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ABSTRACT 

Dense crowd simulations are being increasingly used for predicting congestion, planning protests and 

rallies, and threat assessment. It has been observed that human behavior is uncontrollable and often 

unpredictable; however, human motion is quite flexible over obstacles in their path and turn as per the need. 

These motions or the paths they take are majorly based on their individual personal space. Upon introducing 

these entities to a heterogeneous environment with vehicles, bikes, shopping carts and strollers, each with 

their own path and their own personal space, human motion drastically shift. Here we introduce a new set 

of models intended to study such behavior and try to mimic such situations.  

Keywords: Crowd modelling, Centroidal Particles Dynamics, Heterogeneous Crowds. 

1 INTRODUCTION 

Like other physically based phenomena that exhibit complex interactions between entities and vehicles or 

objects in heterogeneous environment overtime, crowd motion can only be practically simulated by 

numerically calculated methods, unlike analytical solutions (Cao et al. 2009). Simulation studies have been 

in different fields, and numerous models have been built for understanding of crowds and their interaction 

with the surrounding environment (Andrade et al., 2006). For instance, crowd simulation algorithms have 

been widely used to generate plausible effects in games and computer animation (Lister and Day, 2012) as 

well as to predict the flow of pedestrians in urban environments and architectural models. 

There is a substantial amount of research about the dynamics of such a compound system and well-

established approaches can be distinguished in the study of pedestrian modelling, including cellular 

automata (Sarkar 2000, Joel 2012). In CA models we can see bottom-top approach, where each entity was 

able to apply simple principles approach, including synthetic walking rules and obstacle transitioning 

perception to simulate crowd behavior in densely populated scenarios (Ivancevic et al. 2010). In CA 

methods, the space is typically divided into a uniform grid, where every cell can either be available, 

occupied by an entity, or represent an obstacle. Every cell’s future state is then determined based on the 

states of the cells in its local neighborhood. CA crowd models were rapidly developed and adopted, thanks 

to their parallel-friendly processing and inherent visualization (every cell is both the computational unit and 

the visual representation). Nevertheless, grid-based Eulerian evaluation of agent dynamics using discretized 

stepping and finite directions of motion does not faithfully reflect the fluidity of human motion trajectories. 
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In order to deal with these issues, we proposed Centroidal Particle Dynamics (CPD), an explicit 2D model 

of the dynamics of response to violations of personal space. It is implemented through autonomous 

Lagrangian agents, which emergently recreate global phenomenon observed in dense crowds. Here, we 

expanded are interested in expanding our previous research including behavior observation in a 

heterogeneous environment including vehicles, bikes, and entities with their own path and their own 

personal space. We will discuss the model approach, and we will present multiple scenarios, each pertaining 

to different vehicle moment pattern and varying in crowd count i.e., crowd density change. We include 

flexibility for adding foreign objects and simulating traffic scenarios. We made use of some of such 

scenarios and reviewed in-depth analysis of different case studies. The simulation results show we can 

combine vehicles and pedestrians in a way that resembles real-life scenarios. 

2 BACKGROUND 

Replicating human decision-making is an overly ambitious endeavor, never mind simulating an entire 

crowd of them. To this end, the abstraction of motion dynamics by generalizing observed phenomenon is 

necessary to achieving a computable result. This section presents a brief overview of the multitude of 

methods developed to tackle this problem. Historically, the earliest crowd simulation methods were 

macroscopic in nature, simulating aggregate behavioral patterns, rather than actual individual trajectories 

in the scene. They were based on adapting existing fluid simulation models to incorporate aggregate human 

motion parameters. Later, with improved hardware capabilities and modeling methodologies, the ability to 

simulate individual entity-to-entity interactions have become computationally viable. For instance (Kullu 

et al. 2017) discusses the influence of shared information between subjects and how that effects crowd’s 

behavior and movement. Similarly, the MENGA tool (Narain et al. 2009) has been used to simulate multi-

agents influencing crowds, discusses multiple ways of communication. By simulating multi-agents that 

influence crowd, communication between agents do not consider speech, language barriers or subtleties of 

human behaviors (resulting in a quasi-robotic behavior). In most cases the models are predefined with event 

types, confined environment, and fixed messages. Nevertheless, it is important to study situations where 

the agents are self-made, and new agents have no prior knowledge of scenario or environment to observe 

the change in their behavior.  

In (Rangel et al. 2017) the authors discuss a time-based model to develop a model using entropy based on 

pedestrian time restraints. Entropy is associated with the decisions made by individuals and they compare 

the results with density changes. Entropy can drop to zero under densely crowded situations, leading to 

homogeneous behavior. Dynamic pedestrian crowds, instead, should consider adaptation to the situation 

and flow conditions. Likewise, it would be important considering more parameters like pedestrian stamina, 

mental and physical state, or even physically handicapped situations. 

In (Hesham and Wainer 2017), we discussed various methods and models that are available. The 

Lagrangian-based method uses neighborhood detection; comparatively Eulerian method uses predefined 

and has direct accessibility (Zheng et al. 2016). In order to deal with these issues, we introduced the theory 

of Centroidal Particles where each agent knows their global path and uses personal space as boundaries 

while using directional vectors to set their route. An optimization technique is used to find the shortest 

trajectory. The idea is based on an American and French study on personal space in a normalized fashion 

and does not consider cultural or country variations in it (Pettré et al. 2009). The original research assumes 
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that every entity is fully aware of his surroundings actively. Nevertheless, this is not the case, for example, 

when pedestrians walk using smartphones or listening to music.  

The research in (Zheng et al. 2016) shows simulation on how humans react to various situations mainly 

navigation based on four main individual physiological treats. They conduct video analysis-based 

simulation to be more direct and objective and they use the RVO Library for simulation (Patil et al. 2011). 

Nevertheless, the RVO library parameters are limited and results in compromising decisions to assume two 

physiological characteristics into one parameter (Fabeković et al. 2007). Most simulations focus on 

behavioral patterns (Moussaid et al. 2011) and on understanding the human motions under stressful 

environments, such as evacuation procedures. (Huang et al. 2015) consider human rationality as a factor 

that impacts crowd evacuation model. 

3 EXTENDING CENTROIDAL PARTICLE MODELS 

As discussed earlier, our objective is to introduce heterogeneous crowd simulation, based on the Centroidal 

particle method. The CPD model has been built for simulation of homogeneous entities behavior analysis 

under variable density. The model includes the following components: 

 CentroidalSofticles includes the main setup scene method. Uses the setup scene method and 

draws the canvas with a declared number of entities. 

 Canvas includes the objects and knows how to render the entities linked with entities system and 

environment. It also has a private PGraphics surface and alters the entities destinations. 

 Entity consists of setters and getters of entities to update the position vectors, create entity forces, 

updating entity positions and destination vectors. 

 EntitySystem includes methods to define the entities initial positions, their direction of flow and 

destination. 

 Mods has the ability to insert custom shapes and foreign entities to current existing crowds, 

making the scene heterogeneous. It has the core definitions of modifying forces. We can add 

obstacles from a PNG image and draw the scene obstacles from the methods defined in this file. 

 RenderView consists of setters and getters of screen viewing properties.  

 Shape loads the objects from the specified OBJ files defined by users, creates a softicle shapes 

and calculate the centroid position. 

 Softicle consists setters and getters used by shape file for weight map and base shape.  

The CPD engine only includes individual entities that are homogeneous. Each entity is represented as a 2D 

circle and they're respective personal apace is represented by another circle overlapping the entity with a 

predefined radius. We extended the method in order to allow polygonal objects like vehicles and shopping 

carts. To do so, the selected object is represented with a 3D cones around the objects/polygons to resemble 

their personal space. To represent this personal space as a 3D cone around the 2D object can be staged by 

Minkowski sum approach (Pustylnik and Sharir 2003). The idea is that, for given two sets P and Q, the sum 

P ⊕ Q (Equation 1) is constructed by considering a secondary polygon on multiple segments around each 

vertex of the primary polygon. The segments of the convolution will form a number of closed polygonal 

curves, generally represented as convolution circles. Based on this convolution circles of P and Q polygons, 

we compute the winding numbers which represent the faces formed by Minkowski boundary depicted in 

Figure 1 (Lien 2007). 
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Figure 1. Minkowski sum representation of a triangle and a square. 

We defined the Minkowski sum by considering individual vertices of a given 2D object like a circle and 

generating 3D structured cones on each vertex.  

   

Figure 2. Representation of personal space of a disk with a cone through Minkowski sum. (a) cone with 

30 vertices; (b) disk with 20 vertices; (c) Minkowski sum. 

We generated a a Minkowski sum for a vehicle (in order to represent their personal space). First, we used 

an Autodesk Maya 2017 sample vehicle (obtained from 3dcad.com). After removing textures, we 

transformed the model into a mesh object to make it editable. Subsequently, we flattened out the object and 

drew another layer around the car. We implemented the Minkowski sum for all the vertices of the car model, 

representing the vehicle and the personal space of the car around it. 

  

  

Figure 3. Converting a sample vehicle. 

We followed this approach for other 3D models, and generated object files that can be used in our crowd 

simulation engine. 
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(a) Sports vehicle model. 

  

(b) Motorcycle model. 

  

(c) Ambulance model. 

Figure 4. Different models and approximation to work within the crowd engine. 

These models needed to be included in the heterogeneous environment, which is different from the 

traditional homogeneous setup (where the entities are all humans represented as circles). With heterogeneity 

and n-sided polygon profiles, we need to compute the geometric center of their shape, in order to account 

for irregular shapes and to allow them to stand still when no external forces are experienced. 

𝒗𝒐𝒓𝒐 𝒇𝒐𝒓𝒄𝒆 =
𝐜𝐨𝐬 (𝟐𝐱)

𝟐
+ 𝟎. 𝟓 (1) 

The CPD method uses a global Personal Space Map (PSM) to mask over the defined space and to accelerate 

the nearest entity search by carefully pointing and calculating its short-range directional vectors. The Voro 

force is used to compute the response to a local violation to personal space. In order to balance the local 

response against the intended global path, we used a Voro force that has to be specifically defined such that 

the resultant path has to be either 1 or 0. Equation (1) represents this motion, and we integrated the equation 

into the net Voro force entity system to mimic a real life behavior, like the on observed in vehicles or 

objects. Here, the x in equation (1) is the angle between the local Voro force and the global path vector. 

The entities are modeled after this governing force in the form of a linear force in the direction of the 

centroid. Based on this approach, personal space uses a geometrical approach. It is computed over the entire 

defined scene of simulated obstacles, vehicles, and entities, as seen in figure 5. The resulting force f is 

formed from repelling the force of the personal space, denoted as the penalty force p, and the attraction to 
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the destination global force g. This calculated approach represents individuality, and it opens the possibility 

of parallel computing. This, in particular, is exploited for better acceleration of calculation and load sharing 

in GPUs or multicore CPUs. 

  

(a) (b) 

             
(c) (d) 

Figure 5. Representation of an entity experiencing a net force f from global path force g and Collison 

penalty force p. 

Figure 6 shows an example that shows the interaction between heterogeneous entities like the ones we just 

presented. This simulation scenario uses a minimal number of entities, and it shows the behavior of the 

entities and evaluates their interaction with each other. To experiment includes three vehicles and an entity 

that is trying to cross the path from bottom to top. The vehicles have no destination or desired path. Vehicles 

are self-propelled on their own in their desired straight path. We used the least squares algorithm to predict 

the next location and restrict movement, and also changed the center of gravity of each vehicle in the object 

files itself, as this unwanted moment is the source of irregular centroidal points. Changing each object’s 

centroid is necessary to make the vehicles stand still.  
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Figure 6. Objects displaying self-moving behavior in the scene without designated destinations. 

4 CASE STUDIES 

In this section we show the simulation results of various case studies with pedestrians, vehicles, and 

heterogeneous scenarios. Each simulation is run with fixed personal space radii ranging from 7 to 8 pixels 

to achieve the 0.8m ideal personal space radius. The crowds are positioned randomly across the scene for 

each simulation. An ideal case of all adults was assumed in each scenario along with equal personal space 

in the simulation scene. 

The first scenario shows a Motorcycle trying to pass through a dense crowd. In this scenario, a motorcycle 

is trying to pass through a dense crowd count of 100 from left to right while the half of the crowds are 

moving from bottom to top and the remaining 50 entities are trying to move from top to bottom.  

 
Figure 7. Motorcycle crossing through crowd moving in a bipolar direction. 

We conducted various simulation scenarios discussed in Table 1. After certain crowd count the vehicle 

moment duration from source to destination remains close to constant; the reason for this is the size of the 

crowd density around the moving vehicle. 

Table 1. Time taken for the Motorcycle to cross path depending on crowd count.  

Crowd count Average time consumed to reach the destination 

100 9.90 seconds 

300 12.28 seconds 

500 15.54 seconds 

900 15.91 seconds 

In the next set of experiments, an ambulance is trying to cross the path from left to right through entities 

moving in a bipolar direction. In Figure 8, we can observe a tail side empty space. As in real-world 
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scenarios, the crowd do not have any option to step aside from an ambulance that is passing. When this 

happens, we can notice that people do not tend to go behind the back of ambulance just because of available 

empty space. We can notice such emergent behavior in the simulation justifying the assumed geometrically 

defined forces and parameters for the simulation. 

    

Figure 8. Ambulance trying to pass through 200 entities; tail space caused due to the moment. 

   

Figure 9. Simulation with an ambulance trying to pass through 900 entities. 

 

Figure 10. An ambulance trying to pass through the dense crowd. 

In the next experiment, an ambulance is trying to cross the path by following a lane from bottom to top 

through the crowd that is standstill and uncooperative. This simulation is run with 300 entities with 

previously defined global parameters except for the standstill setting. The ambulance took 15.4 seconds to 

cross by following the designated lane.  
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Figure 11. A simulation where an ambulance trying to pass through 400 uncooperative entities in a lane. 

This simulation was run multiple times to get an averaged values of the vehicles crossing times. We changed 

the crowd count varying from 100 to 900 entities representing in the same scene, this increase in crowd 

count is used in this case to simulate dense crowd situations and behavior among the crowd under high 

reduction of personal space and the unwanted introduction of vehicle to the scene. 

Table 2. Amount of time taken for the ambulance to cross path depending on crowd count.  

Crow count Average time consumed to reach the destination 

100 10.19 seconds 

300 15.4 seconds 

500 22.94 seconds 

900 37.7 seconds 

 

The experiment shown in Figure 12 considers five vehicles in a two-lane space. The crowd is equally 

introduced in one-third quadrant from the left side and the right side one-third quadrant with 400 crowd 

count. The dispersion of crowd is randomized on every simulation run. The vehicle movement is fixed from 

south to north with individually designated destination positions. To simulate crowd interaction with 

moving traffic, there are barricades on both sides of the vehicles to simulate a road environment.  

The simulation demonstrates how the crowd interacts with a moving traffic, representing a truly 

heterogeneous environment. The barricades are forcing the crowd to take a detour and causing a stream of 

individuals. The entities are colliding with the vehicles personal space and altering their directional vector 

path as per geometrically defined voro force. Though the net force of combined entities is overwhelming 

the vehicle, the vehicle prefers to keep its destination vector and choose to ignore in recalculating its 

resultant destination path. Moreover, the entities are in a free flow and choose to favor the resultant Voro 

force derived from resulting vectors. This experimental simulation of such scenario is visually appealing 

and mimicking a real life like situation. This opens up the possibility of future opportunities in creating a 

multi-lane traffic junctions and traffic simulations that are highly customizable and scalable. 
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(a) (b) 

  
(c) (d) 

Figure 13. Two lane vehicles interaction with bipolar crowd movement. 

5 CONCLUSION 

We introduced an extension to the CPD model for crowd modelling and simulation that addresses the 

addition of vehicles, Motorcycles, obstacles entities into a single system; making it heterogeneous. We 

added the Minkowski sum approach, flexibility for adding foreign objects and simulating traffic scenarios. 

The developed engine displays potential to simulate multiple scenarios of vehicle and crowd interactions. 
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We made use of some of such scenarios and reviewed in-depth analysis on each case while keeping the 

global variables fixed as per defined geometrically derived variables and global path parameters. The tool 

used in simulating has the potential for prototyping interactive simulations and cross-platform flexibility.  

From the simulation results, the vehicles are leaving a trail of empty space upon forward movement which 

resembles a real-life scenario. Likewise, the simulation results show that upon increasing the density of the 

crowd, the vehicle moment is restricted. Based on this result we can determine which are the upper limits 

of the crowd density that will lead to a traffic jam situation. For future development, gathering more 

statistical data from real life events or social experiments will greatly improve the behavioral patterns used 

in these heterogeneous simulations. 
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