
An Advanced Data Type with Irrational Numbers to Implement Time in DEVS
Simulators

Damián Vicino Olivier Dalle Gabriel Wainer
Université Nice Sophia Antipolis Université Nice Sophia Antipolis Carleton University

I3S UMR CNRS 7271 I3S UMR CNRS 7271 Dept. of Systems and
Carleton University INRIA - Sophia Antipolis Computer Engineering
Dept. of Systems and

Computer Engineering
vicino@i3s.unice.fr olivier.dalle@unice.fr gwainer@sce.carleton.ca

ABSTRACT
In the Discrete-Event System Specification (DEVS) time

variables are Real numbers. This is common to other simu-
lation formalisms for Discrete-Event Simulation (DES). Cur-
rent simulators for these formalisms approximate time vari-
ables using floating-point or rational representations. Neither
of them is capable to adequately represent irrational numbers.
The representation of these numbers is important, especially
for studying systems with geometrical properties. The use
of approximations, as floating-point, may silently introduce
errors to the causality chain. These errors may produce in-
correct simulation trajectories without informing about them.
Here, we propose a new data type combining rational data
types with computable calculus concepts. This new data type
extension provides representation, and operation, with sub-
sets of irrational numbers. The proposed data type only pro-
vides four operations (+, -, <, =), those are sufficient for im-
plementing simulators for DEVS and other DES formalisms.
Usage of this data type has no significant complexity penalty
for simulation not using irrational numbers.

SpringSim-TMS/DEVS, 2016 April 3-6, Pasadena, CA, USA
c© 2016 Society for Modeling & Simulation International (SCS)

Author Keywords
Time; Data types; Irrational

ACM Classification Keywords
I.6.8 SIMULATION AND MODELING : Discrete event

1. INTRODUCTION
The Discrete Event Simulation (DES) family of methods

consider that models generate and react to events. Those
events are usually implemented as messages passed between
models at discrete points in the simulation continuous time-
line. The usual domain of the variables that hold the discrete
points in the timeline in DES is R+. Unfortunately, it is im-
possible to find a computer representation for all the values in
R+.

The problem of including irrational numbers in Time data
types in simulation is not new, as it is common to use irra-

tional numbers when defining models in certain fields (i.e,
physics, mechanics, chemistry, etc.). In addition, it is also
common to use irrationals for any model relying on geomet-
rical concepts. For example, in a model of a pendulum clock,
we could model the pendulum to produce an event every time
it completes a period. From physics, we can define the period
as (2π ·

√
L
g) where L, g, and π are constants.

We are interested in the use of irrational numbers to model
Discrete Event systems in which time is continuous. We can
categorize previously proposed solutions to represent contin-
uous time in three groups: intervals arithmetic, fixed-length
approximation, and symbolic solving. These solutions solve
different subsets of representation issues, but they carry, in
some cases, new concerns or limitations.

Most approaches introduce approximations. The major risk
of approximating in DES is producing breaks of the causality
chains. In DES, the state of the simulation can be thought as
a function of its history, producing a causal relation between
them. When an event occurrence is displaced, the evolution
of the simulation may diverge. When this happens, we say
that the causality chain is broken. Current simulator imple-
mentations are generally silent about these errors, because it
is usually impossible to detect them properly.

From Computable Calculus [1] point of view, some Real
numbers have been proven to be non computable (Chaitin
constants for example [3]). Likewise, for computable Reals,
to know if a number is rational or not (in the general case) is
not decidable. And, the comparison of two computable reals
(in the general case) is not decidable either.

Our goal is thus to define a new data type providing proper
representation of time for simulation without generating time-
line errors. This data type should include representation sub-
sets of necessary computable irrational numbers. To do so,
we introduce a new data type that augments the set of val-
ues that can be represented using rational data types for time
variables. This data type allows defining and operating with
controlled subsets of computable irrationals, and it is based
on concepts from Computable Calculus [1]. It also prevents
breaking causality chains due to imprecision in the timeline.

Our new data type separates rational and irrational com-
ponents. The irrational components are selected so we can
provide a unique construction of the numbers, allowing com-
parison and tests for irrationality to be decidable.

We present irrational components including three subsets
of computable numbers, multiples of π, multiples of eπ and
irrational numbers obtained as root of integer numbers. We
consider these are a large addition to current state of the art.
Also, in Section 8., we explain how this set can be enlarged
to cover other numbers needed in some modeling scenarios.

In particular, we will focus on the operations needed for
implementing DEVS simulators. Thus, our data type only
provides four operations (+, −, =, <), as these are the only
operations needed by the abstract simulator algorithms de-
fined in [17].

The most common concern about exact representation and
operation is complexity. We will show that the impact of our
approach is constant and negligible for timelines that do not
require the support for using irrational numbers. In the case
that the timeline requires their use, we only have higher com-
plexity in the “compare by greater” than operation. Another
common concern is the halting of operations between irra-
tional numbers. We will explain, how given the irrational sub-
sets being included cover the properties we require, the com-
pletion of the operations can be guaranteed.

2. BACKGROUND
2.1. Discrete-Event System Specification

We have particular interested in the Discrete-Event Sys-
tem Specification (DEVS) formalism [17]. This is a DES for-
malism proposed by Zeigler in the 70s, whose simulator has
been implemented in multiple languages and platforms. In
DEVS, models are defined in a modular and hierarchical way.
The modeling hierarchy has two kinds of components: atomic
models and coupled models.

An atomic model is always in a specific state. The model
defines internal and external transition functions to process
endogenous and exogenous events. Each time an event is pro-
cessed the state is modified. Using this state, a time-advance
function is used to compute a life-span delay. Endogenous
events are produced when this lifespan delay is consumed
without the arrival of any other event. At the time of pro-
cessing an endogenous event, the output-function is used to
output an event.

Coupled models define hierarchy and interconnection be-
tween atomic models. In this hierarchy leaves are atomic
models, and oriented links represent the routing of events be-
tween them.

The common approach used for passing events between
models has four steps. First, the time of next event (the min-
imum of the times remaining in each model until the next
internal transition) is computed. Second, the resulting output

events are computed. Third, the events produced as output
of submodels are routed in the network to their destination
inputs. The time remaining until the next round (subtracting
the time elapsed from the scheduled time advance) is recom-
puted.

DEVS was extended in several ways to adapt the formalism
for various goals. For example, in Symbolic DEVS [16, 17],
the formalisms was extended to define time as linear poly-
nomials in place of real numbers. Another extension related
to the time definition is called Rational Time Advance DEVS
(RTA-DEVS) [12]. In RTA-DEVS time is defined as intervals
with rational borders.

2.2. Computable Calculus
Computable real numbers were introduced by Alan Tur-

ing in his seminal paper “On Computable Numbers, with an
Application to the Entscheidungsproblem” [13]. He defines:
“The computable numbers may be described briefly as the
real numbers whose expressions as a decimal are calculable
by finite means”. Different authors provided several equiv-
alent definitions, for example an alternative definition is “a
number is computable if it exists an algorithm to produce each
digit of its decimal expansion, and for any digit requested it
finishes the execution successfully”. There are subsets of real
numbers that have been proven not to be computable. Exam-
ples of such a subset include the family of Chaitin’s constants
[3].

A new area of applied mathematics was developed based
on the theory of computable real numbers, called Computable
Calculus [1]. The main goal of this area is finding the adjust-
ments that need to be done to theorems and properties on real
calculus that do not apply to computable real numbers. For
example, since there is an algorithm for describing each com-
putable number, the set of computable numbers is enumer-
able, while real numbers are not [13].

Some interesting results in Computable Calculus are the
following non-decidable problems [1]:
• In the general case, it is impossible to decide if a com-

putable real number is irrational or not.
• In the general case, it is impossible to decide if a com-

putable real number is greater than zero or equal to zero.
• Other non-decidable problems can be derived from the

previous two examples, which are also non-solvable; for
instance the equality of two numbers and the order of
two numbers.

Detailed proofs of these non-decidable problems can be
found in “Computable Calculus” by Oliver Aberth [1].

To operate with computable numbers, we can use interval
arithmetic considering k-digits expansion and the resulting
intervals [1]. In interval arithmetic, the addition of two in-
tervals is defined as the interval where the lower border is
defined as the addition of the lower borders of the operands.

Likewise, the higher border is defined by the addition of the
higher borders of the operands [10]. Similar definitions ex-
ist for other operations as subtraction, multiplication and di-
vision [10]. The definition of comparison operations of in-
tervals is more complicated because the two intervals being
compared may intersect, which requires multiple comparison
operations [1, 10].

3. RELATED WORK
Foundational work about Time representations in comput-

ers was developed in the 70s and 80s. Many of these focus
on studying problems related to the synchronization of dis-
tributed systems and real time applications [5].

Lamport formalized time [6] for distributed systems, defin-
ing it as a sequence of partially ordered events using the rela-
tion “happened before”. Later, formal approaches were pro-
posed based on temporal logic [8, 9]. Temporal logic allows
the specification of constraints on events and continuous in-
tervals of time. Temporal logic can be used for writing formal
proofs on properties, data types and algorithms.

In 2009, Clock Constraint Specification Language
(CCSL) [2] was proposed as a standard to extend the Unified
Modeling Language (UML). This new addition is used to
describe relations between time instants in dense and discrete
time representations.

4. COMMON APPROACHES IN DES
Discrete-Event Simulators usually represent time with one

of the following data types: floating-point, fixed-point, inte-
gers, or rational. Most of these data types are native to pro-
gramming language and processors. Those not natively avail-
able can be easily implemented combining native ones. Nev-
ertheless, these data types have well-known limitations.
• Floating-point [4] cannot work properly with periodic

numbers (e.g. 1/3). They also lack closure under addi-
tion, which forces us to work with approximate results
when adding two numbers that are represented accu-
rately. And, they have no tracking mechanisms to detect
when an operation produced an approximate result.
• Integer and fixed-point (an integer with a fixed position

decimal point) have the issue of not being able to repre-
sent periodicity properly. In addition, they also have low
ability to deal with multiple scales, forcing the adop-
tion of a lowest common scale factor among all mod-
els. Using the lowest common scale factor introduces
space-time constraints. For example, the size of an in-
teger required for representing every value covered by a
floating-point is exponential on the size of the floating-
point exponent.
• The limitations of using rational numbers are not related

to periodicity, which is properly supported. The main

limitations are the complexity, which is higher than pre-
vious data types. The space complexity is affected by the
fact that rational numbers have multiple representations
per value. Thus, representing the same set of values re-
quires more space.

Also, neither floating-point, fixed-point, integer, or rational
support irrational number representation. They are approxi-
mated by programmers to the closest representable number
when programming models.

Any uncontrolled approximation can lead to three com-
mon timeline errors: time-shifting [14], event-reorder [14],
and Zeno [7, 8, 14].

The most common errors in DES timelines are the time-
shifting errors. We are in presence of time-shifting if events
occur slightly earlier or later than formally defined and their
order is not modified. Time-shifting errors usually have a mi-
nor impact or no impact at all on the simulation execution.

Other errors produced by approximating values are the
event-reordering errors. Here, events on the timeline are per-
muted and the partial order of events is erroneous.

Finally, the distance between two events in the timeline can
be defined as any real number, particularly those very close to
zero. Approximating time values close to zero may produce
zero. Thus, the advance of the simulation could stale because
of an infinite sequence of zero time-advances. Systems pro-
ducing this behavior were studied in concurrent systems. This
is called the Zeno problem [7, 8]. In some simulation for-
malisms, as DEVS, legal models [17] never reproduce Zeno
behavior. However, legal models can still reproduce the error
if time is approximated when computing the simulation.

Model correctness’ proofs are useless for detecting these
errors. Formalisms are agnostic about computation models,
and the errors are introduced by them.

Furthermore, event-reordering, and Zeno errors are practi-
cally impossible to predict. They may occur following irreg-
ular frequency patterns, which, in the worst case, will pass
undetected through the validation tests.

The problem of including irrational numbers on Time data
types for DESs is not new. Previous proposed solutions could
be categorized in two groups: interval arithmetic, and sym-
bolic solving. These solutions solve different subsets of rep-
resentation issues. However, they carry some new concerns.

In approaches based on interval arithmetic, each number
is represented by an interval rather than an exact value. The
main problem with interval arithmetic is the comparison op-
erations, they are not as decisive as with real numbers. It is
not possible to decide order of the values when the intervals
overlap. Additionally, since intervals are distances, summing
intervals is always incrementing in size.

The simulation current-time in DES is computed as a large
sum. This sum increments the length of the intervals until
overlapping cannot be avoided. Sometimes, such overlapping

results in non-decidable comparisons crashing the simulation.
In that case, the simulation can restart with smaller size in-
tervals. However, this does not guarantee to solve the prob-
lem. Intervals representing the same number always overlap,
whatever their size. In addition, DEVS defines especial func-
tions for handling simultaneous events. Being comparison by
equality non-decidable, the models never use these functions.
An example of this approach is the proposed in Rational Time
Advance DEVS (RTA-DEVS) [12].

Finally, in SymbolicDEVS [16, 17], it was proposed the
use of symbolic algebra to represent time. In symbolic al-
gebra, the numbers are represented by expression defining
them, the operations are defined as composition rules of
these expressions, and solvers are implemented to evaluate
comparisons when needed. This approach looks promising
in the sense of accuracy, but as far as we know, Symbol-
icDEVS [16, 17] was the only formalism using it. Here, the
expressions were limited to represent roots of polynomials.
The methods for solving polynomials have high complexity,
and there is no representation for transcendental numbers us-
ing them.

Symbolic Algebra is also implemented in several Mathe-
matical applications and libraries, but restrictions apply to
them. In these tools, when symbolical manipulation is un-
known for an expression, they operate using a fixed length
expansion of digits, which has the approximation problems
mentioned in Section 4..

We said in Section 2.2., it was proven in Computable
Calculus that comparisons of arbitrary expressions are non-
decidable [1], and using fixed lengths approximations is not a
valid solution. For example, in a one-digit expansion, π and 3
are considered equal, while we know they are different. How-
ever, this approach seems to be the most promising one, using
expression manipulation techniques allows, in some cases, to
detect relations between two expressions without the need for
expanding any digit. The equality problem can then be re-
duced for some well know expressions providing a way to
avoid falling into non-decidable operations.

An example to show how this method is effective is the
implementation of the comparisons of square roots of ratio-
nal numbers. In fixed-length or intervals it may not be pos-
sible to compare for equality the square root of 2 against the
square root of 2.00000000001 because they may be consid-
ered equal after a fixed-length rounding or they may produce
overlapping intervals when using interval arithmetic. On the
contrary, it is easy to compare them using Symbolic Algebra
manipulations, for example by comparing the two radicands.

5. PROPOSED REPRESENTATION
We mentioned, in Section 2.2., there are formal proofs

about numbers that are not computable. In addition, it was
proven for the general case that it is not possible to decide if a

computable number is rational or not, or sorting two of them.
However, even when it is proven that there is no solution in
the general case, we can restrict our set of numbers to obtain
satisfactory results.

In this section, we present a new data type. This data type
extend rational data types introducing well-known subsets
of computable irrational numbers. Our approach is inspired
of ideas from Computable Calculus, and Symbolic Algebra.
And, our main objective is to generate correct trajectories.

Our new data type represents a real with two components,
a rational and an irrational. For the rational component we
could use any rational data type with no approximation. For
the irrational part we use a composition of known subsets of
irrationals, and provide a method to construct them uniquely.
The reason for the unique construction is being able to decide
irrationality and equality by construction. Once we are able
to decide these two operations, the other operations can be
decided too.

For providing unique construction, we define the structure
of the data type as a tuple 〈r, I〉 where r is a rational number,
and I is a set of tuples ik = 〈ck,Ak〉 with ck a rational coeffi-
cient and Ak an expansion algorithm describing a computable
irrational number selected from a predefined set. This repre-
sentation can be interpreted as shown in Formula 1.

r+∑
i∈I

i.c · i.A

Formula 1: Irrational data types interpretation

Initially, we propose two subsets of irrational numbers, ra-
tional multiples of π, and rational multiples of eπ. We intro-
duce later, the irrational numbers obtained as square root of
integer and rational numbers (using integer exponents). We
consider these are a large addition to current state of the art.

For example, we can represent π as 〈0,{〈1,π〉}〉, 1
3

as 〈 1
3 , /0〉, and eπ

2 as 〈0,{〈 1
2 ,e

π〉}〉. If we need to add
these three numbers, the result can be represented as
〈 1

3 ,{〈1,π〉,〈
1
2 ,e

π〉}〉.

A = set of all irrational algorithms defined

d = dim(A),∀i ∈ N,0 < i≤ d,∀r ∈Qd

d

∑
j=0

r j ·A j = 0⇔∀ j ∈ N,0 < j ≤ d,r j = 0

Formula 2: Linear Independence over Q

The idea is to be certain that a number defined by an al-
gorithm cannot be described by the linear composition of the
others over Q. In the case of A having π and eπ, there is no ra-
tional number that can be multiplied or added to it in order to
make them equal or rational, the proof can be found in [11].

While we cover the requirements, we can keep introducing
new numbers, for example, we can use 〈π,eπ〉, or 〈π,

√
2〉, or

〈e,
√

3〉, or other useful combinations, for defining the set A,
and it can be defined in a simulation by simulation basis.

6. PROPOSED OPERATIONS
The first operation we are interested in is the addition. We

define the addition of two numbers as the addition of each
of their components. First, we add the rational components.
Second, we add the coefficients of each element in the irra-
tional component of the first operand with its matching part in
the second operand. This has low impact on the performance
of the addition operation. For instance, if we allow a single
irrational component, as rational multiples of π, we require
adding two rational values, the rational component, and the
coefficients associated to π. The addition complexity for this
is the complexity of 2 rational additions. In the general case,
the complexity of an addition is the complexity of dim(A)+1
rational additions, where A is the set of irrational constants
defined. Similarly, subtraction can be implemented in a com-
ponent by component basis.

The second operation we are interested in is the compari-
son by equality. The uniqueness of the representation can be
used to compare two numbers for equality just by looking at
their components. The complexity of this operation is also de-
pendent on the rational data type used, an equality operation
requires dim(A)+1 rational equality operations.

The third operation we are interested in is compare by
greater-than. This is the most complex operation requiring
multiple steps. The first step is checking for equality, if both
numbers are equal, we return false. The second step is dis-
carding the components that are equal, if we obtain a sin-
gle component that is not equal, which is the common re-
sult when operating with rational numbers, we can compare
the coefficient of the distinctive component for deciding. In
case more than one of the components are different, this is
the only moment we require algorithmic expansions of the
distinctive components. The distinctive components are mul-
tiplied by the coefficient and compared following the algo-
rithms described in [1]. The complexity varies depending on
the expansion algorithms of each component; in case we op-
erate between rational numbers, the complexity is only incre-
mented in dim(A) rational equality operations.

We show in Listing 1 a possible implementation of this data
type with support for 〈π,eπ〉 in C++. The code is only for ref-
erence, more sophisticated versions can be written allowing
selection by template parameters of the subsets being used,
and detecting conflicts between them, this would be a proper
approach for a production quality version.
class iTime{

rational _q, _pi_coef, _e_pi_coef;
const int get_digit_k(const int& k) const { ... }

public:

iTime(): _q{0}, _pi_coef{0}, _e_pi_coef{0}{}
iTime(const rational& q, const rational& pic, const

rational& epic): _q{q}, _pi_coef{pic}, _e_pi_coef
{epic} {}

iTime(const iTime& rhs): _q (rhs._q), _pi_coef(rhs.
_pi_coef), _e_pi_coef(rhs._e_pi_coef){}

iTime operator+=(const iTime& rhs){
_q += rhs._q;
_pi_coef += rhs._pi_coef;
_e_pi_coef += rhs._e_pi_coef;
return *this;

}

iTime operator-=(const iTime& rhs){
_q -= rhs._q;
_pi_coef -= rhs._pi_coef;
_e_pi_coef -= rhs._e_pi_coef;
return *this;

}

bool operator==(const iTime& rhs) const{
return (_q == rhs._q && _pi_coef == rhs._pi_coef

&& _e_pi_coef == rhs._e_pi_coef);
}

bool operator<(const iTime& rhs) const{
//working with a single coeficients
if (_pi_coef == rhs._pi_coef && _e_pi_coef == rhs.

_e_pi_coef)
return _q < rhs._q;

if (_q == rhs._q && _pi_coef == rhs._pi_coef)
return _e_pi_coef < rhs._e_pi_coef;

if (_q == rhs._q && _e_pi_coef == rhs._e_pi_coef)
return _pi_coef < rhs._pi_coef;

//checking integer_part of the numbers
bri l_rational = _q + _pi_coef * pi.rational() +

_e_pi_coef * epi.rational();
bri r_rational = rhs._q + rhs._pi_coef * pi.

rational() + rhs._e_pi_coef * epi.rational();
if (l_rational.numerator()/l_rational.denominator

() < r_rational.numerator()/r_rational.
denominator()) return true;

if (l_rational.numerator()/l_rational.denominator
() > r_rational.numerator()/r_rational.
denominator()) return false;

//checking decimal part of numbers
for (int i=0; i < MAX_ALLOWED_DIGITS; i++){

if (get_digit_k(i) < rhs.get_digit_k(i))
return true;

if (get_digit_k(i) > rhs.get_digit_k(i))
return false;

}
throw std::exception();

}
};

Listing 1: Irrational time

7. EXTENDING WITH PARAMETRIC SUB-
SETS

A third group of interesting irrational numbers to include in
our data type are the square roots. Here, we are not referring
to a single irrational number multiplied by a rational coeffi-
cient as in previous cases, but including a set of constants that
can each be multiplied by a coefficient.

We chose to extend with square roots because of their in-
tensive use in several areas, especially those including models
using geometry. To introduce these numbers, we need to solve
three problems: i) finding how they interact with the previ-
ously existing ones, ii) finding how to detect if the numbers

are rational, and iii) finding how to detect if the result of an
addition is rational. We will start discussing these problems
for roots of integers, and will later generalize it for rational
roots.

First, we know these new numbers do not conflict with
previously introduced irrationals because they are non-
transcendental. All numbers included before are transcenden-
tal, and it is impossible to obtain a non-transcendental num-
ber as the product of a rational by a transcendental irrational
number.

Second, not every square root of an integer is irrational. We
need to check if numbers being represented are irrational. For
that purpose, we obtain the prime factorization of the number
to be represented and check if any factor has an odd exponent;
if this is the case, we are in presence of an irrational number,
else we should derivate the representation to the rational com-
ponent.

Obtaining prime numbers factorization is an expensive op-
eration for large numbers. In some programming languages,
most of the complexity introduced can be palliated at compile
time. For example, using template meta-programming, the
prime factorization of the numbers used can be pre-computed.

To represent square roots uniquely, we simplify the expres-
sion factorizing the represented number as the product of a
rational by a square root of product of primes with exponent
1. The factors extracted outside of the square root are used as
coefficient of the irrational constant introduced. We show an
example representing

√
72 in Formula 3.

√
72 =

√
23 ·32 = 3 ·2 ·

√
2⇒ n = 〈0,{〈6,

√
2〉}〉

Formula 3: Representation for
√

72

In previous defined subsets 〈π,eπ〉 the digits-expansion
function did not require any parametrization. Here, we are
introducing a whole family of irrational constants that will
be introduced on demand to the set. The parameter for defin-
ing these constants is the integer value in the radicand. We
introduce a new pair coefficient and algorithm to the set of
irrational constants (A) for each radicand used.

For comparisons we operate as before, we iterate the irra-
tional constants and their coefficients, generating digits only
when needed.

For adding, we have three scenarios to consider: First,
when the addition produces a rational number; second when
the addition produces a result in the same set of irrational
square roots; and third, when the addition can not be mapped
to any radicand in the set of irrational square roots.

First case is not possible. Addition of two square roots re-
sult is rational only using perfect square radicands, we show
proof in Formula 4. Perfect square radicands are not irrational
square roots. Then, they are never defined using irrational

constants in our representation.

a,b ∈ Z,c ∈Q
√

a+
√

b = c⇒ a+b+2
√

ab = c2

2
√

ab ∈Q⇔∃d ∈ Z : ab = d2⇒ a =
d2

b
,

d√
b
+
√

b = c

⇒ d +b = c
√

b

c ∈Q⇒∃e ∈ Z : b2 = e

a =
d2

b
⇒∃ f ∈ Z : a2 = f

A and B have to be perfect squares

Formula 4: Proof that addition of square root is rational only
if radicands are perfect squares

In second case, if we have addition of equal radicand
square roots, we can operate with coefficients only. For ex-
ample, 2 ·

√
2+1 ·

√
2 = 3 ·

√
2.

In third case, it is possible to generate irrationals that are
not square root of integers using addition. We show an exam-
ple in Formula 5.

∃k ∈ Z :
√

2+
√

3 =
√

k⇒ (
√

2+
√

3)2 = (
√

k)2

⇒ 2+3+2 ·
√

2 ·3 = k⇒ 5+2 ·
√

6 = k

⇒ k−5
2

=
√

6

Absurd, because k ∈ Z∧
√

6 /∈ Z
Formula 5: Proof that addition of square roots of integers can
produce a new class of irrationals

If we do not include any other class of non-transcendental
numbers representation, it is safe to operate in a component
by component basis, adding matching radicand coefficients.
In the case a new class is introduced, as grade 4 roots, special
care has to be taken when operating to promote the addition
result to the right family of values.

An extension to represent irrationals obtained as square
roots of rationals is possible. For extending this way, we use
now prime numbers with exponents 1 and -1. Any other ex-
ponent requires factorizing and compensating using the ratio-
nal coefficients. In addition to previous concerns, we need to
check what happens when these new irrationals are added.

In Formula 6, we show proof that adding inverses never
produces a rational number.

In Formula 7, we show proof that it is possible outcomes of
adding irrational square roots of rationals is not representable
as the square root of a rational number.

Similarly to the family of square roots of integers, if we
do not include any other class of non-transcendental numbers

A⊂primes,B⊂ primes, |A|< ∞, |B|< ∞,

A∩B = /0,A∪B 6= /0, p,q,k ∈Q

a =∏A b = ∏B k = p
√

a
b
+q

√
b
a

k2 =p2 a
b
+q2 b

a
+2pq

√
ab
ba

=p2 a
b
+q2 b

a
+2pq

√
1

=
p2a2 +q2b2 +2pqab

ab
⇒k2ab = (pa+qb)2⇒ k

√
ab = pa+qb

absurd :k
√

ab /∈Q and (pa+qb) ∈Q

Formula 6: Proof that adding square root of inverses is irra-
tional

√
3
2
+

√
5
7
=

√
3
2
+

5
7
+2

√
15
14

=

√
31+2

√
15.14

14
=

√
31+2

√
210

14
√

210 /∈Q⇒ 31+2
√

210
14

/∈Q

Formula 7: Proof that addition of square roots of rationals can
produce a new class of irrationals

representation, it is safe to operate in a component by com-
ponent basis. In the case a new class is introduced, as grade 4
roots, special care has to be taken when operating to promote
the addition result to the right family of values.

8. EXTENDING THE DATA TYPE FUR-
THER

We have now basic support for irrational that may be ex-
tended or customized to support accurate simulation. The ap-
proach we discussed introduced a new subset of irrational
numbers at each step. We cannot do this for every irrational.
Not every subset is compatible with those shown before.

For example, it is not proven that π and e are linearly inde-
pendent over Q, then we are not certain that we can use both
safely together. Two approaches can be taken, first we can re-
move π from the set of constants when using e; second we can
set a limit for digits allowed to be expanded, and trigger an
error when an operation could not be decided after reaching
the expanding limit. We encourage the use of this limit even
in case that it is theoretically safe.

A stronger property than the one we required named Alge-
braic Independence over Q is explained in [11]. Several irra-

tional numbers have been proved to be Algebraic Independent
over Q; any of them can be used to extend our data type.

The same reasoning presented for square roots can be ap-
plied to any other subset of irrationals that need to be added,
for instance introducing cubic roots. We can use similar rea-
soning for extending the arithmetic operations provided by
the data type to something more than addition. We define
them following the algorithms defined in [1], and check the
results are always part of the original set. In case the results
are not part of the set, a new set needs to be defined dynam-
ically, as we do when we add two irrational square roots not
sharing the radicand.

9. PERFORMANCE EVALUATION
We implemented a set of experiments using a partial

implementation of the algorithms in C++11. The experi-
ments were compiled using clang-600.0.57 for x86 64-apple-
darwin14.1.0. We ran our experiments in a Intel core i7
2.8Ghz machine with 8GB of DDR3 ram.

Our experiments are focused in studying the use of the new
data type when operating only with rational numbers. Here
the operation of irrational coefficients is pure overhead, and
we want to measure this overhead.

In our experiments, we draw from uniform distribution ran-
dom sequences of thousand numerators and denominators be-
tween 1 and 10 and operate with them. We use the rationals
generated and run repetitions of adding and comparing them
using rational data type from Boost and iTime using rational
from Boost as internal representation for coefficients.

9.1. Results
In Figure 1, we show the impact of using iTime against

rational in additions. The overhead is constant and is lower
than 50%. Also, we can see that 10 million addition opera-
tions could be produced in less than a minute.

Figure 1: Comparison of rational vs iTime execution time
running addition operations.

Similar experiments were conducted for evaluating the
other operations.

For comparing by equality overhead resulted constant and
lower than 15%. In this experiment we could evaluate up to
500 million operations in less than 40 seconds.

For comparing by lower than, the overhead is constant and
lower than 25%. In this experiment we could evaluate up to
500 million operations in less than 40 seconds.

10. CONCLUSIONS
In this paper, we presented a method for representing time

values in simulators. We described the limitations of previous
approaches from the literature. In particular, we interested in
the lack of representation for irrational numbers.

Our new data type is based in concepts from computable
calculus. This new data type has the limitation of not allowing
arbitrary irrationals to participate in every operation. How-
ever, the method introduces significant increments to current
state of the art.

The method does not introduce significant overhead com-
pared to rational data types. The complexity is significantly
incremented only in scenarios where expanding digits for
solving greater-than comparison is a must. The complexity
in those cases is related to the complexity of expanding the
digits of the required constants.

We presented the four operations required for implement-
ing a DEVS simulator (+, -, <, =). In addition, we explained
how to extend to other operations. We introduced the subsets
of multiples of π, eπ, and the square roots of integer and ra-
tional numbers. We explained how to extend the data type to
support further irrational values. And, we provided a simple
performance test for the overhead introduced on simulations
that can be run with simpler old data types.

In the future, we plan to introduce the new data type to our
simulator [15] and experiment with new subsets of irrationals.

REFERENCES
[1] ABERTH, O. Computable Calculus. Academic Press,

2001.

[2] ANDRÉ, C. Syntax and semantics of the clock con-
straint specification language (CCSL).

[3] CHAITIN, G. J. A theory of program size formally iden-
tical to information theory. Journal of the ACM (JACM)
22, 3 (1975), 329–340.

[4] GOLDBERG, D. What every computer scientist should
know about floating-point arithmetic. ACM Computing
Surveys (CSUR) 23, 1 (1991), 5–48.

[5] GUPTA, V., HENZINGER, T. A., AND JAGADEESAN,
R. Robust timed automata. In Hybrid and Real-Time
Systems (1997), Springer, pp. 331–345.

[6] LAMPORT, L. Time, clocks, and the ordering of events
in a distributed system. Communications of the ACM
21, 7 (1978), 558–565.

[7] LEE, E. A. Constructive models of discrete and contin-
uous physical phenomena. Tech. rep., Technical Report
UCB/EECS-2014-15, EECS Department, University of
California, Berkeley, 2014.

[8] MALER, O., MANNA, Z., AND PNUELI, A. From
timed to hybrid systems. In Real-time: theory in prac-
tice (1992), Springer, pp. 447–484.

[9] MANNA, Z., AND PNUELI, A. The temporal logic of
reactive and concurrent systems: specifications, vol. 1.
Springer Science & Business Media, 1992.

[10] MOORE, R. E. Interval analysis, vol. 4. Prentice-Hall
Englewood Cliffs, 1966.

[11] PHILIPPON, P. Introduction to Algebraic Independence
Theory. No. 1752. Springer Science & Business Media,
2001.

[12] SAADAWI, H. Verification Methodology for DEVS
Models. PhD thesis, Carleton University, 2012.

[13] TURING, A. M. On computable numbers, with an ap-
plication to the entscheidungsproblem. J. of Math 58,
345-363 (1936), 5.

[14] VICINO, D., DALLE, O., AND WAINER, G. A data
type for discretized time representation in devs. In
Proceedings of the 7th International ICST Conference
on Simulation Tools and Techniques (2014), ICST (In-
stitute for Computer Sciences, Social-Informatics and
Telecommunications Engineering), pp. 11–20.

[15] VICINO, D., NAYUNKURU, D., WAINER, G., AND
DALLE, O. Sequential pdevs architecture. In Proceed-
ings of the TMS/DEVS 2015 (2015), SCS (The society
for modeling and simulation international).

[16] ZEIGLER, B. P., AND CHI, S. Symbolic discrete event
system specification. Systems, Man and Cybernetics,
IEEE Transactions on 22, 6 (1992), 1428–1443.

[17] ZEIGLER, B. P., PRAEHOFER, H., AND KIM, T. G.
Theory of modeling and simulation: integrating discrete
event and continuous complex dynamic systems. Aca-
demic press, 2000.

