










led to its use in the NASA Sensor Web, which consoli-

dates web sensor data for the purposes of disaster manage-

ment.25 Similar differences in sensor types led to its being

used in other web sensor networks.26 Another example of

using REST in the collection of data from multiple sources

is in the construction of a map mashup, where a RESTful

service provides railway data that is combined with map

data to provide geographic context to users interested in

railway information.27 The simplicity of the REST inter-

face compared to the traditional SOAP (Simple Object

Access Protocol) interface has led to efforts to access cur-

rent services via a simpler interface, for developing a

semantic web.28 SOAP allows users to build complex

applications providing interoperability under various mid-

dleware. Combining SOAP with WSDL (Web Services

Description Language) and XML Schema allows defining

advanced services on the web. XML provides a standard

mechanism for defining these services. Nevertheless, Web

Services definition through SOAP is more complex to

interoperate with simulation purposes. RESTful techniques

are also being used as part of efforts to develop mashups

of existing services, as described by Tosic and Manic,29

Pan and Liang30 and Bo et al.31

RISE9 follows these ideas, providing a framework for

executing distributed simulations, and it has been thor-

oughly tested for DEVS. It provides a RESTful interface

that allows the creation, execution and examination of

simulations. Currently the RISE server supports Parallel

DEVS and Cellular DEVS. RISE is built as a RESTful

web services server with namespaces, arranged in a hierar-

chy. The root of the server is accessed via the URI as

<machine-URI> /cdpp/sim/workspaces. Under this level,

workspaces are created for individual users. Under the user

workspace, further workspaces may be created for each

type of DEVS model. Models are executed by POSTing

them to the RISE system under an appropriate name-

space.32 RISE allows users to execute simulations across a

web interface, making them accessible from any location.

This principle has led to the development of support for

running simulations in the cloud, including a proposed

software architecture for use by emergency crews.33

3 Architecture for a distributed simulation
using the RESTful Interoperability
Simulation Environment and Coalition
Battle Management Language

In this section, we present our architecture, which allows

DEVS models to participate with other simulation systems

to create a larger synthetic environment. In such an envi-

ronment, the DEVS models would manage the behavior of

simulated entities, or provide information that affects the

behavior of entities managed by other simulations. In order

for this to happen, two basic capabilities are required:

• an environment where the DEVS model can exe-

cute; and
• the ability to communicate with other simulations

in the synthetic environment.

The first capability is provided by the RISE server. What

is required is the ability to interact with other simulations:

receive output from these simulations as input to the

DEVS model, process the input, possibly using local state

information, and then share the output from the DEVS

model with the other simulation(s).

We propose a way to achieve the second capability by

defining a new service: the DEVS Bridge, which acts as

an adapter, allowing the DEVS model on the RISE server

to connect to the larger environment and react to events

that occur in that environment. The responsibilities of the

DEVS Bridge are:

1. subscribe to messages being published by the other

simulations in the environment;

2. translate these messages into a format native to the

DEVS model;

3. trigger the DEVS model to process the input;

4. collect the output from the DEVS model;

5. translate the output from the DEVS model to the

format being used in the larger environment; and

6. maintain any state data required by the DEVS

model between executions, for example current

location of simulated entities.

The proposed architecture is shown in Figure 2. For the

sake of simplicity, the workspaces on the RISE server are

not shown.

The use of the DEVS Bridge allows the DEVS models

to remain agnostic as to the format being used for simula-

tion interoperability. For example, the DEVS Bridge could

implement a federate using HLA to communicate with

Figure 2. Architecture overview.
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other federates, or could subscribe to an operational data-

base using the JC3IEDM schema, receiving notifications

of new information and publishing the results of the

DEVS model execution to the database. For the purposes

of this research it is assumed that the synthetic environ-

ment is one in which communication is performed by pub-

lishing C-BML messages. The DEVS Bridge built for this

research is designed to receive information as XML-for-

matted messages that are to be parsed, translated and pre-

sented to the DEVS model as input.

In addition to its responsibilities during the execution of

the scenario, the DEVS Bridge also has responsibilities

related to the setup of the scenario prior to execution. It

must participate in any system-wide initialization, includ-

ing loading data related to the simulated environment, such

as locations of interest in the scenario or weather condi-

tions. It must also load initial status information related to

the simulated entities, such as their locations, equipment

holdings and reporting structure.

The DEVS models hosted on the RISE server can simu-

late a wide range of scenarios. Using the receipt of data

from the external simulations as an event to trigger

execution, the DEVS model can calculate the response of

an automated robot to the commander’s instructions, or

calculate the movement of fire across an area in response

to changes in the environment (such as the presence of fire

fighters or water bombers being simulated by another

system).

Communications between the components in the archi-

tecture during a possible scenario are shown in the

sequence diagram in Figure 3. The diagram assumes that

the scenario is being controlled by one of the external

simulations.

The figure shows messaging between the major compo-

nents in the architecture in a typical scenario.

• The external simulation that is functioning as the

simulation controller sends out an Initialize

Scenario message, which includes any initialization

data required by all of the simulations participating

in the scenario.
• The DEVS Bridge receives this data, and loads any

additional data it requires. It also initializes the

DEVS model on the RISE server.

Figure 3. Messaging between components at the architectural level.
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• The external simulation sends a message indicating

the start of the scenario.
• As the scenario progresses, the simulation control-

ler sends a C-BML Order intended for the entities

managed by the DEVS model. The DEVS Bridge

detects/receives notification of the order.
• The DEVS Bridge parses the C-BML Order into

the native format of the DEVS model.
• The DEVS Bridge supplies the Order to the DEVS

model on the RISE server.
• The DEVS Bridge triggers the execution of the

DEVS model.
• The DEVS model calculates and outputs the

response of its managed entities to the received

order.
• The DEVS Bridge retrieves the results of the DEVS

model execution.
• The DEVS Bridge maps the DEVS model output

into a C-BML report.
• The DEVS Bridge publishes the DEVS model out-

put in C-BML format.

The remaining parts of this section discuss the DEVS

Bridge design and capabilities in more detail.

3.1 DEVS Bridge capability overview

In addition to the capabilities required for coordinating

messages between the external simulation and the DEVS

model, the DEVS Bridge has a number of other responsi-

bilities that are required to implement the architecture,

which are required in order to ensure the smooth operation

of the DEVS model during the simulation.

The execution of a model on RISE runs from a given

simulated start time to an end state, which provides infor-

mation to the larger simulation about the entities modeled

by the DEVS model. In response to this information, the

entities in the larger simulation may take specific actions,

resulting in the need to execute the DEVS model again to

determine the new behavior of its modeled entities.

Between these two executions of the DEVS model, the

state information describing the entities modeled by the

DEVS model needs to be preserved so that it can be pro-

vided as input to the next execution of the DEVS model.

For this reason, the DEVS Bridge needs to be able to man-

age the state information for the entities of the DEVS

model, and the DEVS Bridge must have its own copy of

the data model used by the DEVS model. When the sce-

nario starts, the DEVS Bridge needs to load the model and

the initial state information (e.g., number of units, loca-

tions of units and their initial equipment holdings), loca-

tions of interest that may be referenced during the

scenario, environmental factors of interest (e.g., weather

conditions), etc. As messages are received from the

external simulation, the DEVS Bridge must map the

reports and requests to entities in its data model. This is

partly to determine if the message applies to its internal

model (in the case where reports are broadcast to all simu-

lations in the synthetic environment) rather than targeted

only to simulations that have subscribed to notification. It

is also done so that the DEVS Bridge can determine which

of the many entities it manages need to be updated or

referenced in the data generated for input to the DEVS

model.

When the Bridge determines that it has received a mes-

sage pertaining to the entities managed by the model, it

needs to generate all required inputs. This includes format-

ting state information messages so that all of the atomic

models are initialized properly prior to processing the

received message from the external simulation. This state

information is created based on the current state of the

data model held by the Bridge. After the model has exe-

cuted, the Bridge must update its internal representation of

the data model state, and then use this information to gen-

erate the response to the original message from the exter-

nal simulation.

RISE provides an environment for creating a work-

space for a DEVS model and executing it. However, this

model must reside on the server before it can be executed.

The location of the model must be known to the Bridge.

Therefore, the Bridge has the capability to create the

workspace on RISE, post the model to the server and get

the execution results. All general maintenance operations

required to manage a model on RISE are built into the

DEVS Bridge, including the ability to delete the model

once the simulation is complete. General environmental

setup and clean-up abilities are requirements of many

simulation systems.33

3.2 DEVS Bridge design

The DEVS Bridge was designed with a number of capabil-

ities that are required to execute a scenario. These include

model creation, message set management and state man-

agement. The Message Set editor displays the list of mes-

sages to be executed in the scenario, in the order in which

they are executed. The Message Properties editor allows

the user to create new messages or edit existing ones.

A Message Set object contains the set of message

objects for the scenario. The entire Message Set can be

converted to XML in order to be saved to file. The XML

file can later be converted to objects for use by the DEVS

Bridge. Saving the Message Set to a file allows the same

scenario to be executed without having to recreate it each

time. During execution of the scenario, the Bridge steps

through the Message Set in order. The current message is

serialized in the format used by the DEVS model and used

as input to the model for the current execution of the
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model. Once the model has returned the results from pro-

cessing the message, the DEVS Bridge advances the cur-

rent message reference to the next message in the list.

In addition to a set of messages, the DEVS Bridge

requires a set of resources in order to execute a scenario.

The Bridge was designed with the capability to manage

the resource set. Before the scenario can start, the Bridge

must have loaded a set of resources, which consist of a list

of locations and units that are relevant to the scenario

being executed. If a resource set has been created previ-

ously, it may be loaded from file. If not, the resource set

may be created. The resource set must be created before

the message set for a scenario, as the message set uses the

unique IDs of the locations in the resource set in the mes-

sages. A resource set can be re-used by multiple scenarios,

but a scenario can only be used with a particular resource

set. However, the resource set and message set need not

be loaded into the DEVS Bridge in any particular order.

The Resource Set editor displays the list of Locations

and Units. The Location Editor and Unit Editor allow the

creation of new items or the editing of existing items.

Because Units have locations, the Unit Editor displays a

list of all currently defined Locations. The selected loca-

tion becomes the Location of that unit at the beginning of

the scenario. As the scenario progresses the location of the

unit is updated based on the output from the DEVS model.

Once the DEVS model has completed processing, the

DEVS Bridge parses the output and uses it to update its

local copy of the Resource Set. This involves updating the

current task and current location of the units.

3.3 Use of C-BML messaging specification

The C-BML specification was developed to work as part

of a larger synthetic environment where messaging

between simulations is done via a message format defined

using C-BML. As described earlier, C-BML was devel-

oped based on the JC3IEDM, a logical data model for use

between different NATO countries. The model was devel-

oped with the aim of unambiguously conveying informa-

tion required for planning and reporting on the operation

of military organizations. It therefore contains elements

designed to convey information about troops, equipment,

terrain, installations and weather conditions. Specifying

information about a single unit requires specifying sepa-

rate entities for the location of the unit, the type of the unit

and the time at which the unit is scheduled to perform an

action. Any equipment held by the unit, such as vehicles,

weapons and munitions, also requires separate entities.

The specification also defines all possible values for the

attributes of all entities. The entities are tied together with

unique identifiers for the entities.

All of this information is required to convey informa-

tion unambiguously. However, parsing this information is

not a trivial task. It has been noted in early experiments

with the C-BML standard that parsing information requires

multiple passes in order to be understood.13 However, the

goal of this research is to present an architecture for mak-

ing DEVS models interoperable. The work required to

properly parse and create fully compliant C-BML mes-

sages is not among the stated goals. Since the DEVS

Bridge is built using standard Web-enabled technologies,

it is assumed for the purposes of this research that the

DEVS Bridge can be extended to process C-BML mes-

sages. Therefore, full C-BML messages will not be used,

either as input to the DEVS Bridge or as the input pro-

vided by the Bridge to the DEVS model.

Because of the complexity of using C-BML-compliant

messages, a simplified message schema was developed.

The message schema supports the entities and messages

defined for emergency services. The DEVS model repre-

sents emergency service units and a dispatch model that

tasks the units. The units are dispatched based on emer-

gencies that are modeled by the external simulation. The

external simulation supplies reports of events to the DEVS

model, which then responds by calculating the behavior of

its entities. The reports need to include two of the five Ws:

what and where. The format for reports must therefore

specify Action Events (what) and Locations (where). The

who is not significant for reporting an event. The when is

considered the start time of the scenario. Therefore, the

report schema need only describe the what and where.

3.4 Use of MSDL model state information
specification

C-BML is used to define messages sent between simula-

tions working together in a larger simulation, to exchange

information about entities involved in the simulation.

However, the exchange of messages is only meaningful if all

of the simulations start with the same information about the

entities. To achieve this, the MSDL was defined. The MSDL

schema is similar to the C-BML schema. All elements are

identified by a Universally Unique Identifier (UUID), similar

to the Object Identifier (OID) defined by C-BML.

The MSDL has a root element, Military Scenario. All

elements required to define the scenario are defined under

this element, grouped according to types. An MSDL file

defines the Environment, including key locations, terrain

and weather. It defines the people and organizations

involved in the scenario, including organizations and force

sides. It defines logical overlays used to group intelligence

elements in the scenario. The MSDL specification is

designed to allow the definition of a large scenario with

many entities. However, the case study selected for this

experiment occurs on a much smaller scale with a small

number of entities. For this reason, the full MSDL schema

is not required.
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Rather than defining a full-blown scenario, the custom

schema defines a set of resources required for the scenario.

The resource set contains two types of data: Locations and

Units. The Locations are defined as part of the resources.

This allows them to be referenced by their unique identi-

fier in messages. Units are defined using the Location

identifiers.

3.5 Data Model

The Data Model represents both the Resource Set and the

Message Set used in the simulation. The same model must

be used by both the DEVS Bridge and the DEVS model.

This section discusses the Data Model that was used in the

simulation used to validate the proposed architecture. The

Data Model consists of three classes: Locations, Units and

Report Messages.

The Location class describes locations of interest in the

scenario. It is a simplified version of the Location class

defined in C-BML. C-BML defines a number of sub-types

of locations, including Points, Ellipses, Fan Areas, etc. For

this simulation, a location is defined as a Point, with coor-

dinates given as (latitude, longitude) rather than in Military

Grid Reference System (MGRS) format. The Locations

defined in the Resource Set represent locations of interest

in the scenario. These locations include the initial locations

of the Units in the scenario, and the locations where the

events take place in the scenario. All Locations that are

required in the scenario are defined in the Scenario

Definition files that are loaded during the initialization of

the scenario.

The Unit Class describes entities that participate in a

scenario. It is a simplified version of the Unit-Object-Item

defined by C-BML.

The Unit Type field replaces the Unit-Object-Type

defined by C-BML. For the purposes of validating the

architecture, detailed object type information is not

required.

The DEVS model represents Units as atomic models.

Each time the DEVS model executes, it calculates the

following:

• a new Action Task for the Unit to execute;
• a new Location for the Unit; and
• the time it will take the Unit to reach that Location.

Since this calculation may depend on the previous Action

Task and Location of the Unit, the previous values are

loaded into the atomic models during the initialization of

the DEVS model prior to its execution. The newly calcu-

lated values are produced as output from the DEVS model

and parsed by the DEVS Bridge. The DEVS Bridge

updates its internal Data Model with this value. The next

time the DEVS model must be executed, the DEVS

Bridge uses its internal Data Model to generate the initial

Scenario Description file for the DEVS model.

Report Messages represent the messages in the script

run by the DEVS Bridge. They are simplified versions of

the C-BML Report message. Messages have two functions

in the execution of a scenario: they deliver new informa-

tion, such as an Action Event or an Order, and they trigger

the execution of the DEVS model to determine the

response of its simulated entities. The attributes of Report

Messages are as follows:

• Report ID – unique identifier for the Report Message;
• Action Event – a value from the set of valid Action

Events for the model;
• Location – unique ID of the Location at which the

Action Event takes place.

The DEVS model Location class calculates the time

required to move from one location to another. Since the

scenario being implemented is a simplified scenario, the

time calculation is also simplified. The distance is calcu-

lated assuming a Manhattan layout of a city, with the two

locations forming diagonally opposite corners of a box.

The distance is multiplied by speed, which is passed into

the location for the purpose of calculation. The speed is an

attribute of the Unit that requests the calculation. This

attribute is unique to the DEVS model implementation of

the Unit model.

4 Implementing the architecture—
Discrete Event System Specification
Bridge and Discrete Event System
Specification model

The DEVS Bridge was implemented to validate the pro-

posed architecture for adding a simulation interoperability

interface to models on the DEVS server. The DEVS

Bridge was implemented as a stand-alone application that

uses HTTP to communicate with other systems. It imple-

ments the scripting capability described earlier, along with

an interface that can be used to execute the messages in

the script. It implements the capability to create the files

needed to post a DEVS model to the RISE server, and the

capability to post and execute the model. It implements

the capability to maintain the current state of the modeled

entities and generate the Report messages and state infor-

mation required by the DEVS model to execute. The fol-

lowing sections discuss the implementation in more detail.

The capabilities of the DEVS Bridge are organized into

components. The components are as follows:

• the DEVS Bridge main component – implements

the majority of the capabilities, as described below;
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• the Model Information component – implements

the capabilities related to defining the DEVS model

on the RISE server and preparing the model files

for posting on the RISE server;
• the Message Set component – implements the cap-

abilities for defining the script to be executed; and
• the Resources Set window – implements the cap-

abilities for defining the set of simulated entities

and other resources, such as locations, that are rele-

vant to the simulation to be executed.

The DEVS Bridge component has the following

capabilities:

1. loading the Message and Resource Set files

required for the scenario;

2. maintaining the current state of the entities in the

scenario (units, locations) between executing mes-

sages in the scenario;

3. generating the Report Message in the DEVS-native

format;

4. generating the current model state description in

the DEVS-native format;

5. interacting with the RISE server to post and exe-

cute the DEVS model;

6. stepping through the set of messages to execute the

scenario; and

7. displaying status information and response data

from messages sent to the RISE server.

The Message Set and Resource Set are maintained in

memory by the DEVS Bridge during the execution of the

scenario. These classes implement the Data Model for the

system being simulated. In addition to the classes that

implement this model, there are also classes that group the

resources and format messages to send to the RISE server.

When the DEVS model runs, it requires two sources of

input: the Report Message and the current state descrip-

tion. The Report Message is generated by the DEVS

Bridge based on the current message in the script. The

state description of the atomic models is generated from

the data model currently held by the DEVS Bridge.

4.1 DEVS model discussion

The DEVS Bridge provides the link between the external

simulations and the RISE server. However, in order for a

DEVS model to be leveraged by the DEVS Bridge it must

meet a number of criteria:

1. it must define an atomic model that functions as a

Gateway;

2. all atomic models must load their initial state data

as part of their initialization function;

3. unless the DEVS model type is real-time DEVS,

the model as whole must perform as a calculation

engine, rather than an end-to-end simulator.

The DEVS Bridge acts as an interpreter between the rest

of the synthetic environment and the DEVS model. It

parses incoming C-BML messages and maps them into a

format that is easier to parse by the DEVS model.

However, this format represents another coupling between

the DEVS model and the DEVS Bridge. Any of the atomic

models that require the information in the incoming

Report Message must be able to understand the format

being used. Any changes to this format require corre-

sponding changes to the atomic models, thus increasing

maintenance efforts. During the preparation phase of an

exercise using C-BML the message format, details may

change as the requirements are finalized.34 Changes in the

details of the external messages may require changes to

the format of the messages recognized by the DEVS

model. Reducing the number of atomic models that parse

the DEVS model Report Message formats reduces mainte-

nance required.

MSDL, the scenario description language, and the cus-

tom state description language used by the DEVS model

are based on the messaging schemas used in the synthetic

environment. They also may be affected by changes to the

official schema descriptions for the simulation as the

descriptions evolve. Again, maintenance of the DEVS

model is improved if the atomic models do not need to be

able to parse these messages.

For these reasons, the first guideline for developing

DEVS models is that it must contain an atomic model that

performs a Gateway function. This class has three main

responsibilities.

1. Parse the state description information and save it

in objects representing the data model that are

available to all atomic models.

2. Parse the Report Message. The contents of the

message may be stored in the data model objects

or mapped to an event that can be used to trigger

the start of processing of the DEVS model.

3. Start the simulation by sending the first event to

another model.

The Gateway must parse the Report Message and initial

state description information so that the other atomic mod-

els can use the data without having to parse it first. This

mapping must be completed before the DEVS model

begins processing. Once parsed in, the data must be saved

in objects that implement the data model. It may be stored

as static variables on the Gateway class, or as external

variables. Another method may be to have the scenario

start with the Gateway class sending events to the
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individual atomic models in the scenario containing the

initial data for the model.

All initialization of the data model must be complete

before the individual atomic models initialize, so that the

data is available to the atomic models. After all of the

atomic models are initialized, the Gateway can start the

execution of the model by sending an event representing

the receipt of the Report Message to a top-level model.

Once this is complete, the Gateway model should not par-

ticipate any further in the execution of the scenario, unless

it is to supply data model data to a processing atomic

model. The exception to this may be if the data model

objects are attributes of the Gateway model. The data

model details will depend on the scenario being modeled.

However, some general guidelines must be followed.

The initialization of the atomic models must be done

before the models begin processing the Report Message,

but after the Gateway has parsed in the initial state

description. This may require coordination between the

models to ensure the timing. One possible technique is to

have the Gateway perform its work during initialization,

and then have the atomic models schedule internal transi-

tions two or three milliseconds into the scenario. The

atomic models then perform their initialization during the

internal transition.

The DEVS model in the proposed architecture is being

used to calculate the next state of simulated entities.

Normally the DEVS model would simulate the behavior

of the simulation entities from the start of the scenario all

the way through to the end of the scenario. However, for

this scenario, the model needs to be designed so that it

only simulates the behavior of the entities one step at a

time, where one step is the behavior of the entities from

the receipt of a message from an external simulation until

the entities will make no further state changes without

receiving another external message.

The DEVS models must also output any information

about the new state of the simulated entities that needs to

be sent to the external simulation(s). As an example, con-

sider a scenario where the DEVS model simulates a ware-

house with inventory and entities A, B and C, which

represent delivery trucks. The larger synthetic environ-

ment represents a factory that uses just-in-time delivery of

resources in the manufacture of cars. The factory is mod-

eled by another simulation system, which also controls the

execution of the simulation. When the factory requires

parts held in the warehouse modeled by the DEVS model,

it sends a request. The DEVS model receives the request,

determines whether it has enough parts to fill the order,

and then assigns a truck to deliver the parts. The truck to

perform the delivery is selected based on the current loca-

tions of the trucks when the request is received. The input

to the DEVS model is the location of the trucks when the

order is received, the current inventory of the warehouse

and the request message. The output from the DEVS

model is the truck that services the request, and the time at

which the truck will arrive at the factory. The truck ID

and time must be output from the DEVS model so that it

can be parsed by the DEVS Bridge and supplied to the

factory simulation.

5 Case study—emergency services
dispatch

For the purposes of validating the architecture, a DEVS

model was required. The selected scenario models the C2

of emergency services. As discussed earlier, civilian emer-

gency agencies are looking at planning their response to

large-scale situations, such as fires, floods, accidents and

terrorist activities, such as bombings. In some of these sce-

narios, such as natural disasters or bombings, civilian agen-

cies may need to interact with military organizations for

the sake of additional manpower or the specialized skills

of the military.

In order to perform joint planning exercises, civilian

agencies need to be able to model their resources, as well

as their capacity to respond to emergencies. Civilian agen-

cies operate in response to reports of an emergency event

that is not planned ahead of time. Those in command of

the agency may decide to dispatch additional resources as

the situation continues or escalates, or recall trucks or units

as the situation comes under control. This event-response

nature of situation management makes the scenario suited

to modeling using a Discrete Event simulation.

In the real world, in scenarios when an emergency

occurs, such as a fire, observers call a central number such

as 911 and report seeing the fire. In response the 911 dis-

patcher contacts the nearest fire department and orders the

fire crews to the site of the emergency. The dispatcher will

also send police cars to the scene to provide support, such

as crowd control or to secure an area. If the fire is too

large, the fire fighters on the scene may request that the

dispatcher send more fire trucks to the scene.

After the flames have been put out, the fire fighters may

stay on the scene to ensure that there is no way to start a

new fire. Once the fire fighters are satisfied that the scene

is under control, the fire trucks on the scene are directed to

return to their stations. The entities in the system and their

relationship are shown in Figure 4.

The police and fire departments have their own dispatch

services, but for the sake of this scenario, only a single dis-

patch entity is modeled. The scenario that was modeled for

this case study is a simplified model of the activities that

might occur during the response of emergency services to

a fire. The steps involved are as follows:
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• a fire is reported to emergency services, possibly

by dialing a central number such as 911 in North

America;
• fire and police units are sent to the scene of the fire;
• the fire is put out, but the units remain on scene to

ensure the fire is out;

• the emergency is determined to be over, and the

units are recalled.

The activities are broken up according to the entity that

performs them. Activities in the swim lane labeled

‘‘Scenario Activity’’ describe the overall activities at the

site of the emergency. The activities in the other swim

lane represent activities that must be performed by mod-

eled entities.

The actual behaviors of the real entities in the simula-

tion are more complex. However, as this model was devel-

oped to validate the proposed architecture, the main

activity performed by the models of the entities are

restricted to calculating the time at which the entities

arrive at a new location and start to perform a new task.

The individual activities in the scenario are given below

and in Figure 5.

Figure 4. Conceptual entities in the emergency services
dispatch scenario.

Figure 5. Conceptual activity sequence in a basic scenario.
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1. Fire Started – the external simulation starts and

sends a report that a fire has started. The report

includes the location of the fire.

2. Fire Report Received – the dispatch unit receives

the report. Because this is a fire, the dispatch

operator determines that both police and fire units

are required at the scene.

3. Moving to Site (PoliceUnit) – the police car that

is tasked to respond, either because it is closest to

the site or because it is not on another call, begins

heading to the site of the fire.

4. Moving to Site (FireUnit) – the fire truck or fire

company (all the trucks at a given fire station)

begins heading to the site of the fire.

5. Arrive (PoliceUnit) – the police car arrives at the

site and begins to perform crowd control, possi-

bly by setting up barriers to keep bystanders away

from the fire. It reports to dispatch to indicate that

it has arrived.

6. Arrive (FireUnit) – the fire truck(s) arrive at

the site and begin fighting the fire. They report

to dispatch to indicate that they have arrived on

site.

7. Units Dispatched /Response Active – the dispatch

operator notes that the responders have arrived at

the scene of the fire.

8. Fire Being Fought – the overall state of the sce-

nario changes to reflect the fact that the fire is

being fought.

9. Crowd Control – the police officers engage in

crowd control.

10. Fighting Fire – the fire fighters attempt to extin-

guish the fire.

11. Site Cleanup – due to the activities of the fire

fighters, the flames are extinguished.

12. Scenario Cleanup – the fact that the fire is out is

reported to the dispatch officer, who notes that

the activities at the site have changed.

13. Fire Cleanup – the fire fighters change activities

from fighting open flames to ensuring that there

are no hot spots or burning embers, and possibly

begin looking for the source of the fire.

14. Scenario Complete – the responders on the site of

the fire determine that no further action is

required. This fact is reported to the dispatch

officer.

15. Recall Units – the dispatch officer sends a mes-

sage to the units on the scene that they can return

to their respective stations.

16. Return to Station (PoliceUnit) – the police car

returns to the police station, or otherwise resumes

its routine activities.

17. Return to Station (FireUnit) – the fire truck(s)

return to the fire station.

These behaviors formed the basis for the creation of the

DEVS model that was developed to validate the DEVS

Bridge Architecture. The details of the model are described

in the section below.

5.1 DEVS model overview

The emergency response scenario described above was

implemented to validate the DEVS Bridge architecture. It

was implemented using DCD++ , the distributed CD++
tool, using C++ .

The emergency response services model that evolved

from the development of the scenario in the previous sec-

tion has three main models. Assuming that the activities in

the Scenario Controller column are performed by the exter-

nal simulation, the DEVS model requires a Dispatcher,

PoliceUnit and FireUnit. A Gateway model is also

required. The entities described in the figure become the

atomic models in the DEVS model of the emergency ser-

vices, which is used to validate our architecture.

The four atomic models are arranged with three of them

arranged into a coupled model named Services. The rela-

tionships between the models are shown in Figure 6.

Each of the arrows showing connections between

atomic models represents two port connections, one that

passes Action Event information and another that passes

the Location ID of the location where the Action Event

takes place.

The Gateway atomic model coordinates the behavior of

the models in the simulation. During its initialization, it

parses the initial model state information into the internal

data model, which is represented by the Unit, Location and

MessageHolder classes; MessageHolder contains a list of

Locations and Units that are populated by parsing the state

description information. MessageHolder also contains the

Report Message. The MessageHolder instance is populated

by the Gateway model. The classes are shown in Figure 7.

The MessageHolder class instance is defined on the

Gateway implementation file. The other atomic models

access the MessageHolder by declaring external definitions

for the instance. In this way, the list of locations and initial

unit state data is accessible to the other atomic models

Figure 6. Discrete Event System Specification models.
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during the execution of the scenario. The Report Message

and initial state description information are included in the

model definition as two separate parameters. These values

are loaded and parsed by the Gateway in the initialization

function of the Gateway model. This allows the parsed

data to be available to the PoliceUnit and FireUnit internal

transitions that load the initial data. The Gateway model is

connected to external ports. Events are scheduled on these

ports. The events are scheduled after the models have all

initialized. When the Gateway receives external events, it

sends the Action Event from the Report Message to the

Dispatcher along with the Location ID from the Report

Message.

The PoliceUnit and FireUnit are connected to external

ports on the Services model, which are connected to exter-

nal ports on the top model. When the PoliceUnit and

FireUnit export their results, they appear in an output file.

The Dispatcher entity is responsible for receiving reports

from the scene of the emergency and assigning tasks to

the Police and Fire Units. The tasks it assigns depend upon

the report received. The breakout of these tasks is shown

in Table 1.

Once it has assigned tasks to the units, the role of the

dispatcher is complete until the next report is received

from the site of the emergency. When the Dispatch model

receives the Action Event from the gateway, it maps it into

a Task for each of the units to perform. The type of Task

depends on the Action Event and the unit type. The

Dispatch model exports the Location ID of the Action

Event to the PoliceUnit and FireUnit without changing its

value.

The behavior of the Dispatch model is not dependent on

any initial state information. It does not request any data

from the MessageHolder on the Gateway. The FireUnit

entity is responsible for responding to instructions from the

Dispatcher. The instructions from the Dispatcher often

require the FireUnit to move to a new location. The time at

which the FireUnit arrives at the new location depends on

the location of the FireUnit when it receives the new

instruction from the Dispatcher. The FireUnit therefore

needs to be aware of its current location before it can

respond to the new instruction.

The Police Unit entity is also responsible for respond-

ing to instructions from the Dispatcher. If the instructions

require it to move to a new location, the amount of time it

will take to arrive depends on the location of the

Figure 7. Discrete Event System Specification model class diagram.

Table 1. Action Tasks assigned by dispatch based on Action
Events.

Action Event PoliceUnit task FireUnit task

Fire in Progress Crowd Control Fight Fire
Fire Out Crowd Control Clean Site
Emergency Over Return to Base Return to Base
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PoliceUnit when it receives the new instruction. The beha-

vior of the PoliceUnit and the FireUnit are similar. They

require initial state data from the Gateway. Each unit

requests its Unit data from the MessageHolder, passing in

its unique Unit ID. The Unit Data received from the

MessageHolder contains the current task being performed

by the unit and the location of the unit. The units then

request their current location coordinate from the Message

Gateway.

When the Dispatch model sends the individual Tasks to

the units along with the Location ID of the current Action

Event, the units request the location coordinate of that

location from the MessageHolder. They calculate the time

required to get from their current location to the location

of the Action Event and passivate for that length of time.

When they activate again they output the task and the

location to which they are heading. The output file con-

tains the time at which the values were output as well as

the output values. In this way, the DEVS model is able to

calculate the time at which the unit will arrive at the new

location and begin its new Task. This output information

is then parsed by the DEVS Bridge and becomes input to

the model during the next execution of the DEVS model.

5.2 Results of DEVS model execution

The emergency services DEVS model was implemented

and used with the DEVS Bridge architecture to execute the

scenario. A number of steps must be executed to complete

the scenario. The steps are listed here, and expanded upon

in the sections below. These steps assume that the script

and resource set have been loaded into the DEVS Bridge:

1. the DEVS Bridge generates the values for the

Report Message and State data;

2. the Report Message and State data are saved in the

model definition of the DEVS coupled model;

3. the DEVS Bridge generates the workspace defini-

tion (XML) and archive files;

4. the DEVS Bridge creates the workspace on the

RISE server;

5. the DEVS Bridge posts the DEVS model on the

RISE server

6. the DEVS Bridge executes the DEVS model on the

RISE server;

7. the DEVS Bridge gets the results of the execution

from the RISE server;

8. the DEVS Bridge deletes the workspace so that it

can be created for the next step.

Once the DEVS model input has replaced the contents of

the DEVS coupled model found in the coupled model file,

the DEVS Bridge prepares an archive file and an XML file

to define the model on the server. This archive file contains

the coupled model, any external event files and all of the

source code for the DEVS atomic models. The XML file

lists all of the files in the archive file. It also identifies the

model components and allocates them to the processors on

the RISE server.

Once the XML and archive files have been created, the

DEVS Bridge creates the workspace and posts it to the

RISE server. When this is done, the DEVS Bridge displays

the message posted to the server, and displays the results.

The first line of text describes the RESTful message

type, which in this case is a ‘‘PUT’’ model. The ‘‘Label’’

is a descriptive label used for annotating the message for

the user’s reference. The ‘‘Sent to’’ text prefaces the HTTP

address of the server where the message is sent. This is fol-

lowed by the body of the message. The ‘‘Response to mes-

sage’’ text indicates the response received from the RISE

server after it received the PUT message. ‘‘Create

Workspace’’ is a repetition of the Label. The line ‘‘No

response received’’ indicates that no message was

received. This is expected for a PUT message. If an error

occurred, the text of the error message would be displayed.

Once the model has been posted and executed, the

DEVS Bridge is used to get the results from the server.

The results include log files that report on the parsing and

execution of the model, and an output file generated by

the DEVS model. The file contains the values that appear

on all output ports defined on the top-level model in the

DEVS model. For the emergency services model, output

ports are defined for each of the Police and Fire Units in

the model. Each unit has two output ports. The loc_out, or

location output port, produces the object ID of the location

of the unit. The task_out, or task output port, produces an

integer that maps to the Action Task Category Code,

which represents the task being performed by the unit. All

outputs on the ports are printed to the output file, includ-

ing the time at which the output is produced.

A sample of the output file from the DEVS model is

shown in Figure 8.

The first four messages are produced by the internal

transitions by the PoliceUnit and FireUnit when they load

their initial state information, including their current loca-

tion and task. These operations are scheduled a few

Figure 8. Sample Discrete Event System Specification model
output.
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milliseconds into the scenario to ensure that the Gateway

model has initialized and parsed the input Report Message

and state information. The last four messages are the ones

that are parsed by the DEVS Bridge. They represent the

time at which the units would arrive at their new location

and begin to perform their new task. This output was pro-

duced in response to the initial Report Message of the fire

in progress. Both the PoliceUnit and FireUnit report their

new location as 300, which is the location of the fire.

Their different tasks, 4 and 3, correspond to Fight Fire and

Crowd Control, respectively. The different times at which

they arrive at the scene reflect the difference in the origi-

nal locations of the units and the different speeds at which

they travel.

The DEVS Bridge parses this output. It maps the

task_out values to the Action Task Category Code. This

information, the time, location ID and the task code, is

saved in the data model maintained by the DEVS Bridge.

The location IDs and Action Task Category Codes are

used to generate the input to the simulation the next time a

Report Message is processed by the DEVS model. In a

simulation where there is an external simulation, instead

of a scripted scenario run by the DEVS Bridge itself, this

data would then be output to the external simulation.

5.3 Other simulation scenarios

In addition to the basic scenario described above, we show

two additional scenarios. Firstly, a second fire unit was

requested to report to the scene to fight the fire. Then, a

second fire unit was requested, and an ambulance was

called to attend to casualties at the scene and transport

them to a hospital. The set of messages used in the first

scenario is shown in Table 2. Each message contains the

Action Event Category Code value in the message and the

unique ID of the Location at which the Action Event takes

place.

In order to add a second fire unit to the scenario, we

made a number of modifications to the DEVS model

described above. New ports were added to the Dispatch

model to communicate with the second fire unit. The

model definition file was updated to define a second

instance of the FireUnit atomic model and connect it to

the new ports on the Dispatch model. Additional output

ports were so that outputs from the second fire unit would

be added to the output file. An additional Action Event

Category Code was added, RequestSupportFire. This code

represents a request from the fire unit on the site of the

emergency for additional support. The set of messages in

the second scenario are shown in Table 3.

The following scenario added an ambulance unit to the

DEVS model. The ambulance unit is called to the scene of

an emergency to treat injured parties at the site. In the case

where an injury is serious, the ambulance may be ordered

to take the patient to a hospital. In order to accommodate

the behavior of this unit, changes were made to the rest of

the model. Two new Action Event Category Codes were

added: RequestSupportMedivac, which is the call for an

ambulance, and MedivacRequest, which indicates that the

ambulance is en route to the hospital. Two new Action

Task Category Codes were added to represent tasks

assigned to the ambulance by the dispatcher, TreatOnSite

and Medivac. The behavior of the dispatcher was modified

to issue these new tasks. The new behavior of the dis-

patcher is shown in Table 4.

The dispatcher does not assign any tasks to the ambu-

lance unit for the FireInProgress or FireOut Action Events.

New ports were added to the dispatcher to send data to the

ambulance unit. The model definition file was modified to

create the Ambulance Unit instance and new ports were

added to the Top model so that the output from the

Ambulance Unit would appear in the output file. The mes-

sages in the third scenario are shown in Table 5.

The three scenarios were executed using the same basic

set of resources. The Resource Set contained a set of loca-

tions and units. However, in order to collect more data

about the execution of the scenario three versions of the

Resource Set were created. Each copy of the Resource Set

had the same set of locations and units, but different coor-

dinates were assigned to each of the locations. The coordi-

nates of each Location were assigned by representing the

Table 2. Scenario 1 messages.

Time Message and location

00:01:00 FireInProgress at: 100
00:30:00 FireOut at: 100
01:00:00 EmergencyOver at: 100

Table 3. Scenario 2 messages.

Time Message and location

00:01:00 FireInProgress at: 100
00:15:00 RequestSupportFire at: 100
00:50:00 FireOut at: 100
01:00:00 EmergencyOver at: 100

Table 4. Dispatcher tasking of ambulance unit.

Action Event Ambulance Unit Task

RequestSupportMedivac TreatOnSite
Medivac Medivac
Emergency Over Return To Base
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city as a grid. The latitude and longitude values in the grid

range from 0 to 100.

In the first Resource Set, the locations were scattered

randomly across the grid. In the second Resource Set, the

site of the fire, the shopping mall location, was placed in

one corner of the grid. The fire and police stations and the

hospital were lined up diagonally across the grid. In the

third set, the shopping mall location was set in the middle

of one edge of the grid. The other locations were spread

along the opposite edge of the grid. The complete set of

locations and the three sets of coordinates are listed in

Table 6.

The Resource Sets used to execute the scenarios con-

tained the same set of four units. The home locations of

the units are included in the definition of the unit. When

the ReturnToBase Action Task is assigned to a unit, it cal-

culates the time to move from its current location to its

home location. The set of units is listed in Table 7.

The ambulance is located at the same fire station as the

second fire unit, Truck2. When calculating the time

required while performing an action, the distance between

the locations is one of the factors. The other factor is the

speed at which the unit moves. The speed is a value

defined in the coupled model file.

5.4 Case study results and analysis

A sample of the results of executing the messages is shown

in Table 8. The times listed correspond to Resource Set 3.

In each of the three scenarios, the runs with the three

different sets of locations resulted in different times of

arrival of the units due to the differing distances between

the locations. The use of the different Resource Sets

demonstrates how a single model can be run using differ-

ent scenario definition files, such as MSDL, to reflect the

differences in scenarios. The use of the existing model in

different scenarios using different sequences of messages

demonstrates how a model can participate in a variety of

scenarios with different series of input events from the rest

of the synthetic environment.

Once the DEVS Bridge received the C-BML message,

it would have to parse it before the message could be

passed to the DEVS model. This would require imple-

menting a full C-BML message parser that could extract

all of the required information from the passed-in mes-

sage. Once the C-BML message has been parsed and sent

to the DEVS model for execution, the results would be

parsed into the internal data model used by the DEVS

Bridge. The DEVS Bridge would then have to convert the

output from the DEVS model into a C-BML message.

This message would then be either returned directly to the

external simulation, which sent in the Report, or published

in a manner that it would be available to all simulations in

the synthetic environment.

Table 5. Scenario 3 messages.

Time Message and location

00:01:00 FireInProgress at: 100
00:15:00 RequestSupportMedivac at: 100
00:20:00 RequestSupportFire at: 100
00:30:00 Medivac at: 500
01:00:00 FireOut at: 100
01:30:00 EmergencyOver at: 100

Table 6. Locations for resource sets.

Coordinates

Unique ID Location name Resource set 1 Resource set 2 Resource set 3

100 Shopping Mall (44, 73) (5, 98) (50, 99)
200 Police Station 1 (23, 56) (60, 80) (10, 10)
300 Fire Station 1 (98, 43) (20, 25) (35, 10)
400 Fire Station 2 (66, 10) (92, 10) (70, 10)
500 Community Hospital (85, 35) (45, 7) (95, 10)

Table 7. List of units.

Unit name Unit type Unique ID Home location Home location ID

Car1 Police 1000 Police Station 1 200
Truck1 Fire 1001 Fire Station 1 300
Truck2 Fire 1002 Fire Station 2 400
Ambulance1 Ambulance 1003 Fire Station 2 400
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One possible configuration for allowing simulations to

communicate with each other in a larger environment is

shown in Figure 9.

In this version of the configuration, the entities in

Domain B are modeled using a DEVS model. The applica-

tions use the BML server to publish Orders, Reports and

Requests to the database, which is defined based on the

JC3IEDM. Data published to a database in one domain is

replicated to a database in another domain according to

the rules created when the connection between the data-

bases is created. For example, the database in Domain A

may send Orders to the database in Domain B, while the

database in Domain B sends Reports back to Domain A.

The DEVS Bridge and DEVS models run as the appli-

cations in Domain B to simulate a unit receiving Orders

via a C2 system and posting the unit’s response to the

Orders. The DEVS Bridge subscribes to notifications from

the BML server. When the C2 Application in Domain A

publishes an Order that affects the entities modeled by the

DEVS model, the Order is sent to the BML server, which

writes it to the database. The Order is replicated from the

database in Domain A to the database in Domain B. When

the Order arrives in Domain B, the BML server receives

notification of the new Order and informs its subscribers.

The DEVS Bridge receives the notification of the new

Order and retrieves the new Order from the database in C-

BML format. It parses the order, extracting the informa-

tion required by the DEVS model. Once the DEVS model

has calculated the response of the entities it models, the

DEVS Bridge converts the output from the DEVS model

into C-BML messages. It then publishes the C-BML mes-

sages to the BML server, which writes the data to the data-

base. Database replication publishes the information to the

rest of the databases in the environment.

Table 8. Scenario 3 time line.

RS1 RS2 RS3 Event Action Task

00:01:00 00:01:00 00:01:00 FireInProgress report sent to Dispatch
00:02:00 00:04:00 00:06:00 Car1 arrives at Shopping Mall Crowd Control
00:06:00 00:07:00 00:07:00 Truck1 arrives at Shopping Mall Fight Fire
00:15:00 00:15:00 00:15:00 RequestSupportMedivac report sent to Dispatch
00:19:00 00:27:00 00:20:00 Ambulance1 arrives at Shopping Mall Treat In Place
00:20:00 00:20:00 00:20:00 RequestSupportFire report sent to Dispatch
00:27:00 00:32:00 00:27:00 Truck2 arrives at Shopping Mall Fight Fire
00:30:00 00:30:00 00:30:00 Medivac report sent to Dispatch
00:33:00 00:36:00 00:36:00 Ambulance1 arrives at Community Hospital Medivac
01:00:00 01:00:00 01:00:00 FireOut report sent to Dispatch
01:00:00 n/a n/a Truck1 changes task Clean Site
01:00:00 n/a n/a Truck2 changes task Clean Site
01:30:00 01:30:00 01:30:00 EmergencyOver report sent to Dispatch
01:31:00 01:33:00 01:36:00 Car1 arrives at Police Station 1 Return To Base
01:35:00 01:36:00 01:37:00 Truck1 arrives at Fire Station 1 Return To Base
01:36:00 01:42:00 01:37:00 Truck2 arrives at Fire Station 2 Return To Base
01:34:00 01:32:00 01:31:00 Ambulance1 arrives at Fire Station 2 Return To Base

Figure 9. Discrete Event System Specification (DEVS) Bridge communicating via the Battle Management Language (BML) server
and database replication.
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5.5 Architecture discussion

Simulation interoperability is categorized by the level at

which the simulations are compatible. The Levels of

Conceptual Interoperability Model (LCIM) defined by the

Virginia Modeling, Analysis and Simulation Center

(VMASC)35 defines a number of levels that can be used to

describe the way two models communicate. The levels

range from Level 0, stand-alone systems, to Level 6,

Conceptual Interoperability, where the models are fully

specified, but implemented independently. The proposed

DEVS Bridge uses C-BML and MSDL, which are

intended to be unambiguous in meaning. This corresponds

to Level 3, Semantic Interoperability. The meaning of the

data is shared between the models using these protocols.

At Level 2, Syntactic Interoperability, there is a common

data structure to exchange information, but the meaning of

the data is not necessarily specified. At Level 4, Pragmatic

Interoperability, the simulations are aware of methods and

procedures used by other systems. This is a greater level

of interoperability than is provided by the DEVS Bridge,

and would introduce a higher level of coupling between

the DEVS model and the other models in the synthetic

environment. This higher level of coupling would not pro-

vide any additional benefit to the simulation.

A number of simulation interoperability efforts have been

made involving defense simulation tools interacting with

other tools that have been designed specifically for military

synthetic environments. The work presented by Ryan and

Oliver36 integrates UAVs. The results introduced by Roos et

al.37 look to validate and extend the support for maritime

entities. The article by Mifsud et al.38 is a discussion of the

findings of exercises that combined military simulation tools

such as Joint Semi-Automated Forces (JSAF) using Data

Distribution Service DIS for data interoperability.

Modern military doctrine is based on the concept of full

spectrum operations. Military organizations may be called

upon to perform offensive operations, defensive operations

and stability or civil support operations all in the same

theater of operations.39 The US Army’s response to

Hurricane Katrina is one example of the military support-

ing civilians and working with civilian agencies.40

This range of operations is also reflected in the stan-

dards published by NATO for governing the work of

coalition forces. These Standardization Agreements, or

STANAGs, cover a wide range of situations, from

Munitions Management, STANAG 4629, to management

of mass casualties, STANAG 2879, and medical support

in environments where chemical or biological agents have

been deployed, STANAG 2873. Other interoperability

standards, such as C-BML and the JC3IEDM specification

it is based on, include numerous category codes that

describe non-military personnel, from journalists to village

elders.13 Planning exercises could benefit from the

inclusion of simulations modeling non-military environ-

ments. In particular, DEVS and Cell-DEVS have been

used to model traffic flow in urban areas,41 evacuations of

buildings and aircraft42 and geographic features, such as

forest fires and floods.43 Adding these simulation features

to military planning exercise would enhance the synthetic

environment.

Development of the DEVS Bridge was done as a proof

of concept to demonstrate that the DEVS formalism could

be used with a structured communications protocol, such

as C-BML. The transformation from the model repre-

sented by C-BML to the emergency services model was

done at a very high level. The C-BML Object-Item entities

were mapped to atomic models. The relationships between

the entities were reflected in the Coupled Models. The

Action Tasks from C-BML were mapped to the external

events that triggered behavior in the overall model.

Transformation from C-BML to a more complex DEVS

model would be one area for future investigation. One

approach would be to use Unified Modeling Language

(UML) as an intermediary step in the transformation.

Some efforts have already been made to map DEVS into

UML.44,45

The C-BML and MSDL models have been validated in

a number of scenarios.13,46,47 The DEVS Bridge model

developed for this paper was deliberately simplified. An

area of research going forward would be to produce a

model validated against the requirements of an actual

emergency response system. The input and output of the

DEVS Bridge is the external events sent to and generated

by the DEVS model running on the RISE server.

Validating the DEVS model would validate the DEVS

Bridge model as well.

Part of the specification of a DEVS atomic model is the

definition of the Time Advance function. The RISE server

executes DEVS models using virtual time: the time of the

simulation is advanced to the time of the next event to be

executed. Because of this, all external events must be

identified before the model executes, rather than being

received as input from outside the executing model in real

time. When a DEVS model is uploaded to the RISE ser-

ver, all external events are captured in a file that specifies

the event and the time at which it is input. The RISE ser-

ver then executes the model, processing all events from

the first external input event until there are no further

external or internal events to be processed.

This lack of real-time interaction with the DEVS model

is the reason why the DEVS Bridge treats the DEVS

model as an engine for calculating a response to messages

received from the rest of the synthetic environment. This

is also why the state of the entities represented by the

DEVS model is maintained by the DEVS Bridge and

included in the model definition when it is sent to the

RISE. A possible area of investigation would be to modify
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the RISE server to support real-time DEVS, where the

model is run in real time instead of virtual time. This

would allow the DEVS model to execute as a proper feder-

ate in the larger federation, rather than requiring the DEVS

Bridge to simulate time advance by running the entire

model from start to finish with different input events.

6 Conclusion

Many simulations have been built for military scenarios,

so many interoperability standards are based on the

requirements for modeling military systems (HLA/DIS) or

communicating between military systems (C-BML,

MSDL). While some simulations have been built to model

civilian scenarios and civilian organizations, there has not

been a lot of modeling of civilian entities interacting with

the military systems using standards. For this reason, a

civilian emergency use case was selected for modeling.

The category codes for entities in the C-BML and

MSDL standards are taken from the JC3IEDM specifica-

tion. These category codes were examined for values that

could be used to define civilian emergency response agen-

cies. The category codes were also examined for values

that could be used to assign tasks to these agencies. Some

shortfalls in the category codes were identified. The key

entities in the C-BML and MSDL specifications were dis-

cussed. The intent was to use them to validate the pro-

posed architecture. However, given the complexity of the

specifications the decision was made not to use the full

specifications. Instead, simplified schemas that modeled

the key concepts in the standards were defined for use in

validating the architecture.

The main contribution of this work is the proposed

architecture for adding simulation interoperability to the

RISE server based on formatted messaging. The current

interface provides some support for DEVS models on the

RISE server to be created and used by web-enabled cli-

ents, but the clients must be designed and built specifically

to work with RISE. Defining an interface that complies

with interoperability standards would extend the possible

scenarios in which the RISE server could be used as part

of a larger synthetic environment.

Another contribution of this research is an examination

of how interoperability can be achieved for DEVS models

running on a RISE server. The interface of the RISE ser-

ver allows the creation and execution of DEVS models.

An additional interface is required that serves as a bridge

between the RISE server and other simulations using the

interoperability techniques selected for this research: for-

matted messages and state information specification.

One more contribution is the verification of the pro-

posed architecture by implementing an application that

conforms to the requirements for this architecture. The

implemented system, the DEVS Bridge, is used to perform

a case study. The results of this execution are examined,

including the issues encountered while implementing the

system and executing the case study. Among the results is

a discussion of issues encountered when using the C-BML

and MSDL standards for civilian simulations.

By defining an architecture that adds a simulation inter-

operability interface to the RISE server, this research pro-

vides a mechanism to incorporate DEVS models into a

wider range of possible simulation scenarios. Cell-DEVS

models of natural disasters, such as forest fires, could be

incorporated into a synthetic environment used for plan-

ning emergency responses. Models of floods or forest fires

could be used to calculate the progress of the disaster. This

information could be provided to other simulations, such

as agent-based simulations that model the behavior of peo-

ple in the area, or supply information to a CGF system or

C2 system that affects the orders given to simulated emer-

gency responder agencies. The architecture could also be

used to bridge between two different DEVS models simu-

lating different parts of the synthetic environment. Each

DEVS model would supply its output to an external coor-

dinating system, which would then calculate messages to

be sent to other simulations.
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