note that there is also a polling mode option that periodically calls input

port driver functions to verify if events have occurred. External events are gathered

through ports and drivers and will be explained in the next section.

Hardware device connections and interfaces are managed through the use of two

classes: Port and Driver. The Port class belongs to the modeling subsystem and

enables the user to specify ports connected to hardware components. They also

provide functions to convert external environment signals to input port values or

output port values to external environment output signals. The driver class is the

corresponding execution mechanism and belongs to the runtime subsystem. It is

invoked by the RC to get signals from the environment or send output values to
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hardware components. Together, Port and Driver provide a link between the model

implementation, and the hardware target platform.

The Port class represents the logical connection between models and hardware

devices. Instead of passing established API commands over a network interface (as

with the libplayerc) through the port class as in the Xenomai version, the bare-

metal implementation allows input and low-level functions to directly access different

hardware components. A hardware API was also included to allow rapid prototyping

for ARM microcontrollers and will be presented in chapter 5. When a signal is

detected on an input port, a corresponding PDEVS message (a (q,t) message to be

specific) is generated and added to the message queue. When a port is configured as

an output, the port receives data from the associated driver in charge of converting the

received PDEVS message (an output message - (y,t)) from the RC into suitable port

data. One of the advantages of the bare-metal approach, especially for experienced

embedded systems developer, is the option to use of hardware or software interrupts

to directly detect changes on the hardware components and generate corresponding

PDEVS input messages. Indeed, specific hardware interrupts associated with each

hardware device can be used to signal an input event while software interrupts can

be programmed based on a division of the base clock to provide periodic polling.

Interrupt service routines are then set to post a port value that is then used by the

port driver to generate a PDEVS message.

In the Xenomai version, Driver objects are associated to periodic real-time tasks

that alternately post hardware event to the RC task mailbox. The RC then pends

on the mailbox while waiting for an internal timeout and processes the content of

the mailbox upon reception of a message. This technique can cause overheads due

to task context switching especially when driver tasks have a short period. With the

bare-metal implementation, drivers are by default associated with timers similar to



CHAPTER 4. BARE-METAL REAL-TIME EXECUTIVES 57

real-time task periods and checked for events by the root coordinator when pending

for an internal timeout, or interrupts for embedded developers accustomed to this

concept. Alternatively, the role of the Driver class is to convert PDEVS output

messages, initialize and close hardware devices at the beginning and end of execution.

As mentioned, when an output message is received by the RC, the Driver reads the

value from that message and passes it on to its associated Port for interpretation and

communication to the device. In the case of initialization or termination, the Driver

class includes functions that interface with hardware devices in order to prepare them

for operation, or for the end of simulation as required.

In addition to the above, to effectively model real-world inputs, it is necessary

to define two types of devices that a Port/Driver may be associated with, the first

being passive devices. These types of devices include sensors that must be polled at

specific intervals to determine their current state. Interfacing with passive devices

requires the implementation of a periodic timer interrupt that requests the state of

the device, achieved through the creation of a software interrupt tied to a division

of the base clock for instance. This allows a software interrupt to be triggered at

regular intervals, eliminating the need for real-time tasks. The state that is returned

from these interrupts is then passed to the associated Driver which interprets the

state, creates, and sends an appropriate PDEVS message for further processing. The

second type of hardware device that can be seen is an active device. An active device

is classified as a hardware device that triggers an input event. Active devices can

trigger a hardware interrupt at which point, they will pass their states to the Driver

for processing.
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4.2.3 New Main Runtime Subsystem

Since the main runtime subsystem is the first object to be created, it is in charge

of initializing the system timing. This is achieved with a 32-bit timer set to trigger

at 1MHz therefore providing microsecond precision as in the Xenomai-based version.

This technique however imposes that the microcontroller’s clock frequency to be at

least 1MHz, which is common nowadays.

Apart from the clock initialization, the main runtime system also needs to register

the model file on the bare-metal versions. Indeed, the only file referenced by E-CD++

during execution (and thus needed on the target platform), is the model file. Models

are loaded into E-CD++ at run-time through the reading and interpretation of a

model file. This used to be done by providing E-CD++ with the name and location

of the model file from the command line. Since we do not have a directory structure

for OS file I/O support, it was necessary to develop a pseudo file system in order

to maintain continuity between desktop simulation and target simulation. In order

to mimic this behaviour, the model files are loaded directly into memory and the

file names are used to populate a file register. The file register then determines the

memory address of the text file using a file table that contains the mapping between

file names and memory addresses. The file table also provides information about the

file that is required by the C++ library, for example, the file size.

One of the other major tasks of the main runtime subsystem is to load models and

ports. After registering atomic models by adding pointers to their constructors into

a model admin table (a hash table that serves as an atomic model object database),

and top ports by adding them into a port admin table (a hash table that serves as

a port object database), the main runtime subsystem constructs the DEVS model

hierarchy. This is done by parsing the model file that contains the components and

their relations (i.e. atomic and coupled models, their links/couplings - EIC, IC, EOC
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- and ports) and calling the Model Admin and the Processor Admin to construct

two tree-like structures: the model hierarchy tree and the simulator/coordinator tree.

These two trees are constructed in parallel, i.e. when the model admin adds a node;

the processor admin also adds a corresponding execution node providing a one-to-one

relationship. The model hierarchy tree belongs to the model class and has atomic

(leaf nodes) and coupled models (non-leaf nodes) as its node while the processor

hierarchy tree has simulators (leaf nodes) and coordinators (non-leaf nodes) as its

nodes. Because the flattened coordinator is used, the coupled models are eliminated

from the model hierarchy tree and all the atomic model port links are rewired to

bypass the coupled models. This results in the hierarchy shown on the right side of

figure 4.4. Once the models are loaded, the control is passed to the root coordinator

that manages the rest of the execution by monitoring signals from the environment,

handling scheduling, and passing messages as per the DEVSRT RC algorithm (listing

2.1).

4.2.4 Hardware Components Interface

In the older version of E-CD++, one of the strategy that was used to interface with

hardware with constrained memory (e.g. Lego robots, ePuck) was the use of the

“libplayerc” library, based on Player - a single device server that runs on the robot

providing control over the sensors and actuators. This enabled the main program

to run from a host computer and send commands or read data through the network

interface provided by the player library. With the bare-metal, the footprint was re-

duced enough to hold onto some of those devices; the hardware component interface

allows direct access to the microcontroller, and the entire application holds in the

onboard memory. We were able to interface with STMicroelectronics’ STM32 periph-

eral libraries, and this can be done with other vendors as well. There is no networking
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capabilities restrictions anymore.

Overall, a high level of portability and model continuity can be achieved, as the

DEVS model is not changed throughout development. This design is also portable as

models developed can be run on bare-metal by specifying the necessary port drivers

to interact with real hardware components. As mentioned, the implementation of the

port/driver concepts greatly increases this portability through the encapsulation and

generalization of I/O devices allowing for simple addition of new devices.

4.3 Embedded CDBoost, a Sequential PDEVS-

based Real-Time Executive

We will now present the second bare-metal real-time executive, Embedded CDBoost

(E-CDBoost for short). This later is derived from on a new DEVS simulation software

called “CDBoost” [9]. We will present common core components to CDBoost and

Embedded CDBoost as well as the additions implemented to allow real-time execu-

tion on bare-metal. One of the major differences between CDBoost and the original

CD++ is the simulation mechanism used to implement the processors. Although

both arise from the PDEVS abstract algorithms presented in section 2.4, CDBoost

uses a function call & return technique instead of the default message passing mecha-

nism in order to achieve high performance. It implements new sequential algorithms

to run PDEVS models and offers a modular and flexible architecture. In terms of

implementation, CDBoost relies on the popular Boost C++ library [110] and follows

the C++11 standard.
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4.3.1 Software Architecture Overview

Figure 4.6 shows the architecture overview of CDBoost. Similar to CD++, it sep-

arates the model construction logic from the simulation mechanism. Model classes

provide the former while execution classes implement the latter. Utility classes pro-

vide useful functionalities to the simulation such as time classes, message classes,

input stream for external events and a future event list (or FEL) comparable to a

scheduling structure.

Model classes contain three main classes: Model that offers a common interface to

atomic and coupled models, PDEVSAtomic that can be extended to implement user

defined atomic models, and PDEVSCoupled that provides an interface to specify the

structure of a model.

Figure 4.6: CDBoost, Software Components Overview

Execution classes, on the other hand, group PDEVSSimulator - to render atomic

models behavior, PDEVSCoordinator - to execute coupled models, and PDEVSRun-

ner similar to the root coordinator.

CDBoost was designed to run general simulations on a workstation, generating

only simulated results. Embedded CDBoost (E-CDBoost), instead, is designed to
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execute models on embedded hardware. This requires real-time extension and in-

teraction with the environment. With E-CDBoost, inputs can be retrieved from

hardware components such as sensors, timers, or data collected from human interac-

tion. E-CDBoost outputs can actuate motors, valves, gears and other components.

E-CDBoost also supports the integration of both simulated and real components for

a facilitated hardware-software co-design. Since E-CDBoost is designed to execute in

real-time (contrary to CDBoost that only allows as fast as possible simulation and

advances time directly to the next event) and rest on embedded hardware, it includes

a wall-clock time (with a microsecond precision) interfaced with an onboard hardware

clock. Actions therefore happen in real time.

To the architecture shown in figure 4.6, E-CDBoost adds a Port component to

the modeling subsystem, a Driver and a new Runner (ERunner) to the execution

subsystem to interface model implementation and hardware platform. It also adds

real-time functionality by replacing the virtual-time used in CDBoost, with physical

time based on a hardware clock. This is achieved by defining a special Time class.

The message structure is also adapted to the real-time environment and carries port

and value information.

Before detailing each subsystem, we will first discuss the communication mecha-

nism used between model and execution classes and the new sequential algorithms.

4.3.2 A New Execution Mechanism

CDBoost replaces top-down messages by function calls and bottom-up messages with

return/replies. Figure 4.7 further illustrates the distinction between CD++ execution

mechanism and CDBoost is illustrated. In the first case, nodes in the processor

hierarchy tree communicates by sending different messages and executing actions

locally while functions (advance simulation() and collect outputs()) of lower nodes in
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the hierarchy are called and values returned in the second case.

Figure 4.7: Comparison of Communication Mechanisms

We will now discuss the specific algorithms used by the coordinators and simula-

tors in the new communication mechanism.

Coordinator Algorithms

Nodes in the processor (simulator/coordinator) hierarchy tree communicate via func-

tion calls and replies. Because, multiple message types are supported, replies can

carry more than the confirmation of execution. The returned message is encoded as

to support different kind of messages (both done and input/output messages). Af-

terwards, the message type is processed and then routed accordingly. In embedded

CDBoost a particular message structure has been defined and is used to include port

structures used for communication with hardware components.

The following listing (Listing 4.1) shows what takes place when the “col-

lect outputs” function is invoked on a coordinator. The coordinator verifies if it

has reached its next state change time. If not, an empty reply is sent; otherwise,

the outputs of each imminent coordinator associated with a submodel in the EOC
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(models that send signal to the outside/environment) are collected and added to the

output bag.

Coordinator
Vars:
next // Next scheduled event time
last // Last processed event time
FEL // Future event list

Method collect_outputs(Time t)

if t != next then

return {}

else

set outputs = empty bag

for each imminent submodel Coordinator c

if c is in EOC then

outputs = Union(outputs, c.collect_outputs(t))

end if

end for

return outputs

end if

end method

Listing 4.1: Coordinator - collect outputs() [9]

For advance simulation, the time t is verified to ensure that it is between the last

and next scheduled change. If so, t is saved as the last change time, and external

imminent models (those that received events from the environment) are set by adding

each receiver of the external coupling set to the external imminent set, and adding the

content of the inbox to the receiver’s inbox. The previous steps run if the coordinator

inbox is not empty (i.e. an input message was received) and the receiver’s next state

change is not t. If it is time for the next state change ( t == next), the outputs of each

imminent model are collected and carried out to any linked coupled model (internally

coupled) that is then added to the external imminent set. Note that this set refers to

models that become “ready to execute” because an external event happen, and not
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because of an internal delay expiration.

In all these cases, the coordinator calls advance simulation for each coordinator

in the imminent and external imminent sets, and their next state change time is

added to the Future Event List (FEL). If the FEL is empty, the next state change is

infinity; otherwise, it is picked from the FEL. Finally, all the imminents are retrieved

from the FEL.

Method advance_simulation(Time t)

assert t in [last, next]

last = t

set external_imminents = empty set

for each Coordinator c of a submodel in EIC

if self.inbox is not empty and c.next != t then

add r to external_imminents

end if

add self.inbox contents to c.inbox

end for

if t == next then

for each Coordinator c of a submodel

receiving input from an imminent i because of IC

set temp = i.collect_outputs()

if not empty temp and c.next != t then

add c to external_imminents

end if

add temp to c.inbox

end for

end if

for each Coordinator c in Union(imminents, external_imminents)

c.advance_simulation(t)

if c.next != infinity then

FEL.remove_value(c) //for rescheduling

FEL.insert(c.next, c)

end if

end for

if empty FEL then

next = infinity

else

next = FEL.top.first
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end if

imminents = coordinators on top of FEL

remove imminents from FEL

end method

Listing 4.2: Coordinator - advance simulation() [9]

Simulator Algorithms

For simulators - leaf nodes in the processor hierarchy tree - only the return reply

mechanism is required. Since coordinators and simulators do not know their parents,

all communications are initiated from top to bottom, and the replies are collected

using the method returned values. The function names are the same as in the Coor-

dinator: advance simulation and collect outputs. The algorithms for the Simulator

are shown in the next listings.

The collect outputs method verifies the time parameter t. If it not time yet for

the next scheduled event, an empty bag is returned; otherwise, the output generated

by the model is returned.

Simulator : subclass of Coordinator
Vars:
next // Next scheduled event time
last // Last processed event time
model // atomic model being simulated

Method collect_outputs(Time t)

if t != next then

return {}

else

return model.out()

end if

end method

Listing 4.3: Simulator - collect outputs() [9]
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For advance simulation, we verify if time t is valid by making sure it is within the

last change and the next expected change. If advance simulation was called with a

legitimate time t, the inbox content is checked. If the inbox is empty and it is time

for the next event, i.e. the next internal transition, the internal function is executed

and the next change is set by adding the last change time and the delay TA. When

inbox is not empty (i.e. an input has been received), we execute the external function

if the time different from the next state change (internal transition time). If not, it

indicates that the external and internal transitions are scheduled for the same time

and the confluent function is therefore executed.

Method advance_simulation(Time t)

assert t in [last,next]

if self.inbox is empty and t == self.next then

model.internal()

next = last + model.time_advance()

end if

if self.inbox is not empty then

set local_t = t - last

if t == next then

model.confluence(inbox, local_t)

else

model.external(inbox, local_t)

end if

next = last + model.time_advance()

end if

last = t

end method

Listing 4.4: Simulator - advance simulation() [9]

These algorithms therefore implement the DEVS execution mechanism provided

in the abstract simulator by using a different communication mechanism. In the

following section, we will see how the modeling subsystem is designed to allow the

user to easily define models.
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4.3.3 Modeling Subsystem

The user implements atomic and coupled models by extending two basic classes:

PDEVSAtomic and PDEVSCoupled. Figure 4.8 illustrates model classes that form

the modeling subsystem in Embedded CDBoost. We will first present the PDE-

VSAtomic class, which is used to define new atomic models. The constructor re-

quires two template parameters: Time and Message. Virtual functions provided by

PDEVSAtomic correspond to those described in the formalism: internal, external,

confluent, time-advance and output functions. The time advance function, which is

commonly included in the internal and external functions in various simulation imple-

mentations, is here clearly separated and has its own dedicated function. In addition,

an init function setups the model initial state.

Figure 4.8: Model Classes

Coupled models are defined using the PDEVSCoupled class. This class constructor

receives four parameters: the list of pointers of the components to be coupled; the

External Input Couplings (EIC) pointers list for models that receive inputs from
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outside of the coupled model; the Internal Couplings (IC) pointers list for models

that are connected internally; and finally the External Output Couplings (EOC)

pointers list for models that send outputs outside of the coupled model.

Both PDEVSAtomic and PDEVSCoupled classes inherit the model class that

allows coupled and atomic models to be connected easily through couplings that can

be debugged with ease since they share a common model interface.

PDEVSAtomic and PDEVSCoupled are common to both CDBoost and Embed-

ded CDBoost. Embedded CDBoost adds ” Port” (shown in bold in Figure 4.8) to its

modeling subsystem. To allow communication with hardware components in Embed-

ded CDBoost, the user must provide ports implementation by extending a Port base

class, and specifying a ” pDriver” or port driver function to translate model output

values to specific hardware components commands and vice-versa. For an input port,

pDriver could provide what GPIO (General Purpose Input Output) to read and set

the port value for instance. For an output port, the pDriver function receives a value

that is then translated into actions such as writing to a GPIO to turn on an LED.

4.3.4 Execution Subsystem

Execution classes, illustrated in Figure 4.9, implement the abstract simulator algo-

rithms and execute models. The PDEVSCoordinator class, in charge of managing

coupled models, requires three template parameters: Time, Message and Future Event

List (FEL). These three parameters will be detailed in the ancillary subsystem with

utility classes.

Contrary to E-CD++ where the processor tree is constructed by the main run-

time subsystem, this step is performed upon the invocation of a processor constructor.

Constructing coordinator objects is complex, as it requires the coupled model com-

ponents to be extracted and embedded in the coordinator. For instance, when the
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coordinator is built, all the children are constructed, and the couplings between com-

ponents that communicate are saved. The algorithms described previously (listing 4.1

and 4.2) - collect outputs and advance simulation (renamed advance execution since

it used the real time execution time) - are implemented in these classes.

The PDEVSSimulator class implements the simulator’s algorithms presented in

listing 4.3 and 4.4. Therefore, this class is in charge of calling the state transition

functions at the appropriate times, and of returning the outputs of the atomic models

to their coordinators.

Figure 4.9: Execution Classes

Embedded CDBoost also uses the flattened coordinator technique and adds a

global driver (“Driver” shown in bold) that manages ports like in E-CD++. The

Driver is responsible of initializing hardware, retrieving inputs from hardware com-

ponents connected to input ports (by calling the appropriate port pDriver method),

and sending commands to hardware components connected to the output ports. The

input event retrieving mechanism is based on the same polling interrupt driven mech-

anism and communicates with the PDEVSERunner. This class is associated with the

top or root coordinator, manages the global execution and defines the end time of
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the simulation. It also provides mechanisms for output and debugging.

Runner (Root Coordinator) Algorithm

The runner used in Embedded CDBoost is particularly different from CDBoost since

input have to be gathered from the hardware and output sent to the target platform

too.

run():

while curentTime < stopTime /* main loop - this can be forever */

wait for is signals from environment or internal time out(tN)

if external event then

Message in = DX(is)

topCoordinator.postEvent(in) //add in to top coordinator inbox

topCoordinator.advance_execution()

else if internal time out then

topCoordinator.collect_outputs()

if output messages out received then // process outputs

os = DY(out)

send os signal to hardware

end if

topCoordinator.advance_execution()

end if

tN = topCoordinator.next()

end while

Listing 4.5: eRunner algorithm

The runner executes the application for the time specified by the user. The default

stop time is infinity as in typical embedded systems where a program is set to run

repeatedly forever. It waits for an internal time out to happen or an external event

in order to advance model execution. In the first case, outputs are collected and

advance execution called with the current time. When an external event occurs, the

event value is added in the top coordinator and advance execution called in order to

process the event. When the runner receives an output message, it is processed and

a corresponding value is sent to the concerned port.
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4.3.5 Ancillary Subsystem

The utility classes (Figure 4.6) provide essential data structures to run the execution

properly. The first class in the utility category is called Message. Boost::any is used

by default in CDBoost as the message type, and it allows the exchange of any type

of messages in our models. In E-CDBoost, we have defined a special message type

that includes time, port, and value parameters.

For the Time component, it is associated with the physical time in Embedded

CDBoost and provides a real-time clock with microsecond precision. It is interfaced

with a 32-bit hardware timer.

The Future Event List (FEL) is also provided as part of the utility classes. Using

an effective FEL is essential in order to achieve good performance. For the FEL

type, any structure that matches the priority queue signature is accepted. Hence,

the user can define customized schedulers and increase performance if needed. The

default provided FEL is the standard priority queue. This data structure is part of

the language and is suited to store and retrieve timed events.

In addition to the data types provided by the above-described classes, an input

stream model is also provided. Its role is to allow reading and processing events that

originate from an external source in simulated mode.

4.3.6 Execution on the Target Platform

Embedded CDBoost runs on top of the microkernel presented in section 4.1. This

latter handles its system calls and provides requested services to the real-time exec-

utive. The real-time executive communicates with hardware mainly via ports and

drivers using a similar mechanism to the one presented for E-CD++. The same

hardware abstraction layer is used here in order to streamline the development and
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ease applications porting. The hardware abstraction layer and hardware platforms

will be presented in the next chapter. Chapter 6 will illustrate concrete examples of

applications developed using the two real-time executives.



Chapter 5

Hardware Related Layers

Because hardware goes hand in hand with software in embedded systems, this chapter

is dedicated to the hardware-dependent kernel layer and the hardware layer of our

bare-metal solution.

5.1 Hardware Peripheral Libraries Integration

Recall from section 2.5 that MCU vendors provide device libraries to allow access

and configuration of hardware components, and ease the software development task.

We integrate these peripheral libraries in the hardware-dependent kernel layer as

illustrated in figure 5.1 (The Hardware Peripheral Libraries layer). They are used by

the HAL layer and by the user defined port pDriver methods if needed.

When defining input and output ports connected to hardware, the user can reuse

methods provided by the hardware abstract library (The HAL layer shown in figure

5.1) to get value from sensors or actuate motors for instance. The HAL layer contains

ready-to-use methods in order to include commonly used hardware components (e.g.

ultrasonic, light sensors) easily and test the resulting application. This is particu-

larly useful since writing hardware components/devices drivers from scratch can be

74
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Figure 5.1: Overview of the Bare-Metal Design

particularly time-consuming. The HAL layer resides on top of the vendor provided

peripheral libraries.

At the beginning, since most of the development boards (See Appendix B) we used

were from STMicroelectronics, we included their standard peripheral libraries, and

built a HAL layer that provides function related to ultrasonic sensors (such as the HC-

SR04), light sensor (QTR-1RC), servomotors. However, for every new component, the

user needs to be familiar with STM peripheral libraries and understand the electronic

features of the component in order to write its drivers. This can be particularly

challenging for beginners or developer who only have a software background.

Later, with the introduction of STM32Cube (presented in section 2.5 as well),

we integrated the possibility of using the STM32Cube graphical interface in order to

initialize and configure peripherals, and include the generated code into the project.
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For this to happen, each project is structured in four main components: internal

(contains the real-time executive files), user models (contains the models the user

defines), user drivers (ports and files related to hardware components interfacing),

and finally hal libraries (vendor specific peripheral libraries). It is in this later that

the code autmatically generated from STM32Cube can be included, and reused in

ports. The Eclipse IDE that we use includes a STM32Cube plug-in to enable this.

Although integrating the STM32Cube option helped to reduce the steep learning

curve associated with vendor-dependent peripheral libraries, we wanted a more gen-

eral solution that was vendor independent and provided a friendlier API. We therefore

decided to include MBED internal libraries as the default hardware peripheral layer.

5.2 MBED Integration

We have included the MBED internal libraries as part of the bare-metal layers in order

to allow the modeler to easily write port driver functions and enable fast prototyping.

The MBED API is only invoked in the port pDriver functions and provides access to

hardware peripherals in order to sense or actuate components. Integrating both DEVS

models and the MBED API greatly improves the embedded software development

process, provides support for numerous devices, and reduces development time and

cost.

In the HAL layer, MBED libraries for common components and shields such as

the Parallax Robot Shield were developed and deployed for the MBED community to

use. For this Parallax robot library we defined functions that allows to spin onboard

servomotors at a desired speed and direction. Whiskers (integrated touch sensors that

comes with the robot) and additional sensors (ultrasonic, bump, and reflectance) ac-

cess methods were included in the library, and sample navigation programs provided.
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Figure 5.2: Overview of the Bare-Metal Design with MBED

This helps to reduce the development effort required for device drivers and will allow

future users to directly use the Parallax robot shield library in the port definitions.

Besides, it is easy to develop new device drivers with the MBED friendly object

oriented API. The learning curve is considerably faster. Plus, multiple device libraries

are readily available and can be reused by the user. For instance, some other robotic

platforms such as the popular Pololu M3PI mobile platform exist, as well as libraries

for connectivity shields (e.g. Bluetooth, WiFi and NFC) are available. Moreover,

the developed drivers using the MBED API can be reused across different vendor

platforms since the API is vendor-independent. Only the MCU dependent layers

need to be updated.

The other project that is currently under development is a DEVS library that can



CHAPTER 5. HARDWARE RELATED LAYERS 78

be used in the online MBED compiler and accessible to the MBED developer com-

munity. It would be the first model-based library, in our knowledge, to be available

for deployment onto MBED platforms.

5.3 Summary

To recapitulate the bare-metal solution design, we have DEVS models that are pro-

vided by the modeler, as the first layer. These DEVS models are executed by a

real-time executive, i.e. the new E-CD++ or Embedded CD-Boost. These first two

layers are built on DEVS theory and thus enclosed in a DEVS space. The real-time

executive uses services provided by the bare-metal microkernel for actions such as file

reading. It also invokes a peripheral driver library (i.e. MBED, or a vendor specific

library) depending on the modeler library choice. The default provided library being

MBED since it is vendor independent and ideal for fast prototyping.



Chapter 6

Applying DEMES - A Case Study

Recall from chapter 2 that model-driven development is simply the notion that we can

construct a model of a system that we can then transform into the real thing. We have

followed the DEMES approach, presented in section 2.2 to build several applications

and executed them on the target platform using the new kernels. In this chapter,

we will particularly focus on one application and present how it evolved progressively

from its system of interest definition, to formal model, to the real system.

Figure 6.1: DEMES-based Development Cycle

Figure 6.1 outlines in bold the DEMES development phases we will focus on for

79
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this particular case study. We will start by defining the system of interest, specify the

corresponding DEVS models, then explore different test scenarios using simulation,

and finally emphasize on DEVS models execution on the new bare-metal kernels.

We have used this approach to build several applications, many of these are re-

lated to autonomous vehicles and include a robocart and a self-driving vehicle. The

robocart navigates using an ultrasonic and obstacle sensor to avoid obstacles and

find a free path. The self-driving car was designed to follow road marks such as line

and respect other vehicles driving in the same line. Four light sensors were used to

keep track of the road lines, and an ultrasonic sensor to detect vehicles and evalu-

ate the distance between. We are currently running different tests for this system.

Other non-robotic related applications include a simple parking assist device that

emits a green, yellow, and red light to ease reverse parking maneuvers. We are also

working on a drone controller and intend to develop biomedical and IoT related ap-

plications soon. In this section, we will focus on a line tracking robot application and

its DEMES-based development cycle.

6.1 System of Interest

The definition of a system of interest is the first step in the DEMES-based develop-

ment cycle. It involves two parts: the real-time system requirements and the physical

environment identification. We will particularly focus on the desired system: a line-

tracking robot. It is an autonomous robot capable of following a line and able to

take decisions to get back on track. The requirements are as follows: the robot shall

be equipped with a light sensor that faces the ground and measures the amount of

light reflected off a small ground surface. The controller should consider a medium
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percentage of reflected light as a detected path and initiate the robot to move for-

ward. When the robot goes off track, i.e. does not sense a path trail; it stops, turns

counter-clockwise slightly, and then tries to detect a trail again. If a path is detected,

the robot moves forward again; otherwise, it continues to turn until it finds a path to

follow. The robot should also be able to receive manual signals to start and stop.

For the physical environment, we will use an existing path designed for the Lego

Mindstorms robot and previously used to test the same application (running on the

Xenomai-based E-CD++ ( [111]).

6.2 DEVS Model Specification

Once the system of interest is defined, the following step is to model the system using

DEVS. This formalism, as introduced in section 2.2, decomposes complex system de-

signs into basic/behavioral models (atomic models) and composite/structural models

(coupled models). We take a top down approach and first define the structure of the

line tracking robot system. Multiple iterations are usually required to capture the

requirements into an appropriate hierarchical structure. Figure 6.2 [111] illustrates

the resulting hierarchy for our example.

The system is decomposed into three main units: a Sensor Unit, a Control unit,

and a Movement Unit. Two input ports (LIGHT IN and START IN), and two output

ports (MOVEL OUT and MOVER OUT) allow communication with the environ-

ment. LIGHT IN is the input port through which reflected light is measured while

START IN is for the manual start/stop commands. The output ports are for the

robot’s left and right motors movements.

In terms of components, the sensor unit contains sensors or input devices. In this

case, it contains an atomic model, the light sensor, which reads the amount of light
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Figure 6.2: Line Tracking Robot Model Hierarchy Diagram

reflected and transmits those readings to the control unit. This latter is made of

two atomic models: the sensor controller and the movement controller. The sensor

controller activates or stops the light sensor, receives the light sensor readings, and

sends messages to the movement controller specifying whether the robot is on track,

off track, or has reached the destination. When the robot arrives at its destination-i.e.

the light sensor reads an all-dark surface-the sensor controller sends a “stop reading”

command to the light sensor and a stop signal to the movement controller. The

movement controller also receives/off-track and stop signals from the sensor controller

and it sends appropriate commands to the motors. The movement unit is made of

two atomic models: motor left and motor right. It groups the robot’s actuators that

move in response to commands received from the control unit. The motor models

control the robot treads: they can spin clockwise, anticlockwise, or stop according to
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the signals they receive from the control unit.

In addition to the above textual description of each coupled and atomic models,

DEVS models can be formally specified using the notation presented in section 2.3.

These formal specifications are the basis of model-checking, or formal verification basis

from which a modeler, or an automated tool can verify system properties analytically.

The initial DEVS model specification is also preserved as much as possible throughout

the development cycle. The control unit coupled model specification and the sensor

controller specification are available in Appendix C.

The DEVS specification in Appendix C is particularly useful to verify analytically

general system properties. A graphical form can also be used to illustrate better the

atomic model behavior and integrate all its state transition and output functions. Fig-

ure 6.3 illustrates the DEVS Graph representing the sensor controller’s behavior. The

state diagram summarizes the behavior of a DEVS atomic component by presenting

the states, transitions, inputs, outputs and state durations graphically. The circles

represent states and the double circle is the initial state. The name and duration of

a state is shown in the circle. The continuous edges between the states represent the

external transitions, which includes the names of the input ports, the input value and

any condition on the input (with format “port?value”). The dotted lines represent

the internal transitions and the associated outputs (with format “port!value”).

The Sensor Controller starts in the IDLE state and remains in that state until a

start command is received. Once issued, an external transition is triggered and the

Sensor Controller state changes to PREP RX. At this stage, it waits for a defined

time ta=scRxPrepTime after which a “start” output signal is sent to the Light Sensor

and an internal transition is triggered changing its state to WAIT DATA. The Sensor

Controller waits in this state until it receives a signal from the Light Sensor. When
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Figure 6.3: Sensor Controller State Diagram

a signal is received, if the signal indicates that the robot reached the destination

(signal value is ALL DARK), an external transition causes the Sensor Controller to

switch to the PREP STOP state, at which it will immediately send a stop signal to

the Light Sensor and the Movement Controller and then transition back to the IDLE

state. However, if the received signal is different, the Sensor Controller will go to

the TX DATA state at which it will wait for a time advance period of ta=scTxTime

before sending an output signal to the Movement Controller indicating whether the

robot is on track or not, and going back to the WAIT DATA state. At any point in

time, if the Sensor Controller receives a manual stop signal (STOP PROC), it will

execute an external transition to the PREP STOP state to stop all activities.

The previous DEVS representation can be transformed into a Timed Automaton
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[82] and verified using model-checking tools such as UPPAAL. This out of scope

for this thesis but further details about such transformation and model checking

can be read in [82] and [85]. Depending on the outcome of model checking (such

as deadlocks, liveness problems, unbounded time), adjustments can be made to the

original specification and verification run again. The formal proofs obtained in this

step can be complemented with simulation where individual behaviors of sub models

can be tested under specific conditions.

6.3 RTS Model Simulation - Virtual Environment

Testing

RTS Model simulation allows the user to test the defined models in a virtual environ-

ment and under various settings. To run simulations and test the system components

in multiple scenarios, we can use non-real time (CD++ and CDBoost) or their real-

time counterpart tools (E-CD++ and Embedded CDBoost) that offer real-time and

hardware-in-the loop capabilities. We will focus on these latter but first show how

CD++ and E-CD++ can be used together to go from simulated model to executable

model.

CD++ was developed to run in a simulated environment and only provides sim-

ulated results. To allow execution on the target platform, E-CD++ has to be used.

As mentioned in section 4.2, E-CD++ was designed to be compatible with CD++.

Therefore, the models simulated in CD++ can be loaded as is in E-CD++ for em-

bedded execution.

In CD++, The user defines atomic models, identified during the DEVS model

specification phase, as subclasses derived from the model class that specify the inter-

nal, external and output transition functions. The model hierarchy is specified in a
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model file, and contains model components and their port links. The model file (also

called MA file) of the line tracking robot is shown below.

[top]

components : ControlUnit MovementUnit SensorUnit

in : LIGHT_IN

in : START_IN

out : MOVER_OUT

out : MOVEL_OUT

%input connections

Link : LIGHT_IN SU_LIGHT_IN_TOP@SensorUnit

Link : START_IN CU_START_IN_TOP@ControlUnit

%output connections

Link : MU_MOVER_OUT_TOP@MovementUnit MOVER_OUT

Link : MU_MOVEL_OUT_TOP@MovementUnit MOVEL_OUT

%internal connections

Link : SU_LIGHT_OUT_CU@SensorUnit CU_LIGHT_IN_SU@ControlUnit

Link : CU_START_OUT_SU@ControlUnit SU_START_IN_CU@SensorUnit

Link : CU_MOVER_OUT_MU@ControlUnit MU_MOVER_IN_CU@MovementUnit

Link : CU_MOVEL_OUT_MU@ControlUnit MU_MOVEL_IN_CU@MovementUnit

[SensorUnit]

components : LS@LightSensor

in : SU_LIGHT_IN_TOP

in : SU_START_IN_CU

out : SU_LIGHT_OUT_CU

%input connections

Link : SU_LIGHT_IN_TOP ls_light_in@LS

Link : SU_START_IN_CU ls_start_in@LS

%output connections

Link : ls_light_out@LS SU_LIGHT_OUT_CU

[ControlUnit]

components : SCtrl@SensorController MCtrl@MovementController

in : CU_START_IN_TOP

in : CU_LIGHT_IN_SU

out : CU_START_OUT_SU

out : CU_MOVER_OUT_MU

out : CU_MOVEL_OUT_MU

%input connections

Link : CU_START_IN_TOP sctrl_start_in@SCtrl

Link : CU_LIGHT_IN_SU sctrl_light_in@SCtrl

%output connections

Link : sctrl_start_out@SCtrl CU_START_OUT_SU

Link : mctrl_moveR_out@MCtrl CU_MOVER_OUT_MU

Link : mctrl_moveL_out@MCtrl CU_MOVEL_OUT_MU

%internal connections

Link : sctrl_mctrl_out@SCtrl mctrl_sctrl_in@MCtrl

%currently unused connection

%Link : mctrl_sctrl_out@MCtrl sctrl_mctrl_in@SCtrl
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[MovementUnit]

components : MotorR@MotorRight MotorL@MotorLeft

in : MU_MOVER_IN_CU

in : MU_MOVEL_IN_CU

out : MU_MOVER_OUT_TOP

out : MU_MOVEL_OUT_TOP

%input connections

Link : MU_MOVER_IN_CU motor_in@MotorR

Link : MU_MOVEL_IN_CU motor_in@MotorL

%output connections

Link : motor_out@MotorR MU_MOVER_OUT_TOP

Link : motor_out@MotorL MU_MOVEL_OUT_TOP

[LS]

lsTxTime : 00:00:00:050

[SCtrl]

scTxTime : 00:00:00:050

scRxPrepTime : 00:00:00:050

[MCtrl]

movePrepTime : 00:00:00:050

turnTime : 00:00:01:000

[MotorR]

movePrepTime : 00:00:00:050

[MotorL]

movePrepTime : 00:00:00:050

Listing 6.1: Line Tracking Robot Model File

The model file describes the structure illustrated in figure 6.2. It starts by spec-

ifying the main components, i.e. the sensor unit, the control unit and the move-

ment unit, described top ports and connections between the components. Each non

atomic component is then described using the same approach. For instance, the

control unit portion specifies the two atomic models components: SCtrl (a sensor

controller instance) and MCtrl (a movement controller instance). Then, the input

(CU START IN TOP and CU LIGHT IN SU) and output (CU MOVEL OUT MU

and CU MOVER OUT MU) ports of the Control Unit are defined. Finally, the input

and output connections between the ports of the Control Unit and those of SCtrl and
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MCtrl are described, as well as the internal connections between SCtrl and MCtrl.

The direction of the connection is read as FROM port → TO port.

To show an example of an atomic model implementation, the following code

describes the transition and output functions of the Sensor Controller. A correspon-

dence can be seen with the state diagram shown earlier in figure 6.3 as well as the

DEVS specification it is derived from. The code snippet first shows a portion of the

external transition function that describes the transition from state WAIT DATA

to either TX DATA or PREP STOP depending on the value (sensor input) of the

incoming signal from the Light Sensor received on port sctrl light in. Lines 18 to

27 show a portion of the internal transition function describing the transition from

TX DATA to WAIT DATA. Finally, lines 29 to 44 show a portion of the output

function’s behaviour at state TX DATA. The output function sets the output signal

(ON TRACK or OFF TRACK) to send to the Movement Controller through the

sctrl mctrl out port.

1 Model &SensorController::externalFunction( const ExternalMessage &msg ) {

2 //...

3 if (msg.port() == sctrl_light_in){ // Light sensor signal received

4 if(state == WAIT_DATA) { // Sensor controller was waiting for data

5 sensor_input= msg.value(); // Get the light sensor input

6 if(sensor_input==ALL_DARK) { // Destination Reached

7 state=PREP_STOP; // Prepare to stop immediately

8 holdIn(Atomic::active,ZERO_TIME );

9 } else { // Robot is not at destination yet

10 state = TX_DATA; // Sensor goes into transmitting state

11 holdIn(Atomic::active, scTxTime );// wait for scTxTime

12 }

13 }

14 }

15 return *this;

16 }

17
18 Model &SensorController::internalFunction( const InternalMessage & ) {

19 switch (state){

20 //...

21 case TX_DATA: // Just transmitted data to movement controller
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22 state = WAIT_DATA; // Wait for new data from the sensor

23 passivate(); // stay in this state until new event

24 break;

25 }

26 return *this;

27 }

28
29 Model &SensorController::outputFunction( const InternalMessage &msg ) {

30 switch (state){

31 //...

32 case TX_DATA: { // In transmitting state

33 int output_val;

34
35 if(sensor_input==DARK) // Light sensor indicates a dark line

36 output_val = ON_TRACK; // Output signal to MCtrl is ON_TRACK

37 else if(sensor_input==BRIGHT)// Light sensor reads a bright surface

38 output_val = OFF_TRACK; // Send off_track signal to MCtrl

39 sendOutput(msg.time(),sctrl_mctrl_out, output_val); // Output to MCtrl

40 break;

41 }

42 };

43 return *this ;

44 }

Listing 6.2: Sensor Controller Implementation Snippet

Once the models have been implemented, CD++ can be used to run different

simulations on the host workstation, and revise the specified models if needed. It is

an iterative and incremental process.

Diverse scenarios can be tested by using event files that injects events through the

input ports of the model. To carry out these experiments, an event file that specifies

the event time, input port and its value is used. Table 6.1 shows the port (input and

output ports) mapping table and the description of each value.
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Table 6.1: Port Mapping

Port Name Port Value Hardware Command Description

START IN
10 START Manual Start Command
11 STOP Manual Stop Command

LIGHT IN
0 BRIGHT No line detected
1 DARK Line detected
2 ALL DARK Destination Reached

MOVER OUT/ MOVEL OUT
0 STOP Stops the motor
1 GO FWD Spins Clockwise
2 GO REV Spins Anticlockwise

An example of events that were injected into the system follows:

00:00:01:000 START_IN 10

00:00:02:000 LIGHT_IN 1

00:00:02:500 LIGHT_IN 0

00:00:02:700 START_IN 11

00:00:03:000 LIGHT_IN 1

00:00:03:500 LIGHT_IN 0

00:00:05:000 START_IN 10

00:00:05:500 LIGHT_IN 0

00:00:06:000 LIGHT_IN 0

00:00:06:500 LIGHT_IN 1

00:00:07:000 LIGHT_IN 1

00:00:07:500 LIGHT_IN 1

00:00:08:000 LIGHT_IN 2

00:00:08:500 LIGHT_IN 1

00:00:09:000 LIGHT_IN 1

00:00:09:300 START_IN 11

Listing 6.3: Event File

After 1s, we start the system by sending an input to the START IN input port.

Then, at 2s, a value of 1, indicating a line detection, is sent through the LIGHT IN

input port. To test situations when the robot gets off-track, a value of 0 is sent

through the LIGHT IN port. Sending 11 through the START IN port then simulates

a manual stop. Different values are sent through the LIGHT IN port to test how the

system behaves in a stop state. Afterwards, the system is started again, and bright

(0), dark (1) and all dark (2) surfaces are alternately sent through the LIGHT IN

port. ALL DARK signals that the robot has reached its destination and acts as an
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automatic stop signal. More values are sent through the LIGHT IN port and finally

a manual stop signal is sent through the START IN port.

The resulting behavior is similar to the one defined in the controller models.

Indeed, when the robot goes off track and does not detect the line, it stops, turns

counter-clockwise slightly, and then tries to detect a trail again. If the line is detected,

the robot will move forward again; otherwise it will continue to turn until it finds a

path to follow. The destination is considered to be a wide dark ground surface. Once

this surface is detected, the robot will stop and go into an idle state.

The following table sums up the results obtained with the previous event file in

CD++:

Table 6.2: CD++ Simulation Results

Input Output Description
1. 00:00:01:000 START IN START - System START - no output

2. 00:00:02:000 LIGHT IN DARK
00:00:02:200 mover out GO FWD Path detected - motors go forward
00:00:02:200 movel out GO FWD

3. 00:00:02:500 LIGHT IN BRIGHT

00:00:02:600 mover out STOP OFF Track signal - motors stop
00:00:02:600 movel out STOP
00:00:02:700 mover out GO FWD Robot Turns motor right forward
00:00:02:700 movel out GO REV and motor left reverse

4. 00:00:02:700 START IN STOP
00:00:02:700 mover out STOP Manual System STOP - Turn interrupted
00:00:02:700 movel out STOP

5. 00:00:03:000 LIGHT IN DARK - Ignored - System STOPPED
6. 00:00:03:500 LIGHT IN BRIGHT - Ignored - System STOPPED
7. 00:00:05:000 START IN START - System START - no output

8. 00:00:05:500 LIGHT IN BRIGHT
00:00:05:700 mover out GO FWD OFF Track signal - Robot Turns
00:00:05:700 movel out GO REV

9. 00:00:06:000 LIGHT IN BRIGHT - Ignored - Still Turning
10. 00:00:06:500 LIGHT IN DARK - Ignored - Still Turning

11. –
00:00:06:650 mover out STOP Turn complete - motors stop
00:00:06:650 movel out STOP

12. 00:00:07:000 LIGHT IN DARK
00:00:07:200 mover out Go FWD Path detected -motors go forward
00:00:07:200 movel out Go FWD

13. 00:00:07:500 LIGHT IN DARK - Redundant - motors still moving forward

14. 00:00:08:000 LIGHT IN ALL DARK
00:00:08:050 mover out STOP Reached Destination - motors stop
00:00:08:050 movel out STOP

15. 00:00:08:500 LIGHT IN DARK - Ignored - STOPPED
16. 00:00:09:000 LIGHT IN DARK - Ignored - STOPPED

17. 00:00:09:300 START IN STOP
00:00:09:300 mover out STOP Manual System STOP
00:00:09:300 movel out STOP

We can observe that the described results correspond to the desired behavior.

The models can then be moved progressively onto the target platform for validation.
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This is done by using E-CD++ that runs on the target platform, provides real-time

advance driven by the wall clock time, and allows inputs and output ports to be

interfaced with real hardware and environment.

6.4 Execution on the target platform with E-

CD++

Transitioning from CD++ to E-CD++ is straightforward. The same model files are

supported and do not need to be modified. There is an extra step required for the

model file, which is the conversion to hexadecimal as described in section 4.2. This

transformation is performed by an internal tool, and it only requires the user to

launch the conversion. We injected the same events as in CD++ and compared the

obtained results. Inputs are shown as well as their corresponding results (in bold).

The format used is <time> <port> <signal value>. Microseconds are shown in the

logs since we used a 32 bit timer that allows such precision. Inputs(numbered lines)

and resulting output(unnumbered lines) are shown below.

1. 00:00:01:000:023 START_IN START

2. 00:00:02:000:030 LIGHT_IN DARK

00:00:02:200:119 mover_out GO_FWD

00:00:02:200:119 movel_out GO_FWD

3. 00:00:02:500:021 LIGHT_IN BRIGHT

00:00:02:600:115 mover_out STOP

00:00:02:600:115 movel_out STOP

00:00:02:700:115 mover_out GO_FWD

00:00:02:700:115 movel_out GO_REV

4. 00:00:02:700:027 START_IN STOP

00:00:02:700:124 mover_out STOP

00:00:02:700:124 movel_out STOP

5. 00:00:03:000:019 LIGHT_IN DARK

6. 00:00:03:500:030 LIGHT_IN BRIGHT

7. 00:00:05:000:027 START_IN START

8. 00:00:05:500:021 LIGHT_IN BRIGHT
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00:00:05:700:115 mover_out GO_FWD

00:00:05:700:115 movel_out GO_REV

9. 00:00:06:000:028 LIGHT_IN BRIGHT

10. 00:00:06:500:022 LIGHT_IN DARK

00:00:06:650:115 mover_out STOP

00:00:06:650:115 movel_out STOP

11. 00:00:07:000:029 LIGHT_IN DARK

00:00:07:200:122 mover_out GO_FWD

00:00:07:200:122 movel_out GO_FWD

12. 00:00:07:500:031 LIGHT_IN DARK

13. 00:00:08:000:020 LIGHT_IN ALL_DARK

00:00:08:050:112 mover_out STOP

00:00:08:050:112 movel_out STOP

14. 00:00:08:500:021 LIGHT_IN DARK

15. 00:00:09:000:028 LIGHT_IN DARK

16. 00:00:09:300:027 START_IN STOP

00:00:09:300:126 mover_out STOP

00:00:09:300:126 movel_out STOP

Listing 6.4: E-CD++ Execution Results

The results of this simulation show real-time logs and are identical within a rea-

son (microseconds differences due to kernel differences and the overhead introduced

by message processing) to the previous CD++ simulation results, as well as the

Xenomai-based E-CD++ version. The target platform was a discovery board in this

case. After validating the model behavior on the board, hardware components can

be incrementally integrated, and driver interfaces provided to map hardware sensors

and actuators to models inputs and outputs.

Simulated components such as the light sensors and motors models are then re-

placed with real hardware; the control unit model being the one to act as the controller

on the target hardware. Three main hardware components are needed for our system:

a button to allow the user to send manual start/stop commands, a light sensor, and

motors.

We use a QTR-1RC reflectance sensor (infrared LED + phototransistor) [112] as

the light sensor, a simple push button and the Parallax robotic shield platform that
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includes two servomotors. For the microcontrollers, both Disco and Nucleo boards

were used for this application.

In order to interface the model with the previous hardware components, top ports

connected to hardware sensors/actuators have to be defined. Recall that ports with

drivers enable communication between the interface between the model and hardware

sensors/actuators. In this application, we defined four ports - START IN, LIGHT IN,

MOVEL OUT and MOVER OUT - respectively connected to a start/stop button, a

light sensor, the left and the right motor. Ports are defined as extensions of a basic

port class, and they provide a pDriver function that interfaces the input/output

message value to a hardware command

The following fragment shows how the START IN port is defined in E-CD++.

The implementation ought to provide a constructor, a pDriver method to interface

with its related hardware component, and finally a set of accepted values as per the

formal specification.

1 class START_IN : public Port

2 {

3 public:

4 START_IN( const std::string &n = "START_IN", const ModelId &id = 1) : Port(n,

id){} //Default constructor

5 bool pDriver(double &value);

6
7 enum InputVal{ // Valid input values

8 START,

9 STOP

10 };

11 };

Listing 6.5: START IN Port Definition

pDriver() is shown below; it reads the state (pressed/not pressed) of a button at-

tached to the pin “PC 13” of the board and returns the appropriate input value. Note

that functions such as read() are provided by the MBED API. The code required in

other cases (e.g. vendor specific peripheral libraries) is much longer and less intuitive.
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1 // Defined previously

2 DigitalIn user_button(PC_13,PullUp); // Creates button object and setup internal

pull up resistor

3 //...

4 bool START_IN::pDriver(Value &value){

5
6 if(user_button.read()){ // Button not pressed (read() returns 1 if not pressed

)

7 return false;

8 }

9 else{

10 if(!isStarted){ // The system is not started yet

11 value = InputVal::START; // 10

12 }

13 else{

14 value = InputVal::STOP; // 11

15 }

16 isStarted = 1^isStarted; // Started status change

17 return true;

18 }

19 }

Listing 6.6: START IN pDriver()

The value returned by pDriver() is then used by the Driver object to construct an

input message sent to the root coordinator as explained in section 4.2.2. Note that

in this case the message is only constructed is a button pressed event is reported, i.e.

pDriver returns true.

The LIGHT IN class declaration is similar to START IN. For the pDriver function,

a value corresponding to the light sensor readings is always returned. This exemplifies

the difference between active and passive devices. The latter usually return true.

1 bool LIGHT_IN::pDriver(Value &value){

2 value = Parallax.lightSensor(D6);

3 return true;

4 }

Listing 6.7: LIGHT IN Port Definition

In this case, the light sensor is attached to the GPIO pin “D6”, the second line calls

a function included in a Parallax library that we developed. This library is reusable
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and provides different methods to get the values of sensors or actuators present on

the Parallax Robot Shield.

MOVEL OUT and MOVER OUT are output ports related to the motors (servo-

motors for the Parallax robotic shield). Their definition is similar to the previous

ports except they take an output value and translate it into a hardware command.

The following snippet shows the MOVEL OUT pDriver function. The right motor

port driver is similar to the left one except it applies to right servomotor.

1 bool MOVEL_OUT::pDriver(Value &value){

2 switch((int) value){

3 case OutputVal::STOP : // 0

4 Parallax.left_servo(0); //Stop the left motor

5 break;

6 case OutputVal::GO_FWD : // 1

7 Parallax.left_servo(20); //FWD the left motor

8 break;

9 case OutputVal::GO_REV : // 2

10 Parallax.left_servo(-20); //REV the left motor

11 break;

12 default:

13 Parallax.stopAll(); //ERROR - Stop both motors

14 break;

15 }

16 return true;

17 }

Listing 6.8: MOVEL OUT pDriver()

Here again, we use a function defined in our Parallax library. A closer look reveals

that this function assigns a specific pulse width to the PWM (Pulse Width Modulated)

port associated to the left servomotor in this case.

1 void ParallaxRobotShield::left_servo(int speed)

2 {

3 if(speed > 0) // Clockwise

4 leftServo.pulsewidth_us(leftCenter - (speed * leftClockwiseOffset));

5 else // Anti-Clockwise

6 leftServo.pulsewidth_us(leftCenter - (speed * leftAntiClockwiseOffset));

7 }

Listing 6.9: ParallaxRobotShield::left servo()
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The offset values are defined during calibration of the servomotors and may vary

from one servomotor to another. “pulsewidth us” is a method provided by MBED

and that applies to pulse width modulated pins. Note that we can also use DEVS to

pass directly a specific pulse width value for a finer actuator control.

The above defined ports are interfaced with the control unit that acts based on

the input values of the button and light sensor, and sends commands to the two

servomotors enabling the robot to move forward, turn or stop.

We recorded the resulting execution on the target platform and the exchanged

messages that show how the real-time executive works during this process. The listing

below shows the messages exchanged between processors, according to the PDEVS

abstract algorithm presented in section 2.4, when the user sends a start command at

time 00:00:28:191:616.

MSG: X / 00:00:28:191:616 / Root(00) / start_in /

10.00000 TO flattop(01)

MSG: * / 00:00:28:191:631 / Root(00) / 0.00000 TO flattop(01)

MSG: X / 00:00:28:191:616 / flattop(01) / sctrl_start_in /

10.00000 TO sctrl(02)

MSG: * / 00:00:28:191:631 / flattop(01) / 0.00000 TO sctrl(02)

MSG: D / 00:00:28:191:631 / sctrl(02) / 00:00:00:500:000 /

0.00000 TO flattop(01)

MSG: D / 00:00:28:191:631 / flattop(01) / 00:00:00:500:000 /

0.00000 TO Root(00)

MSG: @ / 00:00:28:691:631 / Root(00) TO flattop(01)

MSG: @ / 00:00:28:691:631 / flattop(01) TO sctrl(02)

MSG: Y / 00:00:28:691:631 / sctrl(02) / sctrl_start_out /

10.00000 TO flattop(01)

MSG: D / 00:00:28:691:631 / sctrl(02) / ... / 0.00000 TO flattop(01)
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MSG: D / 00:00:28:691:631 / flattop(01) / 00:00:00:000:000 /

0.00000 TO Root(00)

MSG: * / 00:00:28:691:631 / Root(00) / 0.00000 TO flattop(01)

MSG: * / 00:00:28:691:631 / flattop(01) / 0.00000 TO sctrl(02)

MSG: D / 00:00:28:691:631 / sctrl(02) / ... / 0.00000 TO flattop(01)

MSG: D / 00:00:28:691:631 / flattop(01) / ... / 0.00000 TO Root(00)

Listing 6.10: E-CD++ - Execution Messages (Start command)

The root coordinator sends a X message - constructed by the global driver object

upon getting the value returned by the START IN pDriver method - followed by a *

message These two messages are sent to the flat coordinator (see flattop in the trace

log) and then directly sent to the sensor controller atomic model (identified by sctrl

in the trace log ). The sensor controller replies with a done message indicating the

next change time, i.e. scRxPrepTime equals 500 ms in this case. After that time

(internal transition expiration), an @ message is sent to the sctrl atomic model, and

this latter replies with a Y message followed by a done message as directed by the

PDEVS abstract simulation algorithms.

In the same way, upon reading the value of a light sensor, the driver constructs

the resulting input message and the root sends both X and * messages to the flat

coordinator that then sends the messages to the sensor controller. The example below

shows what happens when the line is detected.

1. MSG: X / 00:00:47:218:696 / Root(00) / light_in /

1.00000 TO flattop(01)

2. MSG: * / 00:00:47:218:711 / Root(00) / 0.00000 TO flattop(01)

3. MSG: X / 00:00:47:218:696 / flattop(01) / sctrl_light_in /

1.00000 TO sctrl(02)
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4. MSG: * / 00:00:47:218:711 / flattop(01) / 0.00000 TO sctrl(02)

5. MSG: D / 00:00:47:218:711 / sctrl(02) / 00:00:00:500:000 /

0.00000 TO flattop(01)

6. MSG: D / 00:00:47:218:711 / flattop(01) / 00:00:00:500:000 /

0.00000 TO Root(00)

7. MSG: @ / 00:00:47:718:711 / Root(00) TO flattop(01)

8. MSG: @ / 00:00:47:718:711 / flattop(01) TO sctrl(02)

9. MSG: Y / 00:00:47:718:711 / sctrl(02) / sctrl_mctrl_out /

5.00000 TO flattop(01)

10. MSG: D / 00:00:47:718:711 / sctrl(02) / ... /

0.00000 TO flattop(01)

11. MSG: X / 00:00:47:718:711 / flattop(01) / mctrl_sctrl_in /

5.00000 TO mctrl(03)

12. MSG: D / 00:00:47:718:711 / flattop(01) / 00:00:00:000:000 /

0.00000 TO Root(00)

13. MSG: * / 00:00:47:718:711 / Root(00) / 0.00000 TO flattop(01)

14. MSG: * / 00:00:47:718:711 / flattop(01) / 0.00000 TO sctrl(02)

15. MSG: * / 00:00:47:718:711 / flattop(01) / 0.00000 TO mctrl(03)

16. MSG: D / 00:00:47:718:711 / sctrl(02) / ... /

0.00000 TO flattop(01)

17. MSG: D / 00:00:47:718:711 / mctrl(03) / 00:00:00:500:000 /

0.00000 TO flattop(01)

18. MSG: D / 00:00:47:718:711 / flattop(01) / 00:00:00:500:000 /

0.00000 TO Root(00)

19. MSG: @ / 00:00:48:218:711 / Root(00) TO flattop(01)

20. MSG: @ / 00:00:48:218:711 / flattop(01) TO mctrl(03)

21. MSG: Y / 00:00:48:218:711 / mctrl(03) / mctrl_mover_out /

1.00000 TO flattop(01)
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22. MSG: Y / 00:00:48:218:711 / mctrl(03) / mctrl_movel_out /

1.00000 TO flattop(01)

23. MSG: D / 00:00:48:218:711 / mctrl(03) / ... /

0.00000 TO flattop(01)

24. MSG: Y / 00:00:48:218:711 / flattop(01) / mover_out /

1.00000 TO Root(00)

25. MSG: Y / 00:00:48:218:711 / flattop(01) / movel_out /

1.00000 TO Root(00)

26. MSG: D / 00:00:48:218:711 / flattop(01) / 00:00:00:000:000 /

0.00000 TO Root(00)

27. MSG: * / 00:00:48:218:711 / Root(00) / 0.00000 TO flattop(01)

28. MSG: * / 00:00:48:218:711 / flattop(01) / 0.00000 TO mctrl(03)

29. MSG: D / 00:00:48:218:711 / mctrl(03) / ... /

0.00000 TO flattop(01)

30. MSG: D / 00:00:48:218:711 / flattop(01) / ... /

0.00000 TO Root(00)

Listing 6.11: E-CD++ - Execution Messages(On-track signal)

We can observe that on line 9 an output is generated on the sctrl mctrl out

port, indicating to the movement controller that the robot is on track (5 means

” ON TRACK” in this context). This results in the movement controller sending go

forward outputs to the motors (line 21 and 22). These outputs are then sent to the

root coordinator since they are linked to top output ports. The global driver objects

then interprets the Y messages received on lines 24 and 25 and calls the left and right

motor pDriver methods causing the robot to move forward. The pDriver functions

then call the appropriate MBED function to issue the command.

With the Xenomai-based E-CD++, the Lego’s NXT++ library was used to in-

terface the models with hardware i.e. the light sensor and motors. Through a C++
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API for Lego NXT robot controller, communication can be established over USB and

Bluetooth. However, with this approach, the NXT robot had to be connected to the

PC via a USB cable and DEVS models weren’t compiled to the native NXT byte

code [113].

We deployed the same models on different boards. This time, the native code

was directly downloaded in memory via ST-LINK, an in-circuit programmer for the

STM32 microcontroller families. Models and driver elements were seamlessly inte-

grated and compiled to the native byte code (using the process explained in section

5.2.) resulting in a DEVS-based firmware able to control the peripherals and respond

to diverse external stimuli. The image program is deployed on a Parallax robot shield

and runs without the need of being tethered as in the Lego case. Videos of execution

with the disco (early debug version) [114] and nucleo [115] boards are available. One

of the model weaknesses comes from turning only in the counter-clockwise direction

to detect the path, and can lead the robot to do long turns before getting on track

as showed in [116] and [117].

6.5 Execution on the target platform with E-

CDBoost

We presented in section 4.3 the Embedded CDBoost real-time executive. We will

implement the same line tracking robot application and exemplify the execution pro-

cess with Embedded CDBoost. As with CD++, CDBoost can be used to simulate

models on a workstation with virtual time advance and environment settings. Models

implementation and execution are different from CD++ and E-CD++. We will show

how the execution on the target platform using Embedded CDBoost.

We described in section 4.3.3 the modelling subsystem of Embedded CDBoost.
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The user implements atomic models by extending a basic model class and providing

the state transition and output functions. The code below shows the example of

the sensor controller internal, output and time advance functions using Embedded

CDBoost.

1 void internal() noexcept {

2 switch (_state){

3 case PREP_STOP:

4 _state = IDLE;

5 _next = infinity;

6 break;

7 case PREP_RX:

8 case TX_DATA:

9 _state = WAIT_DATA;

10 _next = infinity;

11 break;

12 }

13 }

14 /**

15 * @brief advance function.

16 * @return Time until next internal event.

17 */

18 TIME advance() const noexcept {

19 return _next;

20 }

21 /**

22 * @brief output function.

23 * @return a bag of output messages depending on the current state

24 */

25 std::vector<MSG> out() const noexcept {

26 //...

27 switch (_state){

28 case PREP_STOP: //Send stop through sctrl_start_out and mctrl

29 _outputMessage1 = MSG(portName[sctrl_start_out], STOP_PROC);

30 _outputMessage2 = MSG(portName[sctrl_mctrl_out], STOP_PROC);

31 return std::vector<MSG>{_outputMessage1, _outputMessage2};

32
33 case PREP_RX: //Send Start through sctrl_start_out

34 _outputMessage1 = MSG(portName[sctrl_start_out], START_PROC);

35 return std::vector<MSG>{_outputMessage1};

36
37 case TX_DATA: { //Send on/off track signals sctrl_mctrl_out

38 int output_val;

39
40 if(sensor_input == DARK) output_val = ON_TRACK;

41 else if(sensor_input == BRIGHT) output_val = OFF_TRACK;

42 _outputMessage1 = MSG(portName[sctrl_mctrl_out], output_val);

43 return std::vector<MSG>{_outputMessage1};
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44 }

45 };

46 return std::vector<MSG>{}; //Default: send empty output

47 }

Listing 6.12: Atomic Model Implementation Snippet

We can see that the implementation provides the state transition and output func-

tions in a concern to preserve the initial DEVS specification during this step. In this

way, it is quite similar to E-CD++ except that the time advance is clearly separated

and defined in an advance function called by the internal execution algorithms as

explained in section 4.3. Note that the message structure is constructed using the

port and the value to be sent. This structure is specific to Embedded CDBoost and

is not available in CDBoost. The TIME parameter returned by the time advance

function is defined using real time units (i.e. hours, minutes, seconds, milliseconds &

microseconds), an addition of Embedded CDBoost too. CDBoost uses integers per

default for time advance.

To implement coupled models, input, internal and output links have to be provided

once all atomic models have been implemented. The following snippet shows how the

control unit coupled model is described in Embedded CDBoost.

1 // Atomic models definition

2 auto sctrl = make_atomic_ptr<SensorController<Time, Message>>();

3 auto mctrl = make_atomic_ptr<MovementController<Time, Message>>();

4 //Coupled model definition

5 shared_ptr<flattened_coupled<Time, Message>> ControlUnit( new flattened_coupled<

Time, Message>{{sctrl,mctrl}, {sctrl}, {{sctrl,mctrl}}, {mctrl}});

Listing 6.13: Models Definition with E-CDBoost

We use the same components names as in E-CD++ for this example. The sensor

controller instance (sctrl at line 2) and movement controller (mctrl at line 3) are

the two components of the control unit. The control unit is created on line 5 by

respectively providing its components ({sctrl,mctrl}), then its EIC (components
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getting signal from hardware components here; sctrl is connected to the light sensor

and push button here), its IC (sctrl is connected to mctrl internally), and finally

its EOC (components sending output signal to hardware: mctrl to the two motors).

One of the advantages of this approach is that no file needs to be embedded onto the

target platform or converted beforehand. It also offers a lightweight mechanism for

specifying links without the need of a complex parser.

To interface models with hardware components, EIC and EOC components are

linked to top ports. Providing port classes’ implementations and connecting them to

the appropriate models achieve this objective.

1 // Input ports

2 auto start = make_port_ptr<START_IN<Time, Message>>();

3 auto light = make_port_ptr<LIGHT_IN<Time, Message>>();

4 // Output ports

5 auto motorleft = make_port_ptr<MOVEL_OUT<Time, Message>>();

6 auto motorright = make_port_ptr<MOVER_OUT<Time, Message>>();

7 // Execution parameter definition

8 erunner<Time, Message> root{ControlUnit, {{start,sctrl},{light,sctrl}} , {{

motorleft,mctrl},{motorright,mctrl}} };//link top ports to EIC and EOC

components

Listing 6.14: Port and eRunner Declaration

Lines 2 and 3 create the two input ports respectively connected to the start button

and the light sensor. Line 5 and 6 show the two output ports linked to the motors.

Links between ports and the model they are connected to are passed along with the

top model to the erunner (defined in section 4.3) that executes models on the target

platform.

Like with E-CD++, different tests can be run with simulated components and

hardware components incrementally added and tested. Once satisfied with the simu-

lation results, real-hardware components and DEVS controller are integrated.

For hardware integration, we use one of the Seeed Shield Bot (described in chapter

5) onboard reflectance sensors as the input for our light readings, a push button on
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the nucleo and the two motors of the Seeed Shield Bot to move the robot.

Top ports connected to hardware sensors/actuators have to be specified to inter-

face the model with the previous hardware components. They enable communication

between the model and hardware sensors/actuators. These ports are specified as

extension of a basic port class. An example with the LIGHT IN port follows.

1 template<class TIME, class MSG>

2 class LIGHT_IN : public port<TIME, MSG>

3 {

4 public:

5 /**

6 * @brief light sensor port class

7 *

8 * @param n Name assigned to the port.

9 * @param polling Polling period associated with the port.

10 */

11 explicit LIGHT_IN(const std::string &n = "light_in", const TIME &polling =

TIME(0,0,0,200)) noexcept : port<TIME, MSG>(n,polling) {}

12 bool pDriver(Value &v) const noexcept;

13 };

Listing 6.15: LIGHT IN Port Definition

The LIGHT IN port is derived from the port class and provides a default polling

time (200 ms here) when interrupts are not used by the user. In its pDriver imple-

mentation (shown below), we call a function of the Seeed Shield Bot MBED library

that returns the value of the onboard sensor used to track the line.

1 template<class TIME, class MSG>

2 bool LIGHT_IN<TIME, MSG>::pDriver(Value &v) const noexcept {

3 v = bot.getCentreSensor();

4 return true;

5 }

Listing 6.16: LIGHT IN pDriver()

Bot is defined during the hardware initialization process and contains the hardware

pins connected to the hardware bot. In this case the centre sensor is connected to

the pin A2.
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1 SeeedStudioShieldBot bot(

2 D8, D9, D11, // Left motor pins

3 D12, D10, D13, // Right motor pins

4 A0, A1, A2, A3, D4 // Sensors pins

5 );

Listing 6.17: Bot Declaration

This shows how easy changing hardware components is easy unlike the previous

case where the hardware components had to be supported by libplayer or provide a

network interface.

In section 4.3, we explained the execution mechanism used by Embedded CD-

Boost. We will illustrate this process using trace logs collected during the execution

of the line tracing robot application. It illustrates the advance simulation/execution()

and collect ouputs() function calls explained earlier in section 4.3. The flattened coor-

dinator forwards the function call to the appropriate simulator which in turns returns

outputs or calls its state transition functions. Two examples similar to the ones we

provided to illustrate the E-CD++ internal execution mechanism are shown below.

DRIVER: INPUT MESSAGE

Time: 00:00:02:517:459

Port: start_in Value : 10

- advance_execution()::flattop

- advance_execution()::sctrl

model->external() model->advance(): 00:00:00:040:000

- collect_outputs()::flattop

- advance_execution()::flattop

- collect_outputs()::sctrl

model->out()

- advance_execution()::sctrl

model->internal() model->advance(): ...

- advance_execution()::mctrl

model->external() model->advance(): ...

DRIVER: INPUT MESSAGE

Time: 00:00:02:600:697

Port: light_in Value : 1

- advance_execution()::flattop

- advance_execution()::sctrl
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model->external() model->advance(): 00:00:00:040:000

- collect_outputs()::flattop

- advance_execution()::flattop

- collect_outputs()::sctrl

model->out()

- advance_execution()::sctrl

model->internal() model->advance(): ...

- advance_execution()::mctrl

model->external() model->advance(): 00:00:00:040:000

- collect_outputs()::flattop

- collect_outputs()::mctrl

model->out()

DRIVER: OUTPUT MESSAGE

Time: 00:00:02:680:850

Port: motor1 Value : 1

DRIVER: OUTPUT MESSAGE

Time: 00:00:02:680:834

Port: motor2 Value : 1

Listing 6.18: Execution with E-CDBoost (Start command)

The listing above shows the sequence that takes place when the user presses for the

first time the start button at time 00:00:02:517:459. The driver constructs an input

message that triggers the call of the external function of the sensor controller model.

An input message indicating a line detection is then sent by the driver and causes

the sensor and movement controller external functions to be called. Two outputs are

generated, commanding the motors to go forward.

The listing below shows the case corresponding to a manual stop that causes stop

commands to be issued to the motors.

DRIVER: INPUT MESSAGE

Time: 00:02:10:403:002

Port: start_in Value : 11

- advance_execution()::flattop

- advance_execution()::sctrl

model->external() model->advance(): 00:00:00:000:000

- collect_outputs()::flattop

- advance_execution()::flattop

- collect_outputs()::sctrl

model->out()
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- advance_execution()::sctrl

model->internal() model->advance(): ...

- advance_execution()::mctrl

model->external() model->advance(): 00:00:00:000:000

- collect_outputs()::flattop

- collect_outputs()::mctrl

model->out()

DRIVER: OUTPUT MESSAGE

Time: 00:02:10:403:559

Port: motor1 Value : 0

DRIVER: OUTPUT MESSAGE

Time: 00:02:10:403:543

Port: motor2 Value : 0

Listing 6.19: Execution with E-CDBoost (Stop command)

Final Deployment

A video showing the result on the target platform is available here [118].

6.6 Metrics Comparison: E-CD++ vs E-CDBoost

Two of the desired outcomes, stated in chapter 3, were the reduction of the kernel

footprint as well as a reduced overhead. We measured these metrics and will present

the assessment results in this section.

In terms of code size, kernel design decisions, such as the inclusion of the nanolib

— an optimized library for microcontrollers —, allowed us to reduced the code size

by more than 50%. We also compared the code size of E-CD++ and Embedded

CDBoost. The latter is smaller. For the line tracking robot application for instance,

the Embedded CDBoost program occupies 131 KB of flash memory and 448 bytes of

data memory while the E-CD++ application takes 240 KB of flash memory and 608

bytes of data memory.

In addition to the footprint evaluation, we compared the overhead introduced

by each type of execution mechanism. Indeed, as outlined in chapter 3, one of the
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goals of introducing Embedded CDBoost was an effective message passing strategy

between model processors that would lead to a decreased overhead. We compared

the performance of both techniques for this line tracking robot application. We

particularly measured the time it takes for an external event to trigger the external

function of a model, i.e. the time it takes from the root to the simulator (EXT:

Root to Simulator in Table 6.3). We also assessed the time it takes from the external

function to return control to the root (EXT: Simulator to Root in Table 6.3). The

other aspect that we examined was the output collection, specifically the time it takes

from the root collect outputs command to the output function call (OUT: Root to

Simulator) and for the outputs to be received by the driver object (OUT: Simulator

to Root). The following table summarizes the results.

Table 6.3: Overhead Evaluation

Embedded CD++ Embedded CDBoost
EXT: Root to Simulator 155 us 53 us
EXT: Simulator to Root 159 us 43 us
OUT: Root to Simulator 68 us 25 us
OUT: Simulator to Root 97 us 31 us

We can observe that the overhead was reduced by more than 60% in all cases. In

order to take the above measurements, we used a software instrumentation method.

For EXT: Root to Simulator for example, we read the value of a hardware timer when

an external event (e.g. new reflected light value) is detected. We then read the value

of the hardware timer when the simulator calls the external function of the model

(e.g. external() of Sensor Controller), deduct the elapsed time in microseconds and

print it using an onboard tracing mechanism, the Serial Wire Viewer more specifically.

Although this latter introduces minimal overhead (≈25us) during the measurement

process and is recommended for software tracing, we are aware that the using software
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instrumentation is not optimal. A hardware instrumentation method (e.g. Toggling

a GPIO pin and using a logic analyzer to measure the elapsed time) would certainly

be less invasive and give measurements that are more accurate. We would expect the

improvements to be in the same proportion in this case too.

Indeed, more messages are exchanged with E-CD++. If we examine more closely

the first case - EXT : Root to Simulator - for example, E-CD++ will first add a

X message and then a * message through the message admin that then processes

them and send them to the flattened coordinator. This latter generated an X and *

message to be sent to the simulator. Upon reception, the simulator calls the external

method as per the abstract algorithm. In Embedded CDBoost, the runner adds the

input message to the inbox of the flattened coordinator, calls the advance simulation()

method, that leads to the simulator advance simulation() call that finally calls the

external function of the concerned model. There is less generated messages in this

case, and less storage/retrieval of message involved. The future event list also appears

to be more effective in the Embedded CDBoost case. For the output related events,

we can observe that the overhead is less since less messages are involved (@ and Y)

and no next event time computation is required.

Another set of tests, not related to this application and that would prove useful,

is the case where multiple events are received in a short period of time. This is

because CDBoost - the non-real time simulation software version - has proved very

effective and achieved results comparable and sometimes better than the fastest DEVS

simulator [9].
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6.7 Moving from one target platform to another:

The MBED advantage

In chapter 3, we also targeted portability and easy porting to new platforms as goals

of this project. Using a wrapper around the MBED library allowed us to cover mul-

tiple microcontrollers and also preserve the integrity of the initial models; only MCU

dependent layers need to be changed when moving from one platform to the other.

We ported the line tracking robot application onto a non-STM microcontroller, the

Freedom FRDM-64K board, to illustrate that the designed solution is MCU vendor

independent and requires minimal porting effort. The element that needs to be up-

dated in this case is mainly the target hardware in the project configuration in order

for the new HAL libraries to be included in the project. If pins use a similar standard

(for instance both follow the Arduino standard), the user application code and drivers

may stay as is. Only recompilation with the new settings will be needed in order to

produce an updated program image compatible with the new platform. We were able

to run the application successfully. The user button in this case was interfaced with

one of the onboard pushbuttons.

Besides porting applications onto new platforms, reusability is also a key aspect.

Sometimes, only a hardware modification is needed. For instance, a distance sensor

can be used instead of a light sensor while preserving the same behavior. In this case,

the robot would turn when an object is close to the distance sensor. In simulation,

the distance sensor may be simulated and if the control unit stays the same, the

models might be deployed as is without any change, only the sensor pDriver method

would need to be adapted. The video in [119] shows the result obtained with the

FRDM-64K and with a distance sensor.
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6.8 Adding Connectivity: An IoT application

New features are constantly in demand for embedded products. Connectivity is par-

ticularly trending and at the core of Internet of Things (IoT). We have extended the

line tracking robot to send a notification to a remote application whenever a road-

block is detected on the path. In order to achieve this, we added an obstacle sensor to

detect the presence of an obstruction on the path, and added a WiFi shield in order

to be able to send notifications to a remote application. The modifications made to

the model hierarchy are shown in figure 6.4. The sensor unit has an additional sensor

and the sensor controller has been wired to the cloud component in order to send

notifications to the cloud.

Figure 6.4: Modified Model Hierarchy Diagram
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This application particularly uses the AT&T IoT cloud services [120], a platform

for connecting devices to the Internet of Things. The data can also be stored using

the M2X AT&T cloud-based data storage service and used to retrieve the time and

location where a barrier was located by the robot. This could namely be used to

alert emergency vehicles that a path is blocked. The sensor controller was modified

to take into account the input of the obstacle of the sensor and to send output to

the cloud application. More specifically, to enable the roadblock alert feature, upon

the reception of an obstacle signal, the sensor controller external function transitions

into a state that causes the output function to send a stop signal to the movement

controller and a barrier notification to the cloud. This latter being connected to the

sensor controller as an output port. In the pDriver method of the “cloud” port, we

send the appropriate command to the AT&T IoT services to update the values and

location. A video is available at [121] for demonstration purposes.



Chapter 7

Conclusion and Future Work

With the tremendous increase of the use of embedded systems and new application

market demands, effective development practices ought to be applied in order to

reduce the productivity gap. Model-based approaches were found to be the most

promising solution to lessen the gap while improving the quality, correctness, and

modularity of systems. We particularly used DEVS — an M&S formalism that has

proven to be successful in real-time and embedded systems modeling — and intro-

duced DEMES to illustrate DEVS-driven development of embedded systems. One

important step of the development cycle is the transition from simulation platform to

execution platform, i.e. from simulated models to executable model, in order to run

models on the target hardware while preserving model continuity.

Using model-driven development for embedded systems is certainly a promising

solution since the complexity and heterogeneity of the system are handled earlier in

the development cycle. DEVS, in particular, with its formal nature and integrated

time concept captures the essential characteristics of embedded systems. In this dis-

sertation, we presented two DEVS-based real-time kernels that allow models to be

executed on a variety of target platforms, and without the need of an operating sys-

tem. Both kernels provide features similar to real-time kernels where formal models

114
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act as system process, and event scheduling based on PDEVS algorithms. The first

kernel allow previous CD++ and E-CD++ models to run on bare-metal and espe-

cially on ARM microcontrollers. The second kernel extends CDBoost with real-time

execution and hardware-in-the-loop capabilities by using physical time in the PDEVS

scheduling algorithm implementation, adding the port and driver concepts to interface

with hardware components. The two kernels particularly differ in the communication

mechanism used between model execution engines. These kernels are particularly

essential since the model-driven development concept is built around transforming a

model of a system into the real thing; and these kernels are what make that process

possible in this context.

In addition to the new bare-metal executives, we presented a hardware abstract

layer built around the MBED API, a vendor-independent library that allows us to

easily run the model execution engines on multiple devices. This hardware abstract

layer provides user-friendly commands to access hardware peripheral components and

enable fast prototyping. There is also a wide community of MBED developers, and

several libraries can be reused for interfacing models with various components. An-

other important aspect is the IoT opportunities that comes with the use of such API.

Indeed, multiple IoT platform providers support MBED and through these services

we are able to easily connect the developed models.

A case study was also presented to provide a practical view of the development

cycle and the usability of the new bare-metal kernels. The line tracking robot was

run on the E-CD++ kernel and using the Embedded CDBoost kernel. Embedded

CDBoost particularly allowed us to have a small footprint and reduce the message

processing overhead by more than 60%. We also showed how porting the application

to a different platform and adding features is easy. In addition, we demonstrated
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connectivity possibilities. This type of connectivity is also central to cyber physi-

cal systems, a rapidly growing field. The cyber physical technology is built on the

embedded systems discipline and integrates computation, networking and physical

processes.

Our work further extends the applicability of model-driven development by provid-

ing OS independent DEVS real-time executives that allow original models deployment

onto multiple target hardware. The resulting DEVS firmware can be deployed onto

multiple platforms. We have also introduced model connection to IoT platform and

opened doors to future applications related to big simulation/data easily in order to

fit the current trends. This latter aspect addresses one of the key issues that prevent

M&S from achieving a wide-scale impact.

In the future we will address various aspects derived from this research. For

instance, performing an exhaustive real-time analysis and measuring the impact of

the peripheral library choice. This might be useful as — although not abstract and

involving knowing the target hardware — snippet libraries might perform faster.

Another interesting path to explore is connecting IoT enabled devices to the M&S

cloud services under development in our lab. This could allow to use simulation

services as well.
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Appendix A

The DEVS Formalism

The DEVS formalism decomposes complex system designs into basic (behavioral)

models called atomic and composite (structural) models called coupled [67]. A coupled

model is composed of a group of atomic and/or coupled models with well-defined

coupling connections between its components.

Atomic Model

In the atomic model, an incoming input event x triggers an external transition δext.

This transition is a function of the current state s, the input event x (set of ports

and values) and elapsed time e since the last transition of the system. Based on the

conditions of x and e, the external transition changes the state of the system to s′.

Inside the system, there could be a time advance timer set to trigger when its value

ta has elapsed since it was reset in the last transition. This trigger simultaneously

causes an internal transition δint and output function λ, both functions of the current

state s. The output function generates an output event y and the internal transition

changes the current system state to a new state s′ as shown in figure A.1.
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Figure A.1: Informal Definition of an Atomic Model.

Coupled Model

The DEVS specification of a coupled model is different from that of an atomic model

as it doesnt define system state transitions or output functions but instead defines the

formal port connections and their directions between the components. The following

figure is a simple example of a coupled model hierarchy:

Figure A.2: Generator-Buffer-Processor Hierarchical DEVS Model.

The Top model is a coupled model made of an atomic model GEN and a coupled

model BUF-PROC, connected via the GEN::out→ BUF-PROC::in connection. BUF-

PROC is connected to the Top model via the BUF-PROC::out→ Top::out connection.

BUF-PROC is also composed of two atomic models BUF and PROC whose ports are

interconnected as shown in the figure above.
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A.1 Formal Specification

A DEVS atomic model is formally defined by:

AM = 〈X, Y, S, δint, δext, λ, ta〉,

Where:

X = (p,v) | p ∈ IPorts, v ∈ Xp is the set of input ports and values;

Y = (p,v) | p ∈ OPorts, v ∈ Yp is the set of output ports and values;

S : is the set of sequential states;

δint: S → S is the internal state transition function;

δext: Q × X → S is the external state transition function, where:

Q = {(s,e) | s ∈ S, 0 < ∈ < ta(s)} is the total state set, e is the time elapsed since

the last state transition;

λ: S → Y is the output function;

ta: S → R+
0,∞ is the time advance function.

A DEVS coupled model is formally defined by:

CM = 〈X, Y,D, {Md|d ∈ D}, EIC,EOC, IC, select〉

Where:

X = {(p,v) | p ∈ IPorts, v ∈ Xp} is the set of input events, where IPorts represents

the set of input ports and Xp represents the set of values for the input ports;

Y = {(p,v) | p ∈ OPorts, v ∈ Yp} is the set of output events, where OPorts

represents the set of output ports and Yp represents the set of values for the output

ports;

D is the set of the component names and for each d ∈ D;
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Md is a DEVS basic (i.e., atomic or coupled) model;

EIC is the set of external input couplings, EIC ⊆ {((Self, inSelf), (j, inj)) | inSelf

∈ IPorts, j ∈ D, inj ∈ Iportsj};

EOC is the set of external output couplings, EOC ⊆ {((i,outi),(Self,outSelf)) |

outSelf ∈ OPorts, i ∈ D,outi ∈ OPortsi};

IC is the set of internal couplings, IC ⊆ {((i,outi), (j,inj) ) | i,j ∈ D, outi ∈ OPortsi

, inj ∈ IPortsj};

select is the tiebreaker function, where select ⊆ D → D, such that, for any

nonempty subset E, select (E) ∈ E.



Appendix B

Development boards and Software

Development Flow

Three types of boards were used to develop DEVS bare-metal applications: The

MCSTM32F200 Evaluation Board [122], the STM32F429 Discovery Board [123] and

the Nucleo-F411RE Board [124]. We will respectively refer to them as the Eval board,

the Disco board and the Nucleo board for reasons of brevity.

B.1 Development Boards

B.1.1 KEIL’s MCSTM32F200 Evaluation Board

KEIL [125] designs and manufactures evaluation boards to help evaluate a new MCU

architecture. The MCSTM32F200, show in figure 3, has a 120MHz STM32F207IG

[126] ARM Cortex-M3 processor-based MCU. This board also comes with on-chip

memory (1MB Flash and 128KB RAM) and external memory (namely 2MB SRAM,

8MB NOR Flash and 8KB I2C EEPROM).

Other features include a 2.4-inch color LCD touchscreen, 10//100 Ethernet Port,
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two USB 2.0 (Full and high speed) ports, a serial/UART port, a MicroSD Card Inter-

face, a 5-position joystick, a 3-axis digital accelerometer, a 3-axis digital gyroscope,

a potentiometer, an audio CODEC with line-in/out and speaker/microphone, a digi-

tal microphone, a digital VGA camera, pushbuttons, LEDs, power supply jacks, and

debug interface connectors.

B.1.2 STM32F429 Discovery Board

The disco board has a 180 MHz STM32F429ZIT6 MCU (with a Cortex-M4 pro-

cessor, 2MB of Flash, 256KB of RAM) [127], includes an embedded debug tool, a

2.4-inch LCD, 64MB external SDRAM, a gyroscope, a USB micro connector, LEDs

and pushbuttons.

B.1.3 NUCLEO-F411RE Board

This Nucleo board has a STM32F411RET6 MCU (with a 100 MHz ARM Cortex-

M4 CPU, 512KB of flash and 128KB of RAM) [128]. This board particularly offers

Arduino connectivity (makes it possible to use existing Arduino shields) and ST

Morpho connectors. It is also MBED enabled [129], i.e. implements the MBED HDK,

has an on-board debugger/programmer, LEDs, pushbuttons, and USB capabilities

with three different interfaces (Virtual COM port, Mass Storage and Debug Port).

Shields used with the Nucleo Board

We have used some Arduino compatible shields and connected them to/plugged the

Nucleo: the Parallax Robotic Shield and the Seeed Studio Shield. These shields

comes with onboard sensors (such as infrared sensors for the Seeed shield bot and

touch sensors for the Parallax robotic shield), motors and offer a mobile platform
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that makes robotic development easy. The Nucleo board acts as the brain and sends

different commands to the shields components in order to get sensor values or send

actuators commands.

B.2 Embedded Software Development

Developing software for the previous boards requires several steps. Figure B.1 [99]

shows a simplified development flow. A new project is created in an IDE (Eclipse in

our case), and then driver libraries from the MCU vendor, application code (DEVS

models and real-time executive in our case) and optional middleware (e.g. RTOS)

files are added to the project. Diverse project options can be setup (e.g. debug mode

activation, compiler optimization,. . . ). Then, all the source code is compiled, linked,

and then the program image is uploaded to the flash memory if the build is successful.

Figure B.1: Simplified Software Development Flow
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The program behavior is then observed to see if it corresponds to the expected

response. If debug is required, a debug adapter can be used and debugging operations

(e.g. software tracing, stepping through code . . . ) performed. When no real hardware

is available, the executable image can be tested by simulation using an instruction set

simulator. We have integrated QEMU to our Eclipse IDE to provide this capability.



Appendix C

Formal Specification of the Case Study

We will show in this appendix the control unit coupled model and the sensor controller

atomic model formal specification.

C.1 Example of a CM formal specification - The

Control Unit

As mentioned earlier, the control unit has two atomic models, the sensor and move-

ment controllers. The control unit can be formally defined as (see section 2.3 for

details):

CM = 〈X, Y,D, {Md}, EIC,EOC, IC〉,

Where

X={(CU START IN TOP,N);(CU LIGHT IN SU,N)}

Y={(CU START OUT SU,N);(CU MOVEL OUT MU,N);(CU MOVER OUT MU,N)}

D={Sensor Controller,Movement Controller}

Md={M(Sensor Controller), M(Movement Controller)}
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EIC={((Self,CU START IN TOP),(Sensor Controller,sctrl start in));

((Self,CU LIGHT IN SU),(Sensor Controller,sctrl light in))}

EOC={((Sensor Controller,sctrl start out),(Self,CU START OUT SU));

((Movement Controller,mctrl movel out),(Self,CU MOVEL OUT MU));

((Movement Controller, mctrl mover out),(Self,CU MOVER OUT MU))}

IC={(Sensor Controller,sctrl mctrl out);(Movement Controller,mctrl sctrl in)}

In the above specification, X represents the set of input events (N being the set of

port values); Y the set of output events; D the component name of each model; Md

the DEVS basic (atomic or couple) model; and finally EIC(external input coupling),

EOC (external output coupling), and IC (internal couplings) describe the port links

between models.

C.2 Example of an AM formal specification - The

Sensor Controller

The DEVS formal specification of the Sensor Controller model is as follows and

shows how atomic models are formally specified:

M = 〈X,S, Y, δext, δint, δconf , λ, ta〉,

Where

X:{(sctrl light in,{BRIGHT,DARK,ALL DARK});

(sctrl start in,{START PROC,STOP PROC});(sctrl mctrl in, {})}

S:{“IDLE”, “PREP RX”, “WAIT DATA”, “TX DATA”, “PREP STOP”}

Y:{(sctrl mctrl out,{ON TRACK, OFF TRACK,STOP PROC});

(sctrl start out,{START PROC, STOP PROC})}
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δint(s) {

i f (x. port() == sctrl start in ){ // A user command is received
i f ( state == IDLE && x. value()== STARTPROC){

state = PREPRX; ta(state)= scRxPrepTime;
}
else i f (x. value()== STOPPROC) {

state = PREPSTOP; ta(state)= ZEROTIME;
}

}
else i f (x. port() == sctrl l ight in ){ // Reading from sensor

i f ( state == WAITDATA) { // Waiting for sensor data
sensor input = x. value () ;
i f (sensor input == ALLDARK) {// Destination

state = PREPSTOP; ta(state)= ZEROTIME;
}else {

state = TXDATA; ta(state)= scTxTime;
}

}

}

δconf (s,e,x){

δint(s ) ;
e = 0;
δext(s , e ,x) ;

}

λ(s) {

switch (s){
case PREPSTOP:

sendOutput(time , sctrl start out , STOPPROC) ;
sendOutput(time , sctrl mctrl out , STOPPROC) ;

case PREPRX:
sendOutput(time , sctrl start out , STARTPROC)

case TXDATA: {
int output val ;
i f (sensor input ==DARK)

output val = ONTRACK;
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else i f (sensor input == BRIGHT)
output val = OFFTRACK;

sendOutput( time , sctrl mctrl out , output val) ;
}

}

ta: S → R+
0,∞ has been defined in the pseudocode above.
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