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ABSTRACT 

Buildings occupy about 40% of the world’s energy consumption, accounting for 30% of total CO2 emis-

sions. The motivation to reduce energy consumption and associated greenhouse gas emissions from build-

ings has led to increased interest in building automation. Real-Time Discrete Event Modelling and simula-

tion presents an efficient way to design control systems for conservation of energy in buildings. We 

present a Building Controller built using the E-CD Boost library, that uses a DEVS model to control the 

lights and emergency systems of a building based on room occupancy and other inputs. This is a step in the 

development of model-based control systems to optimize energy consumption in buildings.   
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1 INTRODUCTION 

In developed countries, buildings account for about 20-40 percent of primary energy use nationwide (Pérez-

Lombard et al., 2008, Shakih et al. 2014) and about 25-30 percent of the world's CO2 emissions (Shakih et 

al., 2014, UNEP-SBCI, 2009). As the problem of energy performance in the building sector becomes more 

important, there is a need to improve processes for sustainably managing a building over its entire lifecycle 

—including design, construction, and operation.  

Reduction of energy consumption in buildings would result in a correlated decrease in Green House Gas 

(GHG) emissions (Kate Randolph et al., 2014). To tackle the problem of building emissions, there have 

been efforts to optimize new building designs as well as improve existing buildings for energy management 

in order to reduce emissions (Soares et al., 2017).  

In order to manage energy and hence reduce emissions effectively, there must be a way to control the 

operations of a building, for example, reducing the air conditioning when there is no one in the room (Chu 

et al.,2017). Such a control system would utilize computers, microprocessors and communication links to 

ensure proper operation of the building to meet the occupant's expectation while reducing energy 

consumption. (Levermore, G. J, 2000).  

There have been several methods proposed for developing building control systems, including conventional 

controllers, agent-based controllers, model-based controllers etc. Model-based controllers have gained 

attention among researchers over the last decade because of its flexibility in terms of testing and reusability 

(Shakih et al., 2014). Discrete Event Modeling for Embedded Systems (DEMES) is a structured model-

driven technique used to simplify embedded system development, increasing robustness and code 

reusability, all while decreasing the time spent developing (Wainer 2003, Niyonkuru and Wainer 2016). 

The DEMES method shows very good prospects, it promises model continuity which means preserving the 

model specification as much as possible during the development process and allows original models to be 
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deployed to the target hardware. The use of DEMES in the practical implementation of embedded systems 

especially with regards to smart building control systems and home automation is limited in literature.  

In previous work,  DEVS methodology for Real-Time (RT) systems using E-CD boost was presented with 

a simple case of a line follower robot (Niyonkuru and Wainer 2016). In this paper, using the line follower 

models as a starting point,  we apply this methodology to a more complex case study in order to evaluate 

the performance and limitation of the DEVS methodology for RT systems.  We propose the application of 

RTDEVS in the design and implementation of a smart building control system. This system will be modeled 

in DEVS, these models would be implemented in E-CD Boost and then the models would be gradually 

replaced with real hardware components while observing the behavior of our system in comparison with 

expected behavior.  

2 BACKGROUND 

Over the years several relevant smart building control systems have been proposed. (Nedelcu et al. 2009) 

designed and implemented a system in LabView to integrate different wireless technologies with wireless 

nodes to monitor various ambient conditions including temperature, lighting, and humidity. A similar 

system was also proposed by (Fernández-Caramés 2015) with the same tools but included intelligent power 

outlets to minimize power consumption. 

(Baraka et al. 2013) proposed a design that incorporated a network of sensors and actuators on an Arduino 

that retrieved information from the environment. This method made use of low-cost controllers and offered 

the advantage of reduced cost when compared to the LabView method. 

There have also been smart building control systems that were designed to work with android devices 

(Kumar 2014). With a Wi-Fi connection, individual devices can be connected to the internet and the user 

can control appliances remotely in order to minimize energy consumption. 

There has been significant development in terms of hardware quality and sophistication of control systems. 

However, most if these systems require rigorous design methods and significant cost implications, they are 

not reusable or interoperable (Suárez-Albela 2016) meaning the same effort would be needed for every new 

control system design. Another challenge is that the testing of these systems is complicated. 

Due to the increased complexity, scalability and heterogeneity of home automation systems, alternative 

approaches are needed to address these considerations. Model-based design methods provide solutions, but 

they are still limited to the initial stages and have limited practical implementation in literature. Real-Time 

Discrete Event Systems specifications (RTDEVS) methodology offers a unique way of making embedded 

system design simpler through formal modeling and direct application of the models to the real world. 

These models are re-useable and can reduce design time for future projects. RTDEVS is superior to other 

modeling techniques in this domain because it facilitates system verification because of its solid 

mathematical foundation, this is a challenge for other modeling techniques. (Niyonkuru and Wainer 2016) 

DEVS (Discrete Event Systems specifications) is a modeling paradigm based on general systems theory. A 

real system modeled using DEVS is composed of atomic and coupled models. Systems whose state can 

change upon reception of an external input event or due to the expiration of a time delay can be specified 

in DEVS. (Zeigler, Kim, and Prähofer 2000). DEMES is based on DEVS theory. The DEMES cycle starts 

by defining the relationship between the system requirements and its physical environment. The system is 

then modeled using formal DEVS. The models can then be formally validated and simulated by stubbing 

the sensor input data. When the simulations are satisfactory the stubbed sensors can be replaced with the 

actual sensors on the target platform (Niyonkuru and Wainer 2016). 

Embedded-CD Boost is a library written in C++ that facilitates the execution of DEVS models which are 

also defined in C++. The code can then be compiled for use on an embedded platform which  makes use of 

the C++ Boost libraries. E-CD Boost is based on DEVS and is suitable for Real-time embedded systems 



Earle, Bjornson, Boi-Ukeme, and Wainer 

because it provides a rich structural representation of components and a formal means to explicitly specify 

timing which is central to the Real-time system (Niyonkuru and Wainer 2015). For ease of use, the ARM 

MBED libraries are used for interfacing input/output devices. MBED uses a specific device's hardware 

while allowing the core program to be somewhat hardware agnostic. (Niyonkuru and Wainer 2015). 

2.1 Hardware Description 

The target system used for this work is a Nucleo F411RE, with an ARM Cortex M4 processor and 512kB 

of flash. This board is ideal for this project for a number of reasons; It has ample storage for the E-CD Boost 

project which compiles to approximately 175kB, it offers Arduino connectivity making it easier to use ST 

connectors, it is MBED enabled which allows us to move our model controllers to different microcontrollers 

without compromising the model, and allows for on-board debugging and programming. The Nucleo board 

also has Arduino compatible headers, with 5 analog I/O ports and 13 digital I/O ports. The Nucleo’s 

Arduino pinouts are shown in on the left Figure 1. (STM Electronics 2018) 

 

Figure 1: Nucleo Arduino pinouts (STM Electronics 2018) and Seeed Shield-Bot (Wikistudio 2018).   

In Figure 1, the image on the left shows the pinouts for the Nucleo board while the image on the right shows 

the Seeed bot. All the sensors and actuators used in this project will be connected to the pins on the Nucleo 

board either directly or through the grove ports on the Seeed bot. The Nucleo board was mounted on a 

Seeed Shield-Bot, shown in Figure 1 on the right. This is to use its battery as well as its IR sensors to 

determine room occupancy.  

Eight LEDs are used, four white LEDs, two red LEDs, and two green LEDs along with current limiting 

resistors. The LEDs represent room lighting and emergency exits. A Grove Light Sensor is used to detect 

ambient lighting in a room, a switch to represent a fire alarm, and a potentiometer to represent a 

thermometer. The potentiometer output is identical to the temperature sensor but simplifies testing. 

3 METHODOLOGY 

The objective of this project is to implement a Real-Time Building Control System using RTDEVS. We 

have implemented two controllers to create a smart building system. A description of the system of interest 

is shown in Figure 2. The architecture of the system includes two rooms fitted with lights, motion detectors, 

heat detector, an ambient light sensor, and a fire alarm switch. In line with DEMES, after the system of 

interest is identified, we model them in DEVS as atomic and coupled models, then the models are checked 

against expected behavior by running simulations. These models are then executed on the target hardware 

with the aid of a real-time executive. A summary of the modeling process includes conceptual model 

development, formal modeling with DEVS, implementation of the models in E-CD Boost and deploying 

the models directly to the target hardware. 
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3.1 Model Description 

A conceptual model of the system of interest is shown in Figure 2. The control model is designed to control 

the amount of lighting and the model response in case of an emergency.  The system would turn on lights 

in a room depending on the ambient light and occupancy. The emergency system includes a fire alarm and 

a heat detector located by two doors. Each door has two signs, one indicating that it is a safe path to exit 

and the other showing that it is unsafe. Although the controller cannot be seen in Figure 2, the logic behind 

the operation of the controllers is explained in Figure 3 and Figure 4. 

  

 
Figure 2: Conceptual Model of System. 

. 

The logic of the light control model can be explained with the state diagram in Figure 3, while that for the 

emergency control is explained in Figure 4. 

 

Figure 3: State Diagram for the Room Light Control Model. 

 
Figure 4: State Diagram for the Emergency Control Model. 

Figure 3 shows the state diagram for the light control model. It has seven states shown as circles and several 

transitions indicated by the arrows. The lights are either entirely OFF, left ON, right ON, or both ON. The 
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model will monitor the IR Sensor that detects room occupancy to determine which lights should be turned 

ON. These transitions are represented in the diagram as the X_IR signals, which are digital inputs to the 

system. There is also a Photo Detector (PD) that will decide if the lights should be dim or bright based on 

the ambient lighting in the room. The PD is an analog sensor, so it is compared to a threshold, if it is above 

the threshold then any occupied room would have bright lights, if below then the lights would be dim. The 

logic of the emergency control model can be explained with the state diagram in Figure 4. 

The state diagram shown in Figure 4 describes the four states for the emergency control model. The model 

starts in the idle state, with all the lights OFF. The transitions through the states on the left side of the image 

start when the switch is closed. The system will then enter an alarm state, with the switch's red LED and 

the temperature sensor's green LED lit up. If the temperature sensor then reports a voltage above the 

threshold it would sound an alarm, causing its light to switch from green to red. 

3.2 Controller Model Description 

This section describes the structure of the coupled models, which includes; the top model, the emergency 

model, and the room lighting. The top model is shown in Figure 5. 

 
Figure 5: Top Model. 

Figure 5 shows the top model which consists of two controllers, the room LED controller which is 

responsible for the room lighting and the emergency LED controller which is responsible for emergency 

control. There are five inputs to the model and eight outputs as shown. The operation of the components of 

the top model would be discussed in a later section of this paper. The Emergency LED Controller is made 

up of several atomic models as shown in Figure 6. 

 

Figure 6: Emergency Control Model. 
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The Emergency control model shown in Figure 6 consists of five atomic models including fire sensor 

controller, fire alarm controller, alarm monitor, and emergency LED controllers. There are two inputs to 

the model and five outputs. The two Sensor Controller blocks interpret the input and determine if an alarm 

should be raised. The Alarm Monitor block does an OR operation on the Sensor Controller outputs, raising 

the alarm when any sensor triggers an alarm. The Emergency LED Controller turns on the red LED in 

response to a sensor alarm. If its sensor is off and the Alarm Monitor’s alarm is triggered, then the green 

light is turned on. If neither of the input alarms are triggered thenboth lightsare turned off. The Alarm Out 

port goes to the Room LED Controller, shown in Figure 5. 

 

Figure 7: Room Light Control Model. 

The Room Light model shown in Figure 7 consists of five atomic models including three sensor controllers 

and to LED controllers. There are four inputs to the model and four outputs from the model, the IR Sensor 

Controller will read a 0 when a line is present (the room is occupied) and output accordingly. The Light 

Sensor Controller checks if the ambient light in the room is above a threshold and sends an output depending 

on whether the room is dark or bright. Room LED Controller turns both lights on if the Alarm Out port is 

triggered, or if the room is occupied and the light sensor says it is dark. If the room is occupied and the light 

sensor says it is bright then it turns on one light.  

3.3 Circuit Design 

In addition to the major hardware discussed in section 2,  external circuitry was designed. This includes the 

LED circuits for the LED controller and Emergency Controller.  

 

Figure 8: Room LED Controller Circuit and Emergency LED Controller Circuit. 

The fire alarm is represented with a simple switch. Pin D12 is used as an active low input and is set up with 

an internal pull-up resistor. Closing the switch grounds the port and activates the alarm. The temperature 

sensor was modeled for this case study as a 10K Ohm potentiometer as mentioned previously. 

 

Figure 9: Fire Alarm Circuit and Temperature Sensor Circuit. 

The Grove light sensor was interfaced with port A5 which outputs an analog value between 0 and 5V. The 

A/D converter on the board enables this pin to be read and determines the light intensity on the sensor. 
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4 IMPLEMENTATION 

This section describes the steps taken to implement the software in E-CD Boost and how the models are 

replaced by hardware.  

4.1 Software Implementation 

In this section we describe the steps taken to implement the models in E-CD Boost. Figure 10 shows a 

summary of the steps required for implementing the software.  

 
Figure 10: Software Implementation Steps. 

A new project is created and then the driver libraries for ARM Cortex M4 (MBED library) is added to the 

project. We declare the pins using the MBED library and set the enable pin for the motor low, allowing us 

to use pins D10-D13 for other components other than the motors. We define input controller models 

(Temperature Sensor Controller, Light Sensor Controller, and the Digital Input Controller) and define ports 

and drivers.  After the drivers have been defined and instantiated, the DEVS models are added to the project, 

the E-CD Boost tool already has a RT executive which  allows us to run the project in different modes. All 

source codes are compiled and if the build is successful the program image is uploaded to the flash memory 

of the microcontroller. 

The first stage of development was creating the models for state transitions. Once the models were validated 
using stubbed inputs, we connected the DEVS models with the hardware. The driver interfaces were used 
to map hardware sensors and actuators to model inputs and outputs. These  port definitions that connect the 
physical port drivers to the DEVS model are implemented after all the required ports have been instantiated. 
After this, the root model which defines the links between the control unit coupled model and the systems 
I/O port driver is created. The snippet below shows the port definitions that connect the physical port drivers 
to the DEVS model. First, all the required ports are instantiated. 

// Input ports    
auto light_left = make_port_ptr<LIGHT_IN_LEFT<Time, 
Message>>(); 
auto light_right = make_port_ptr<LIGHT_IN_RIGHT<Time, 
Message>>(); 
auto ambient_light = make_port_ptr<AMBIENT_LIGHT_IN<Time, 
Message>>(); 
auto fire_alarm = make_port_ptr<FIRE_ALARM<Time, 
Message>>(); 
auto temperature = make_port_ptr<TEMPERATURE_IN<Time, 
Message>>(); 

// Output ports   
auto room1 = make_port_ptr<ROOM1_OUT<Time, 
Message>>(); 
auto room2 = make_port_ptr<ROOM2_OUT<Time, 
Message>>(); 
auto emerg1 = make_port_ptr<EMERGENCY1_OUT<Time, 
Message>>(); 
auto emerg2 = make_port_ptr<EMERGENCY2_OUT<Time, 
Message>>(); 

 

The snippet below shows the root Model which defines the links between the control unit coupled model 

and the systems I/O port drivers.  
Time initial_time{Time::currentTime()}; 
erunner<Time, Message> root {ControlUnit, 

 

//External Input Coupling //External Output Coupling 
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{light_left,rctrl1}, 
{ambient_light,rctrl1}, 
{light_right,rctrl2}, 
{ambient_light,rctrl2}, 
{fire_alarm,actrl2}, 
{fire_alarm,actrl1}, 
{temperature,actrl1}, 
{temperature,actrl2}, 
  

{room1,rctrl1}, 
{room2,rctrl2}, 
{emerg1,actrl1}, 
{emerg2,actrl2}, 
 

The above declaration links the components (switches, LEDs and sensors) with the control model acting as 
a controller on the target hardware. The control model used on the target hardware is same one used to 
control the DEVS models in the DEVS simulator. This allows us to test and develop the control system 
independent of the hardware. Once the control model is complete it is linked with the port drivers and 
deployed using the real sensors and actuators. 

4.2 Hardware Implementation 

For the hardware implementation, physical devices replace models and the exact hardware that replace each 

of the described models in section 3 is described in this section. Before that, a brief description of ports and 

hardware is done in the component description section. 

4.2.1 Component Description 

The Seeed Shield-Bot platform has five infrared sensors that on board that was utilized to model room 

occupancy detection. These sensors were connected to the A0, A1, A2, A3 and D4 headers on the Seeed 

Shield and can be disabled with onboard dip switches. For this study, dip switches 1 and 4 were enabled to 

use the IR sensors on A0 and A3, while switches 2, 3, and 5 were turned off. 

Some simple external circuits were also needed as discussed in section 3. The room LEDs are driven 

through ports D6, D7, D8, and D11 skipping D9 and D10 as these are used to enable the motors on the 

Seeed Shield-Bot. The Emergency LED circuit is similar but utilizes ports D2, D3, D4 and D5, this time 

skipping D0 and D1 as these are used for USART debugging of the Nucleo board. This circuit also uses 

Red and Green LEDs as opposed to the white LEDs of the Room. The ports are and pins are shown in 

Figure 11. 

 

Figure 11: Seed Shield Showing IR sensors and Ports. 

4.2.2 Light Sensor Controller 

The light controller is made up of two sensors: a motion detector to know if the room is occupied and an 

ambient light sensor to determine how much light is required in the room. If the room is brighter then the 

light would be turned to fifty percent intensity. The two motion sensors are represented as the IR line finders 

on the shield bot. Room 1 occupancy is detected by the IR sensor on pin A0, Room 2 on A3. For simplic-

ity, we use one ambient light sensor, this is shown in Figure 12. The system checks if the ambient light is 

above a threshold. If it is, it will consider the room to be bright. If the room is bright then only one LED 
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will be on in an occupied room. If the room is dark, then both LEDs will be on in an occupied room.  The 

grove light sensor shown in Figure 12 outputs an analog value. This value is read using the onboard ADC 

and then passed as input to the sensor controller. Lighting that is above a certain threshold will mean that it 

is day. The threshold is determined experimentally using the hardware.  

 

 
Figure 12: Ambient light sensors. 

4.2.3 Emergency LED Controller 

The emergency control system is made up of a red and green LEDs for each door and two emergency 

sensors. The first emergency sensor is a switch. The switch is connected to a digital input pin with a pull-

up resistor, grounding it when active. The second is a heat sensor, raising the alarm when the temperature 

is above a safe threshold. The red LED will light up when the sensor’s alarm near that door is triggered. 

The green LED will light up if the alarm is raised but not by the sensor near that door. The green LED 

shows that this is a safe path to exit. Additionally, when there is an alarm raised, all the lights in the room 

are turned on. This will allow for maximum vision in an emergency scenario. This controller checks if its 

alarm is raised, if so then it will display the red light, depicting an unsafe path. If the system alarm is on but 

the sensor is not, then it will light up green to show it is a safe exit path. If neither input is high the LED is 

off. The LED connections are shown in Figure 13. 

 

Figure 13: LED circuitry. 

4.2.4 Temperature Sensor Controller and Alarm Circuitry 

The Grove Temperature Sensor outputs an analog value. This value is read using the onboard ADC and  

then passed as input to the sensor controller. The Digital Input Controller is used for the fire alarm switch 

and the IR sensor, they handle the input and send an update to the system when it changes. The Alarm 

monitor ensures that the alarm is raised if any alarm sensor is triggered. The alarm circuitry is shown in 

Figure 14. 
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Figure 14: Alarm Circuitry. 

5 RESULTS 

In this section, we describe the experiments carried out to test the operation of the system and the results 

obtained under different sceneries. The results are shown in Table 1. 

Table 1: Experiments and Result. 

Test/Experiment Input(s) Result 

Room 1 is occupied and there exists a 

bright ambient light 
• Input to IR sensor associated with 

Room 1 

• Light sensor above threshold 

One light in Room 1 turns on 

Room 1 is occupied and there is no ambient 

light 
• Input to IR sensor associated with 

Room 1 

• Light sensor below threshold 

Two lights in Room 1 turn on 

Room 1 and 2 are occupied and there exists 

a bright ambient light 
• Input to IR sensor associated with 

Room 1 and Room 2 

• Light sensor above threshold 

One light in Room 1 turns on and one 

light in Room 2 turns on 

Room 1 and 2 are occupied and there is no 

ambient light 
• Input to IR sensor associated with 

Room 1 and Room 2 

• Light sensor below threshold 

Two lights in Room 1 turn on and two 

lights in Room 2 turn on 

Fire alarm is pulled • Fire alarm switch Green light turns on at heat detector 

door, and red light turns on at fire alarm 

door indicating it is not a safe exit 

Heat detector activated • Temperature sensor above thresh-

old 

Green light turns on at fire alarm door, 

and red light turns on at heat detector 

door indicating it is not a safe exit 

Both fire alarm and heat detector activated • Fire alarm switch 

• Temperature sensor above the 

threshold 

Both exit lights turn red indicating both 

exits are unsafe 

 The results are tabulated in three columns as shown in Table 1, the experiments are done on various inputs 
and the output behavior is observed. The results obtained from various experiments carried out show that 
for each input tested the output behavior observed is consistent with the expected behavior of the system. 

6 CONCLUSION AND FUTURE WORK 

In this work, we have successfully modeled a building control system and implemented it on the target 

hardware using the E-CD Boost software. This shows that the DEVS methodology can be used to develop 

a small control system to control some appliances in a building, this is a step in the right direction towards 

building more complex and efficient controllers. Although energy reduction is not covered in this work, a 

model of a building has been done and this would provide the foundation to run simulations of different 
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control algorithms and different sensor configurations to find out how to best optimize energy. The building 

control system can also be extended to include more functionalities like identifying occupants with their 

mobile devices and controlling building appliances accordingly 

The method used is simple to implement and the models were preserved throughout the development 

process. It was also easy to compile models, test, debug and flash them into the hardware without much 

changes done to the original DEVS controller. The models used for a previous controller was the starting 

point for this project and the modifications to suit this project was trivial which further buttresses the point 

on reusability. 

However, there was a limitation encountered when instantiating multiple instances of one atomic model. In 

ECD-Boost all the models subscribed to receive inputs would listen to all inputs and check if input’s port 

matches the hardcoded port name for that individual model. If two models are instantiated, they will have 

the same port names and there will be no way to differentiate which message is for which model. A possible 

solution to this would be using the observer pattern where each output port has a list of input port listeners 

subscribed to get its messages. This way if many instances of a model exist it would be possible to separate 

the messages. 
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