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ABSTRACT
Web search engines (WSE) are complex and highly opti-
mized systems operating over large clusters of processors 
which manage high and dynamic and unpredictable user 
query bursts. The modeling, simulation and formal verifi-
cation of shush systems is a challenge task which includes 
to manage user behavior and hardware costs. In this paper, 
we propose a WSE modeled with DEVS to be efficiently de-
ployed on a distributed cluster of computers. The proposed 
model aims to reduce the communication overhead intro-
duced by the message passage among the different hierarchi-
cal components of the DEVS model. This model is formally 
verified by using an equivalent Timed Automata model.
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ACM Classification Keywords
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and Analysis): Verification.

INTRODUCTION
In recent years, we have faced a tremendous growth in the 
number of distributed applications on the Internet. One of the 
most complex applications includes large scale Web Search 
Engines (WSE), which are the backbone of existing web 
search engines. Building such engines is a very complex 
task, and traditional analysis methods where systems are de-
signed directly at the low hardware and software levels are 
fast becoming infeasible due to the increasing complexity and 
market demands [1]. In particular, modeling such systems 
and providing formal analysis using formal analytical tech-
niques is unfeasible due to the complexity of the problems at 
hand. Instead, construction of system models and their analy-
sis through simulation reduces both end costs and risks, while
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enhancing system capabilities and improving the quality of
the final products. M&S let users experiment with ”virtual”
systems, allowing them to explore changes, and test dynamic
conditions in a risk-free environment. Modeling complex
WSE means we need to address numerous issues: modeling
the behavior of the end users, studying the traffic of the user
queries, and responding to them using different strategies and
heuristics to improve query response time, etc.

In order to do this, in this work we propose to model service-
based WSE. We decided to use the DEVS formalism, and in
[5], we built a DEVS model and validated such model against
an actual implementation, and a process-oriented simulator.
Such simulation software can be useful for capacity planning
purposes in WSE. We chose to use DEVS, due to many rea-
sons: (1) it provides a rich structural representation of com-
ponents, (2) it includes a formal specification for explicitly
specifying model states and time, and (3) it provides a well-
defined specification for coupling of components. DEVS pro-
vides a formal foundation to M&S that proved to be success-
ful in different complex systems. This approach combines
the advantages of a simulation-based approach with the rigor
of a formal methodology. The use of DEVS improves reli-
ability (in terms of logical correctness and timing), enables
model reuse, and permits reducing development and testing
times for the overall process. Consequently, the development
cycle is shortened, its cost reduced, and quality and reliability
of the final product is improved.

Although our previous model [5] showed that, when com-
pared to a process-oriented simulator, DEVS was easier to
learn and use (while having similar accuracy for the results),
we need to deploy the simulator in a distributed platform to
run larger simulations and we need to explore the formal ca-
pabilities further. In order to do so, we propose to extend the
WSE model presented in [5] to reduce the communication
overhead introduced by the message passage among the dif-
ferent hierarchical components of the DEVS model and we
propose to formalize the systems specification using Timed
Automata. By using existing TA model checkers we verify



properties of the WSE model formally. This reduces the com-
plexity of the design, while providing a sound model that is
guaranteed to have desirable properties for the search engine.
Simultaneously, this provides a correct model for varied ex-
perimentation with simulation.

The remainder of this article is organized as follows. In Sec-
tion 2, we review the DEVS formalism and the timed au-
tomatas. In Section 3, we describe a WSE and we present
the improved DEVS model for distributed platforms. In Sec-
tion 4 we translate the DEVS model into an equivalent TA
model and perform model checking. Conclusions follow in
Section 5.

BACKGROUND

DEVS Formalism
The Discrete-Event System Specification (DEVS) is a mod-
eling and simulation formalism of Discrete-Event Dynamic
systems. DEVS describes systems by means of atomic and
coupled models. Atomic models are the most elemental and
basic entity to represent systems. Atomic models can react
to internal and external events. It defines a way of specifying
systems whose states change upon the reception of an input
event or the expiration of a time delay.

DEVS defines a model according to [10]:
DEV S = <X,Y, S, δext, δint, λ, ta>

where
X is the set of external events;

Y is the set of output events;

S is the set of sequential states;

δext : Q × X → S is the external state transition function,
where Q = {(s, e) | s ∈ S, 0 ≤ e ≤ ta(s)} and e is the
elapsed time since the last state transition.

δint : S → S is the internal state transition function;

λ : S → Y is the output function;

ta : S → R+
0 ∪ ∞ is the time advance function;

Its semantics are as follows: At any given time, a DEVS
model is in a state s ∈ S and in the absence of external events,
it will remain in that state for a period of time as defined by
ta(s). The ta(s) function can take any real value between 0
and ∞. A state for which ta(s) = 0 is called a transient
state. On the contrary, if ta(s) = ∞, the system will stay in
that state forever unless an external event is received. In such
a case, s is called a passive state.

Transitions that occur due to the expiration of ta(s) are
called internal transitions. When an internal transition takes
place, the system outputs the value λ(s), and changes to state
δint(s). A state transition can also happens when an external
event occurs. In this case, the new state is given by δext based
on the input value, the current state and the elapsed time.

The DEVS formalism includes atomic and coupled models.
Atomic models allow to represent the behavior of a system,
whereas coupled models represent its structure. A coupled

model groups several DEVS models together into a com-
pound model that can be regarded - due to the closure prop-
erty - as another DEVS model. A coupled model is defined
as a structure of the form:

DN = <Xself , Yself , D, {Mi}, {Ii}, {Zij}, select>

where D is a set of components, and
for each i ∈ D,
Mi is a component with constraint that
Mi = <Xi, Yi, Si, δi ext, δi int, λi, tai> is a DEVS model;

for each i ∈ D ∪ {self},
Ii is the set of the influences of i;

for each j ∈ Ii,
Zi,j is a function, i− to− j output-input translation.

select is a tie-breaker function
Ii is a subset of D ∪ {self}, i is not in Ii,
Zself,j : Xself → Xj

Zi,self : Yi → Yself
Zi,j : Yi → Xj

select : Subset of D → D
such that for any non-empty subset E
select(E) ∈ E
A coupled model can have its own input and output events,
as defined by the Xself and Yself sets. Upon the arrival of
an external event, the coupled model has to redirect the in-
put to one or more of its components. In addition, when a
component produces an output, it has to be mapped as an-
other component’s input or as an output of the coupled model
itself. The Z function defines these input-output mappings.

Simulation Environment
PCD++ [6] is used to simulate DEVS models in a parallel
and distributed platform. It is implemented in C++. A sim-
ulation model is partitioned at atomic model level, and each
partition is assigned to a Logical Processor (LP). The LPs are
distributed among processors and they hold three kinds of el-
ements: Node Coordinator (NC), Flat Coordinator (FC) and a
set of ”Simulators”. The ”Simulators” are the atomic models
of the DEVS model.

When the sender and the receiver of an event are located on
the same physical processor, the FC puts the event in the
queue of the destination. On the other hand, if the receiver
of the event is not in the same physical processor, the FC
sends the event to the NC. Then, the NC determines the phys-
ical processor hosting the receiver ”Simulator”. The NC of
the sending processor sends the event to the NC allocated in
the destiny processor, which routes the event to its FC which
determines the destiny ”Simulator”.

Timed Automata
A Timed Automaton is a tuple [3]: A = (N, l0, E, I) where
N is a finite set of nodes or locations, l0 ∈ N is the initial
location, E ⊆ N × β(C) × Σ × 2c × N is the set of edges,
and I : N → β(C) assigns invariants to locations.



Where C corresponds to a set of clock variables, Σ is a set of
actions and 2c is a selection of clocks to be reset to zero. Con-
straints on clock variables can be used in transitions (called
guards), or they can be used in locations (where they are
called invariants). Guards are restrictions that need to be
satisfied in order to activate a certain transition. Invariants
restrict the time spent on a location of the TA.

In TA, states are pairs of the form <L, u>, where L is a lo-
cation and u is a clock value [7]. An expression of the form
l

g,a,r−−−→ l′ when (l, g, a, r, l′) ∈ E is a transition from lo-
cation l to location l′ where g is a clock constraint, a is an
action and r is a set of clocks to be reset to zero. Two types
of transitions are used in TA: delay and action transitions. In
a delay transition of the form <L, u>

d−→ <L, u + d> the
time advance d triggers a transition from the start location to
an end location. In an action transition <L, u> a−→ <L′, u′>
an action a trigger a transition from location L to L′.

TA allows the modeling of discrete systems with continuous
time. A composition of multiple interacting TA models (net-
work of TA) can be use to easily model large systems. In [8]
a methodology for verification of RT-DEVS models is pre-
sented. It proposes to establish a bisimulation relation among
the DEVS model and a corresponding TA model, in which
both models must have the same states and similar transitions.
If the bisimulation relation is satisfied, the TA model can be
used for verification of the bisimilar DEVS model. Verifi-
cation is performed using the UPPAAL software tool [2] to
validate the TA properties.

In the following sections we will show a case study focused
on the analysis of WSE. The idea is that we have built a DEVS
simulation model. We will show how that model is formally
specified in DEVS, converted into a Timed Automata, and
formally verified using model checking and UPPAAL.

CASE OF STUDY: WEB SEARCH ENGINES
Typically, Web search engines (WSE) are composed by three
services devised to quickly process user queries in an on-
line manner: Front-Service (FS), Caching-Service (CS) and
Index-Server (IS). The FS comprises several replicated nodes.
Each FS node receives and routes users queries, and sends
back the top-k document results to users. After a query ar-
rives to a FS node fi, it asks the CS to determine whether the
query has been previously processed. For the CS cluster ar-
chitecture, we apply an array of Pc × Dc processors (or CS
nodes). A scheduling method in the FS distribute the queries
onto the Pc partitions. When a partition pi has been selected,
one of itsDc replicas is chosen in a round-robin way to search
for the query. If the query is cached, the CS node sends the
query answer to fi. Afterwards, fi sends the document re-
sults to the user. If the query is not found in cache, the CS
node sends a hit-miss message to fi. At this point, fi sends
the query to the Index Service (IS) which will compute the
top-k document results.

The IS contains a distributed index built from the document
collection held by the search engine (e.g. HTML documents
from a big sample of the Web) [1]. This index is used to
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Figure 1. Query processing scheme.

speed up the determination of what documents contain the
query terms and calculate scores for them. The k documents
with the highest scores are selected as the query answer.

For the IS, the standard cluster architecture is an array of
Pi × Di processors or index search nodes, where Pi indi-
cates the level of document collection partitioning and Di the
level of document collection replication. The rationale of this
2D array is as follows. Each query is sent to all of the Pi

partitions and, in parallel, a random replica in each partition
determines the local top-k query results. These results are
then collected together by the FS to determine the global top-
k results for the query.

Figure 1 shows the operations performed for queries. The di-
agram represents the query flow through the Web search en-
gine components. It also shows an overall description of the
message traffic among processors in a cluster of processors.
These messages must pass through a number of communica-
tion switches to reach their destinations.

DEVS Model definition
The work in [5] proposed a DEVS model for a WSE devised
to be simulated into a single processor using CD++ [9]. It
used atomic and coupled models. However, this model may
incur into significant communication overhead when the sim-
ulation is executed in a distributed platform.

Suppose we have an atomic model At1 belonging to a cou-
pled model Co1 allocated into the processor P0, and a second
atomic model At2 which belongs to Co1 but it is allocated
into the processor P4. When At1 sends an event to At2, the
message containing the event is sent from the output port of
At1 to the output port of Co1. Then, it goes from Co1 hosted
by P0 to the input port of the replicated model Co1 allocated
into P4. Finally, the event is sent to the input port of At2.
Many control events are created and passed over these ports.
To reduce the communication costs caused by control events,
we design a distributed DEVS simulation of a WSE model
without coupled models.

To avoid potential communication bottlenecks, in the Figure
2 we propose a new DEVS-based WSE model designed for



PCD++. The new design removes the coupled models and in-
cludes new port connections between the atomic models rep-
resenting WSE services. Thus, the query routing process is
performed directly between atomic models.

The gray areas of Figure 2 are used to easily identify the dif-
ferent services of the WSE. The atomic model QueryGenera-
tor is responsible for generating the user queries and deliver-
ing them to the nodes FS1, ..., FSR , which are selected in a
round-robin fashion. Subsequently, queries are sent to the ser-
vices CS and IS across the output ports outCS i j/OutIS i j,
where i identifies the partition and j the replica of the service.
The query inter-arrival time is simulated using a negative ex-
ponential distribution.

When a FS node receives a new query in its input port in,
it sends the query to a Cache Service CSij across one of its
output ports outCS i j. The selection of the CS node is made
by determining first the partition i, via a hash function on the
query terms. The selection of the replica j is performed in a
round-robin way. Then, the CS node simulates the searching
of the query in the cache memory and responds to the FS node
with a query marked with label Hit if the query is in cache.
Otherwise, the query is labeled with a Miss. If the response
contains a Hit label, the FS node simulates the Web page
construction with the document results for the query and the
operation of sending these documents to the user.

However, if the answer has a Miss label, the FS node routes
the query to the Index Service to be processed. The query
is sent to a replica of each of the P IS partitions through the
output ports OutIS i j. The replicas of each partition are se-
lected in a round-robin way. Each node in the IS simulates a
ranking function to determine the top-k local documents and
send them to the FS. Once the FS node has received the par-
tial results from each of the nodes IS i j, a merge operation
is simulated to produce the best k (top-k) document results.

Now we present the formal DEVS definition of the WSE il-
lustrated in Figure 1.

WSE ={Xwse, Ywse, Dwse, {Mdwse |d ∈ Dwse}, EICwse,

EOCwse, ICwse, selectwse} (1)

Where:

Xwse = {∅}
Ywse = {∅}
Dwse = {QueryGenerator, FSi, CSjk, ISlm}
∀ i ∈ [1, RFS]; ∀ j ∈ [1, RCS],∀ k ∈ [1, PCS]; ∀ l ∈
[1, RIS],∀m ∈ [1, PIS];
Where: RFS is the number of nodes in the FS, PCS and RCS
are the number of partitions and replicas of the CS, PIS and
RIS are the number of partitions and replicas of the IS.
Mdwse = {MQueryGenerator,MFSi

,MCSjk
,MISlm

}
EICwse = {∅}
EOCwse = {∅}
ICwse ⊆ {((QueryGenerator, outi), (FSi, in));

((FSi, outCSjk), (CSjk, in));
((FSi, outISlm), (ISlm, in));
((CSjk, outi), (FSi, in)); ((ISlm, outi), (FSi, in)); }

selectwse = {QueryGenerator,FSi,CSjk, ISlm}

Next we give the formal definition of the atomic models of the
FS nodes. The DEVS formalism for others WSE components
can be easily obtained from these mathematical forms. We do
not include them in this paper for lack of space.

FS = {Xfs, Sfs, Yfs, δintfs , δextfs , λ, ta} (2)

Where:
IN = {“in”} is the set of input ports, with valuesXfs in = Q.

Q is the set of Query objects. Each q ∈ Q has a value deter-
mining the atomic model which has send it:
qroute = {“User”,“CSHit”, “CSMiss”, “ISdone”}.
Xfs = {(“in”, q)|q ∈ Q} is the set of ports and its input
values (Query objects).

Sfs = {“Idle”, “Proc”} × σ × Q × qSize, where “Proc”
corresponds to state Processing, σ ∈ R+

0 has the time ad-
vance value according to ta, and qSize is a variable contain-
ing the current amount (size) of queries in the queue with
qSize ∈ Z+

0 .

OUT = {outCSij ∪ outISlm ∪ “done”} is the set of output
ports, with values Yfs out = Q; where outCSjk are the output
ports connecting to the port in of the CS model ∀ j ∈ [1, RCS]
and ∀ k ∈ [1, PCS]. outISlm are the output ports connecting
to the port in of the IS model, ∀ l ∈ [1, RIS],∀m ∈ [1, PIS].
“done” is an output port for finished queries.

Yfs = {(p, q)|p ∈ OUT, q ∈ Q}, where q is a Query.

δintfs(“Proc”, σ, qSize) =

{
(“Proc”, 0, qSize− 1) If 0 < qSize
(“Idle”,∞) o.w.

δextfs(“Idle”, σ, qSize) = (“Proc”, 0, 1)

δextfs(“Proc”, σ, qSize) = (“Proc”, σ − e, qSize + 1)

λ(“Proc”, σ,Query) = (out*,Query)

ta(“Proc”, σ,Query) = σ

The input set (Xfs) is received through the input port in. (Yfs)
is the set of output queries sent through the set of portsOUT .
The variable qSize is used to represent the number of queued
queries in each FS node. There are two possible states: Pro-
cessing or Idle. External transitions are triggered when a
query arrives to the FS node. If the node is idle, the elapsed
time is set to zero, the variable qSize is set to 1 and the state
changes to Processing. If a query arrives when the node is
busy (Processing), then the time is adjusted according to the
time indicated by the time advance function (σ) minus the
time elapsed. The variable qSize is incremented by one.

The internal transition function is defined only for the state
Processing and is triggered after σ units of time. If there are
queued queries, then the variable qSize is decreased by one,
the elapsed time is set to zero and the FS node remains in the
same state. Otherwise, if qSize = 0, the FS node changes its
state to Idle.

The output function (λ(Proc, σ,Query)) is defined for the
state Processing, after a period of time σ and for a given
query. This function returns a query (Query) which is sent
through de port out*. The output port out* corresponds to



Figure 2. WSE modeled with atomic models.

one of the ports listed in Table 1, selected according to the
value qroute contained in the query. The time advance func-
tion is defined for the state Processing and a query (Query).
It returns a time σ required to process the query.

Table 1. Selection of output ports for atomic models of the FS.
Value qroute Incoming atomic model Output port

“User” QueryGenerator outCSjk

“CSHit” CS “done”
“CSMiss” CS outISlm

“ISdone” IS “done”

EQUIVALENCY OF DEVS AND TA
The DEVS formalism is based on Systems Theory [10] and
corresponds to a specification of discrete events. Several ef-
forts have been started for formal verification of DEVS mod-
els [4] but at present there are no existing tools providing the
means for formal verification on relevant properties such as
reachability, liveliness, etc.

However, the authors in [8] presented a methodology that al-
lows checking DEVS models to ensure they are correct. To
this end, first a bisimulation relationship is established be-
tween the WSE model developed with DEVS and an equiv-
alent WSE model developed with Timed Automata. This
makes it possible to apply different tests to assess the cor-
rectness of the WSE model developed with TA. Thus, in this
section we will show the effective use of TA model checking
techniques for verification of DEVS models, through a WSE
model as a case study. This abstraction is necessary to study
only properties of concern and to simplify the modeling task.

The bisimulation between two systems A and B, defines the
relationship between each state and transition of A and its
corresponding state and transition in B. In this work we ap-
ply a weak temporal bisimulation equivalence as described
in [8]. To determine the equivalence between atomic models
of DEVS and its corresponding models in TA, we begin the
analysis of the different transitions (internal and external) and
the states of each atomic element.

Figure 4 and Figure 3 show the atomic model of a FS node de-
veloped with DEVS and its equivalent with the TA. At a given
time, these models may be in one of two possible states: Idle

or Processing. The modeled nodes can remain in each state
for different units of time and can receive queries regardless
of which state they are. Initially, the nodes are in the state
Idle, and remain in that state until they receive a user query
or a query from another service node. When this happens, the
node changes its state from Idle to Processing.

Step1: from DEVS to TA
Figure 4 shows the states and the transitions of the DEVS
model of a WSE. Internal transitions are represented by seg-
mented lines and external transitions with continuous lines.
From now on, we use “D” and “T” for the DEVS and TA
models respectively.

• fsQSize is the amount of queued queries and its is equiv-
alent to the qSize variable of the DEVS model. In the TA
model, this variable corresponds to four different variables
used to know the service which send the query.

– fsQSizeUser amount of queries received from the user.

– fsQSizeCS amount of queries received with label
Miss from the the CS.

– fsQSizeHitCS amount of queries received with label
Hit from the the CS.

– fsQSizeIS amount of queries processed by the CS.

• maxQSize is the maximum amount of queued queries (size
of the input buffer).

• hold, is the time to process a query in a FS node.

• eTime (or elapsedTime), is the elapsed time when process-
ing a query in the WSE.

To determine the bisimulation of both models we check if
there is a relationship R of bisimilarity of its internal transi-
tions.

• (ProcD R ProcT ): There are two internal transitions,
where the source is the state ProcD. One is recursive on
the (ProcD state and the other connects to the state IdleD.

– Recursive transition:
Corresponds to the recursive transition of Figure 4.



Figure 3. TA FS node model in UPPAAL.

receive( Query )
receive( Query )

process ( Query )

Idle

Processingprocess ( Query )

Figure 4. Atomic model with DEVS for a FS node.

It represents the fact that a query is being pro-
cessed (process (query)) and there are queued queries.
The TA model of Figure 3 has five recursive transi-
tions (two of them labeled as “queryFSToCS!” and
“queryFSToIS! ”, and the others with arcs colored in
black). They all belong to the same recursive transi-
tion of the DEVS model, the have the same temporal
condition and they differ only in the action performed.
They modify different variables of state, so for practi-
cal purpose we consider them as only one transition.
Lets consider the execution of the internal transition
in DEVS:

(ProcD, e)
d−→ (ProcD, 0) if qSize > 0

as a transition delay d, where 0 ≤ e < ta(ProcD)
and 0 ≤ d < ta(ProcD) − e. Once the transition is
triggered, the value of the time elapsed is set to e = 0
in the destination state. To satisfy the bisimulation we
define:

(ProcT , eTime = e)
d−→ (ProcT , eTime = e+ d)

if fsQSize > 0

Where:

fsQSize =fsQSizeUser + fsQSizeCS + fsQSizeHitCS
+ fsQSizeIS

for the same value of d as the one used in the DEVS
model. When considering the invariance of the initial
state, we have eTime < hold in ProcT , so by replacing
eTime and d we obtain:

ta(ProcD) ≤ hold (3)

This means that the transition will be triggered as
soon as the condition in Eq. 3 is not satisfied, and
qSize > 0. After the transition is triggered, the clock
is set to (eTime = 0). Notice that both variables fsQ-
Size (from the TA model) and qSize (from the DEVS
model) are equivalent and are used to measure the
amount of queued queries in a FS node.

– Transition from Processing to Idle:
We have to check the bisimilarity between the states
ProcD and ProcT with the timed transition from
ProcD to IdleD. If we consider the execution of the in-
ternal transition of DEVS: (ProcD, e)

d−→ (IdleD, e),
where 0 ≤ e < ta(ProcD) and d = ta(ProcD) −
e, then the execution of the transition in the TA is
(ProcT , eTime = e)

d−→ (IdleT , eTime = e + d).
Both transitions are equivalent if they have bisimilar
states as the initial state and the destination state (af-
ter the same delay). To this end, the same delay value
d in both transitions is used. The transition begins in
ProcT with eTime = e, where the value of e is the
same as in the transition of the DEVS model.
After a delay d (equal to the transition in DEVS) the
TA switches to the state IdleT and the clock elapsed-
Time value is increased by d units of time. Therefore,
eTime = e + d, and considering the condition of the
transition (guard condition) eTime = hold of the tran-
sition of the TA, we have:

ta(ProcD) = hold (4)

So, when using a constant hold in the guard transi-
tion of the TA with a value equal to the advance of
time of the ProcD, the TA transition is triggered as its
equivalent in DEVS. The condition of the transition
fsQSize = 0 in the TA is equal to the internal transi-
tion in DEVS. This transition represents the fact that
all queries have been processed and the FS node is
now available (Idle).

Therefore, from Eq. 3 and Eq. 4 we have:

ta(ProcD) = hold (5)

which guarantees the bisimulation relationship of the internal
transitions of the DEVS model with the transitions in the TA.



Step 2: from TA to DEVS
In this section we show how to satisfy the other direction of
the bisimulation. That is, how the TA model of Figure 3 be-
comes the DEVS model of Figure 4.

• (ProcT R ProcR): There are five transitions in the TA
which are equivalent to the internal transitions of the DEVS
model. Four transitions are recursive (two of them in
colour black and the others have the labels queryFStoCS!,
queryFStoIS!) in the state ProcT . The fifth transition con-
nects the state ProcT to the state IdleT .

– Recursive transitions: All of them have the same
temporal condition. The difference is the action per-
formed. Thus, for practical purposes they are consid-
ered as only one, and are defined as:

(ProcT , eTime = e)
d−→ (ProcT , eTime = e+ d)

If the invariant condition eTime < hold is true, the TA
for the FS node remains in the state ProcT . Therefore:

e+ d < hold (6)

The transition with delay d is defined in the DEVS
model as (ProcD, e)

d−→ (ProcD, e+d). To stay in the
state ProcD after d units of times, the time advance
has to be smaller than ta(ProcD). Therefore, we have:

e+ d < ta(ProcD) (7)

– Transition from Processing to Idle: Corresponds to
the TA transition:

(ProcT , eTime = e)
d−→ (IdleT ), eTime = 0)

The behavior of this transitions is as follows. The ini-
tial state is ProcT with time elapsed e, and after d units
of time, the TA model changes to the state IdleT and
the time variable resets to eTime = 0. In other words,
to move from the state ProcT to IdleT , the invariant
(eTime < hold) has to be false and the guard condi-
tion of the transition (eTime = hold) has to be true.
Therefore:

e+ d = hold (8)

From DEVS, this transition is defined as:

(ProcD, e)
d−→ (IdleD, 0)

To trigger this transition the model has to satisfy:

e+ d = ta(ProcD) (9)

Therefore, from Eq. 8 and Eq. 9 we obtain that hold =
ta(ProcD). Then, we can say that Eq. 6 and 7 are equivalent
and the simulation relationship from the TA model (Figure 3)
to its equivalent DEVS model (Figure 4) is verified.

As there is a simulation relationship in both way (from DEVS
to TA and viceversa), the internal transition of the DEVS
model is bisimilar in time and the behaviour is equivalent to
the timed transition in the TA model. This has been checked
for a constant hold which represents the processing time in
the state ProcD. Then, we can say that (IdleD R IdleT ) and
(ProcD R ProcT ).

External transitions in DEVS
In this section we show that the external transitions of the
DEVS model are bisimilar to the external transition of the TA
model. In Figure 4, the external transitions are represented
as continue lines, which correspond to the incoming queries
from users, from the IS and from the CS.

The DEVS model has two external transitions. The first one
connects the state IdleD to the state ProcD. When a query
arrives, and if the FS node is available (the current state is
IdleD), the variable qSize is set to 1 and the model change the
state to ProcD.

The second external transition, is recursive on the state
ProcD:

δextfs(“Idle”, σ, qSize) = (“Proc”, σ, 1)

δextfs(“Proc”, σ, qSize) = (“Proc”, σ − e, qSize + 1)

If a query arrives and the current state is ProcD, the new query
is allocated in the queue of the FS node. Thus, the variable
qSize is increased by 1.

As both external transitions do not consider time restrictions,
they can be expressed as action transitions:

1. IdleD
a−→ ProcD

2. ProcD
a−→ ProcD

With this expression we can represent the external transitions
as transitions of the TA:

1. (IdleT , eTime)
a−→ (ProcT , eTime = 0).

2. (ProcT , eTime)
a−→ (ProcT , eTime)

These expressions are used to obtain the relation R between
the DEVS model and the TA model. Then, (IdleD R IdleT )
and (ProcD R ProcT ) are satisfied. In the same way, we can
verify the relationship from TA to DEVS, which shows that
there is a bisimulation relationship between the DEVS model
and the TA model.

Evaluation of correctness of the WSE model
In this section we use model checking on the equivalent TA
model of the DEVS model, to answer questions about our
DEVS model behavior that otherwise would have needed to
fully simulate all possible executions of the DEVS model
to get the answers. In this section we analyze the follow-
ing properties: Reachability, Safety, Liveness and Deadlock
free. To this end, we formulate formal queries to the UPPALL
Model Checker Tool version 4.1.19 (November 2014) [2].

Reachability
This property is used to determine that all states are achiev-
able. To verify this property, we evaluate the queries E<>
FS.Idle and E<> FS.Proc on the TA model. After
the execution of these queries, UPPAAL shows the response
Property is satisfied, which means that the states
are achievable. In other words, at some point in the simula-
tion, the FS nodes of a WSE are available (Idle) or processing
(Proc).



Safety
This property is used to verify that there are not anomalous
behaviors in the system. For this reason, we define which
combinations of states and values of state variable are correct.

• At state Idle all queues must be empty:

E[] (FS.Idle and not (FS.fsQSizeUser>0
or FS.fsQSizeCS>0 or
FS.fsQSizeHitCS>0 or
FS.fsQSizeIS>0))

When we execute this query with UPPAAL, we get the an-
swer Property is satisfied, indicating that these
behaviors do not occur.

• The input queues of the FS node has one or more queries,
and less than a maximum value (maxQueueSize):

A[] (FS.fsQSizeUser>=0 and
FS.fsQSizeCS>=0 and
FS.fsQSizeHitCS>=0 and
FS.fsQSizeIS>=0 and
and CS.csQSize>=0 and
FS.fsQSizeUser<=maxQSize and
FS.fsQSizeCS<=maxQSize and
FS.fsQSizeHitCS<=maxQSize and
FS.fsQSizeIS<=maxQSize)

Again, the UPPAAL tool shows the message Property
is satisfied.

Liveness
This property is used to verify if any state is eventually
reached from another state. To do this, an initial state and
a final state are defined. First we consider the initial state Idle
and the destination state Processing by executing the query
FS.Idle --> FS.Proc. In this case, the UPPAAL tool
shows the message Property is not satisfied.

The liveness property is not satisfied because in the model
developed with TA, there is no invariant to limit the time to
stay in the initial state Idle and to force the change to an-
other state. However, for the case study of this work -WSE
based on services- does not correspond to include an invari-
ant which satisfies this property, because in practice it could
happen that a FS node does not receive queries and stays in-
definitely in the state Idle. In other words, some FS nodes
could possibly never receive queries.

Next, we evaluate if the property is verified considering the
initial state Processing. In this case, the query to be executed
with UPPALL is FS.Proc --> FS.Idle. The UPPALL
tool shows the message Property is satisfied, indi-
cating that after all queries are processed, the FS node change
its state to Idle. The invariant (eTime < hold) defined for
the state Processing represents the fact that it is necessary to
elapse hold units time to process a query, and it allows to sat-
isfy the property.

Even though the property is not always satisfied, it is expected
that FS nodes will receive queries, changing the state from
Idle to Processing. Thus, not satisfying this property does
not represent a fault in the model developed for the WSE.

Deadlocks
We analyze if deadlocks can occur. To this end, we execute
the query A[] not deadlock. To satisfy this property in-
clude we include the condition fsQSizeUser < maxQSize, in
Figure 3, on the transitions representing the arrival of queries
from the IS and from the CS. However, this condition does
not exist in the WSE model developed with DEVS. This con-
dition limits the size of the input queue of the FS node mod-
eled with the TA. If not limited, the TA would present dead-
locks, as the input queue could grow infinitely. However, this
condition is not fictitious because in practice no queue (im-
plemented computationally) can reach an infinite number of
elements because memory is limited.

CONCLUSION
In this paper we presented a DEVS model for a WSE for ef-
ficient distributed simulations. The proposed model aims to
reduce the amount of messages transmitted among different
elements of the DEVS model.To verify the DEVS model of
a WSE we performed a bisimulation in order to obtain an
equivalent TA model. We performed model checking on the
TA model to check the correctness of the proposed model
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