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ABSTRACT 

Recent studies have shown that awareness of occupants’ 

presence, location, and count can be used for optimizing 

building operations and management. We present innovative 

ideas on how to improve such building sustainability reduc-

ing CO2 emissions and energy consumption, through occu-

pants’ localization and tracking, and building occupancy 

count estimation. We propose to use Long Term Evolution-

Advanced Ultra-Dense-Networks to locate users and to esti-

mate the occupancy count. Furthermore, we discuss how 

awareness of occupants’ location and count will be inte-

grated into other parts of our project, namely, Building In-

formation Modeling (BIM), building simulation, design, ret-

rofitting, and studying occupant’s behavior. 
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1 INTRODUCTION 

There is an urgent need to improve processes for  sustainably 

managing buildings over its entire lifecycle. Sustainability 

needs to be considered in building design, construction, and 

operation. According to [3], buildings consume approxi-

mately 40% of the total primary energy use in the U.S. and 

Europe and 27.3% in China. Total building energy end-use 

is dominated by space and water heating. This is translated 

in approximately 40% of total direct and indirect CO2 emis-

sions [8]. There is potential to improve energy efficiency alt-

hough the total floor area is expected to grow by 60% by 

2040 (according to the Efficient World Scenario, by 2040, 

buildings could be around 40% more energy-efficient than 

today [8]). 

To achieve these improvements, buildings should be de-

signed, and run near-optimally to maximize performance and 

user comfort. Improving building control, operations, and 

management is low-cost and non-invasive, it can address in-

efficiencies and improve energy usage. For example, Natural 

Resources Canada’s Office of Energy Efficiency initiatives 

for existing homes saved 388,000 tons of greenhouse gas 

emissions and 3.991 PJ of energy [14]. Our research aims to 

improve building sustainability, investigating new methods 

that use Building Information Modeling (BIM), exploiting 

data obtained from different sources such as sensors, net-

work operator elements (such as Base-Stations) and user de-

ployed elements (such as Wi-Fi Access Points). The archi-

tecture of the proposed effort is presented in Figure 1. 

 

Figure 1. Software Architecture. 

As a part of this research, we are investigating standard met-

rics for evaluating the sustainability and resilience of build-

ings. These metrics will be used on all the phases of the pro-

ject: (1) in the design phase, as criteria to select the designs 

that meet the requirements; (2) in the optimization phase to 

evaluate the results of building simulations; and (3) during 

operation to adjust the building controllers.  

We use Generative Design to explore building designs (as 

BIM models) that satisfy all the design requirements. Once 

we have a set of designs, we run simulations to evaluate en-

ergy consumption, evacuation time, etc., including different 

user’s behavior (i.e. movement patterns, preferences, etc.). 
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These simulation results are used to select designs or to sug-

gest a reiteration in the design process. They are also used to 

build the control systems using the Discrete Event Method-

ology for Embedded Systems (DEMES) [21], which allows  

transforming models into the actual controllers used in build-

ings. The raw data from sensors, operator-deployed ele-

ments, and user-deployed elements are combined with sensor 

fusion algorithms to supply fault tolerance. Data extracted 

from the building is also used to generate Data-Driven Sim-

ulation and to populate the BIM models for building man-

agement.  

We present a part of this software architecture, namely, the 

set of methods proposed for occupant localization and track-

ing, and occupancy estimation. Recent studies showed that 

this is an important aspect for optimizing building operations 

and management [18], as awareness of these aspects can help 

to deliver building services (e.g., lighting) when and where 

needed. We propose using Long Term Evolution-Advanced 

(LTE-A) Ultra-Dense-Networks (UDNs) to locate and track 

occupants and to estimate their count. The advantage of this 

method over approaches based on sensor data (e.g. measure-

ment of CO2, camera data, humidity, etc.) is that it does not 

need to install and set up sensors in the building: LTE-A is 

already available for cellular communications. Our approach 

is expected to be accurate for occupancy estimation because 

LTE-A covers areas where Wi-Fi or Bluetooth devices can-

not. Additionally, the geographical area covered by cellular 

networks can provide valuable data. For example, we can 

track occupants to understand individuals’ movement and 

extract emergent behavioral patterns. 

We also detail how accurate localization and occupancy es-

timation can benefit other aspects of our software architec-

ture, such as the development of models and simulations of 

user behavior. We expect that having advanced building con-

trollers will increase comfort while reducing energy con-

sumption and CO2 emissions. These new methods for local-

ization will also provide accurate data for building retrofit-

ting and additional data for BIM models used for building 

management. For example, the data about the time slots 

when the corridors of a business building have minimum oc-

cupancy can help to schedule maintenance and cleaning op-

erations. Movement patterns from the students on a Univer-

sity Campus may suggest that the location of the food court 

is creating traffic on an area initially designed for study (i.e. 

an area that should not have traffic or noise). This infor-

mation suggests a change in the location of the study area or 

the food court, which could be used when retrofitting opera-

tions are needed in that area of the Campus. 

The data provided by these new localization methods are in-

tegrated into BIM models for visualization purposes. BIM 

models provide Digital Storytelling, i.e., digital techniques 

to create narratives that transform data into information for 

end-users. If we want to present our findings to non-special-

ized users or Architecture, Engineering, Construction, and 

Operations (AECO) professionals, we need to use a common 

language to all of them. There are visualization features pro-

vided by some BIM platforms that allow users to disseminate 

data interactively and intuitively. This includes diagrams, 

adaptive geometry, and interactive parameters, among oth-

ers. This way of disseminating the data allows to understand 

and interact with the results of the study. 

The rest of the paper is organized as follows. Section 2 dis-

cusses indoor localization and building count estimation. 

Section 3 describes how to use LTE-A UDNs for occupant 

count estimation, user localization and tracking. Section 4 

discusses user behavior on building performance, and occu-

pant count estimation, localization and tracking for the de-

velopment of user behavior models. Section 5 presents how 

BIM models benefit with this estimation and vice versa.  

2 BACKGROUND AND RELATED WORK 

Indoor localization is becoming important for location-based 

services, for instance, various mobile applications require ac-

curate location of running smart devices, which shows the 

importance of indoor localization. We propose to use indoor 

localization for building occupancy count estimation to pro-

vide energy efficient buildings. Reducing this significant 

portion of the world’s energy consumption [20] would help 

with energy shortage and reduce carbon footprints of build-

ings. In order to deliver building services to occupants in an 

energy-efficient manner, such services need to be provided 

in the correct time, location, and amount [4, 18]. This applies 

for a number of services such as lighting as well as heating, 

ventilating, and air conditioning (HVAC). 

Much work in the literature has been conducted on building 

occupancy estimation [4, 18]. Most of the existing work is 

based on data that is extracted from sensors deployed in 

buildings. This includes passive infrared (PIR) sensors, CO2 

sensors, temperature sensors, humidity sensors, pressure sen-

sors, RFID tagging, camera data, keyboard and mouse activ-

ities. Other localization and occupancy estimation methods 

are based on Wi-Fi and Bluetooth signal sniffing. Such meth-

ods either use data extracted from Wi-Fi access points or use 

designated devices to sniff Wi-Fi and Bluetooth signal from 

surrounding devices to estimate the position of these devices 

or estimate the number of devices in a building [24]. 

A cellular network is one where the last link to the end user 

takes place over a wireless radio link. The coverage area of 

the network is divided into smaller areas referred to as cells. 

Each cell is covered by a stationary transceiver that is called 

the evolved Node B (eNB) [2]. Voice and data communica-

tion between the network and User Equipment (UE) take 

place over radio frequency links between the covering eNB 

and the UEs. The part of the network that includes the eNB, 

UEs, and connecting frequency links is called the Radio Ac-

cess Network (RAN). eNBs are usually connected via a high-

speed wired network called the backhaul. 



LTE-A is standard for the 4th generation (4G) mobile net-

works introduced by the 3rd generation partnership project 

(3GPP) to satisfy mobile broadband services with higher data 

rates and Quality of Service [2]. Cellular and mobile net-

works witnessed an increasing demand for higher data rates 

and continuous growth of data traffic and number of sub-

scribers. Furthermore, the number of devices to be connected 

will continue increasing exponentially due to Internet of 

Things (IoT) applications that can be deployed over cellular 

networks (smart cities, autonomous vehicles, etc.). Network 

densification is a key technology to satisfy these demands; it 

is achieved by increasing the density of elements in the RAN. 

This includes operator-deployed and user-deployed elements 

to increase coverage, frequency reuse, and achieved data 

rates [10]. Ultra-Dense Networks (UDN) are expected to be 

widely adopted in the future, to the point where each UE 

might have its own serving element. 

Recent research considered employing the radio signals 

transmitted by LTE-A cellular networks for localization. The 

infrastructure of such systems is available for cellular com-

munications. Furthermore, it can provide accurate results due 

to the wide spread of mobile devices and the ability to detect 

them, which can provide accurate estimation of occupants’ 

headcount. The advantage of a cellular-based system is its 

wide availability and ability to cover areas where Wi-Fi ac-

cess points or Bluetooth devices are not available. The geo-

graphical area covered by cellular networks can provide val-

uable data. With cellular-based localization, occupants can 

be tracked over the area of interest (e.g., at the building or 

university campus). This can allow analyzing occupants’ 

movement and understand individual as well as emergent be-

havioral patterns. For example, the movement of students on 

campus can be analyzed to find the locations and times to 

reduce traffic jams. A large number of students on campus 

might all have to go through a certain corridor to get to a 

theater. Providing another way or entrance to the theater 

might improve the situation. As another example, analyzing 

such movement patterns of occupants might reveal that many 

occupants must move for a long distance during the day to 

get to a certain service (e.g., coffeeshop). These findings 

might help resolving such issue by introducing minor 

changes to building design. 

Several localization systems based on measurements from 

LTE signals have been proposed. In [16], a localization sys-

tem that employs Channel State Information (CSI) extracted 

from LTE signals was proposed. The system uses CSI meas-

urements for signal fingerprinting localization. Experiments 

in indoor and outdoor environments show that localization 

based on CSI from LTE signals can be used for both indoor 

and outdoor localization. The authors in [23] proposed a fin-

gerprinting approach for localization of UE in LTE-A net-

works mapping multiple radio channel parameters formu-

lated as a fingerprint vector and a geographical location. 

They employ a feature-extraction algorithm to identify 

unique channel parameters and use a neural network to build 

a fingerprinting database of channel parameters and UE lo-

cations. Results show that by using only one LTE eNB, the 

proposed technique provides a median error distance of 6 and 

75 meters in indoor and outdoor environments, respectively. 

The authors in [15] also considered employing the CSI from 

LTE signals for fingerprinting-based indoor localization. 

The authors propose a technique where the fingerprint con-

tains a vector that serves as the shape of the channel fre-

quency response instead of the CSI. The approach uses eNB 

signaling messages and does not need designated communi-

cation between the eNB and the UEs. The approach reduces 

computation complexity and memory requirements. 

In [11], the authors evaluate the accuracy of localization 

based on radio fingerprinting of LTE signals on 800 MHz, 

1800 MHz and 2600 MHz frequency bands. Field measure-

ments are conducted to collect training data that consist of 

UE locations and the corresponding received signal strength 

radio measurements from several base stations. Collected 

data are used to provide a fingerprint of the radio conditions 

at a specific location. The performance of two systems com-

posed of LTE and LTE+WLAN grid-based RF fingerprint 

measurements utilizing partial fingerprint matching were 

studied and compared. Obtained results show that partial fin-

gerprints that consist of LTE and WLAN radio measure-

ments improves localization accuracy by at least a factor of 

3.5x while keeping the percentage of discarded samples low. 

The work in [6] used Cell-Specific Reference signal meas-

urements from LTE signals for indoor localization to com-

plement outdoors localization systems such as Global Navi-

gation Satellite System. Two algorithms were used for local-

ization. The first one is a Time-Of-Arrival approach called 

the Threshold-to-Noise Ratio algorithm. The second one is 

an estimator that is more complex but also robust against 

multipath fading; it provides more accurate, robust and 

smooth results indoors, at the cost of increased complexity. 

All the research above considers LTE-A networks with 

macro cells, where a macro eNBs with high power provides 

the coverage for a wide geographical area and high number 

of users. In our work, we will studying the performance of 

localization over LTE-A UDNs. The availability of high 

number of elements such as femtocells and picocells are sup-

posed to increase the accuracy of localization over mobile 

networks for indoors environments.  

3 LTE-A UDN FOR OCCUPANCY ESTIMATION 

3.1 LTE-A UDN Scenarios 

New network architectures such as UDNs and Ultra-Dense 

Heterogeneous Networks (UDHetNets) are enabling tech-

nologies to meet increasing demands and achieve the re-

quired performance of 5G cellular networks [10]. With 

UDNs, the density of the operator-deployed and user-de-

ployed elements is reduced, improving coverage, frequency 

reuse, and achieving higher data rates. In UDHetNets, sev-

eral types of wireless access nodes are employed, and hence, 

macrocells are overlaid with low-power nodes such as Re-

mote Radio Head, Pico eNB (PeNB) and Home eNB. These 



smaller cells can be used to offload traffic, which improves 

the network coverage at the cell edge and increase data rates. 

The LTE-A Pro standard [1] proposes different scenarios for 

implementation of UDNs and UDHetNets. These include 

scenarios for UDNs where similar elements are employed, 

such as PeNBs, as well as heterogeneous scenarios where 

distinct types of cells coexist such as eNBs and PeNBs. 

 

 Figure 2. LTE-A UDN scenario A. 

Following, we list the possible scenarios considered in the 

LTE-A Pro standard [1]: 

• Scenario A-Indoor small cell deployment: this scenario 

consists of a single layer of small cells in an indoor envi-

ronment. This scenario is shown in Figure 2. 

• Scenario B-macro cell deployment: this scenario consists 

of a single layer of macro cells. 

• Scenarios C and D-Heterogeneous network of urban 

macro and outdoor small cell deployment: these contain 

macro cells coexisting with small cells. The two differ in 

the method of channel allocation for the two layers. 

Table 1. Transmission parameters for scenario A. 

Parameters Scenario A 

Type Indoor Hotspot (Figure 2) 

Layout Single layer 

Indoor TP: Number of TPs: N=8, N=12 

(optional) per 120m x 50m 

ISD 

(inter-site distance) 

20m, 30m 

Carrier frequency 3.5GHz 

Coordination cluster size 

for ideal backhaul 

All sites 

System Bandwidth 10MHz (50RBs) 

Channel model Channel model available in document 

TR 36.814 

We are interested in scenario A because our work is focused 

on indoor localization and building occupancy count estima-

tion. The transmission parameters for such scenario is pro-

vide by the LTE-A standard and presented in Table 1. These 

parameters will be adopted in our study. 

3.2 Methodology and localization approach 

We propose using the Channel Quality Indicator (CQI) or 

Received Signal Strength Indicator (RSSI) values sent from 

the UEs to the eNBs for localization. A fingerprinting-based 

method will be used where a database of pairs of locations 

inside the building and corresponding CQI or RSSI values 

will be first built. During the localization phase, we will es-

timate location from the built database. 

We propose simulating indoor LTE-A UDN scenarios. First, 

we will run simulation scenarios involving simple prototype 

floor plans. Afterwards, real building designs will be ob-

tained from existing BIMs to generate simulation scenarios 

automatically. Various BIMs developed to produce a digital 

campus at Carleton University contain various attributes 

(spatial, areas, volumes, and uses of the rooms), which can 

be used to create real simulation scenarios. 

As discussed in the next section, we will include occupants’ 

behavior and their personas. This can result in developing 

models for the movement of occupants. Such realistic move-

ment models can be used to create more precise simulation 

scenarios to study localization and count estimation. For in-

stance, a study of occupants may reveal that many occupants 

tend to sit close to windows during the summer. In such case, 

occupants will stay close to the edge of the building, which 

means that an accurate localization algorithm would be 

needed to produce an accurate count estimation.  

From these simulations, we will extract various data sets for 

the UEs locations and corresponding RSSI values as per the 

approach presented in the previous section. From the col-

lected data, we will build a fingerprinting database, and eval-

uate the performance of indoor fingerprinting localization in 

LTE-A UDNs. The localization accuracy as well as building 

occupancy estimation accuracy will be considered as the per-

formance metrics. Additionally, the performance of such 

scenarios will be studied and compared to those achieved in 

the case of a macro cell architecture. 

4 LOCALIZATION AND BUILDING DESIGN 

4.1 Occupant Behavior and Building Operation 

Occupants are one of the leading causes for the difference in 

predicted and actual energy usage in buildings [5, 22]. The 

knowledge of how occupants behave and interact within a 

context is not available to them. Such behavior is usually 

more complex than the assumptions made by the modelers. 

The modeling and simulation (M&S) community does not 

have access to the ‘lived experience' of the people, therefore 

they need to assume the possible set of occupants' behavior 

in the buildings. Furthermore, factors like socioeconomic 

conditions, available technology, environmental conditions, 

and temporal adaptations influence the occupant’s behavior. 

The context decides the interaction possibilities. Privacy lim-

its the possibility of understanding user behavior in build-

ings. Hence, measured data in buildings plays a crucial role 

in understanding occupancy behavior though it lacks quali-

tative interpretation. Various technologies are integrated in 

new buildings (e.g., sensors), and this makes various data 

30 m

30
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(e.g., CO2 levels) available to designers. IoT allows us to 

have access to certain information without invading occu-

pants’ privacy (e.g., their current activities). Though there is 

a limitation in assumptions for occupants’ behavior from 

measured data (like their perception or personal comfort), it 

could be used to improve design decisions. Our proposal fo-

cuses on creating and generating personas from measured 

data and build a model that optimizes the design based on the 

criteria [12]. The research goal is to use personas at the de-

sign stage and during building operation and automation. Us-

ing the personas at building operations will help the build-

ings to adapt sustainably. Likewise, the automation system 

could suggest efficient interactions based on the occupants' 

location. Additionally, it enables the building systems (like 

blinds, thermostat) to make dynamic changes to improve oc-

cupancy comfort and building performance. 

4.2 The use of personas 

During the design stage, building simulation can be used to 

analyze lux levels or temperature in a room, and the behavior 

of occupants for those conditions. However, during building 

operation more precise parameters can be defined through 

LTE-A. A qualitative questionnaire or inputs can collect the 

occupants' preferences. The measurable and qualitative in-

formation can enable automation to fine-tune comfort level 

during building operation. Persona gives flexibility: the same 

personas used at the initial stages of design could be used 

with finer granularity in real-time to improve building per-

formance. The attributes are individual characteristics (age, 

clothing, activity, and role), comfort preferences (thermal 

comfort, visual comfort, and views), interactive behavior 

(blind, door, windows, equipment states), eco-behavior (ac-

tive or passive decisions made to save energy), and social 

behavior (socio-economic conditions and group dynamics). 

During operation, the occupants’ location enables us to make 

the spatial relationship with other measurable data like avail-

able interactions, room temperature, and lux levels. The au-

tomation can use the information to make effective dynamic 

changes. Further, occupancy count and tracking enable us to 

understand group dynamics like preferred location, most 

likely used space as a group and as an individual. All these 

pieces of information may help in refining building opera-

tion. The following section explains how the personas help 

in understanding the user behavior at the design stage. 

4.3 Personas for Occupancy 

Figure 3 illustrates the integration of personas to the model 

of a typical generative design (we limit the discussion to the 

parameters of the personas and not the whole generative de-

sign components). We propose defining the geometry using 

Dynamo [7] and Autodesk Refinery for Generative Design. 

The model runs energy simulation with the initial geometry, 

and then evaluates the output for occupant behavior. 

The personas are generated randomly using two main param-

eters: the number of occupants and the building type (see 

Figure 4). It creates different persona types for simulation 

and evaluation. Once the simulation is completed, the system 

runs fitness criteria for sustainable behavior goals.  

Fitness evaluation is performed using Discrete Event Simu-

lation. Once the performance data is updated, the model runs 

a fitness check on how the different personas will behave on 

those conditions. If their interactions with building elements 

and systems (like windows or thermostats) lead to more en-

ergy usage than the defined goal, the system modifies the ge-

ometry and reruns the process to produce an optimal design. 

Personas may be a solution to minimize the discrepancy be-

tween predictive and actual scenarios of use for energy use 

and comfort. Understanding the behavior of the occupants 

will affect the design decisions. Personas could be used in 

automated building to control thermostat, blinds, or lighting. 

 

 

Figure 3. Integration of personas to a typical generative design model 

using Revit/Dynamo/Refinery/DEVS. 

 

Figure 4. Conceptual model for generating personas 

4.4 Personas and localization 

The novelty of the idea is to use the personas with occupants’ lo-

cation, count, and tracking for building operation (see Section 3). 

In this section, we discuss the use of persona with the localization 

concept at a small geographical and quantitative scale (i.e., room 

or building, and individuals). Figure 5 shows the parameters con-

sidered to develop personas for automation purposes. 

 
Figure 5. Personas for building automation 



There are two categories for the collected parameters. First, 

the measured data (like blind state, room temperature) and 

second occupant’s preference data (like preferred light set-

tings). Based on occupant location, the automation system 

collects other corresponding data like room temperature, lux 

levels, and blind state. It compares the information with the 

preferences of the occupants to automate the blinds or ther-

mostat or any automated system. The automation can con-

sider the decisions at the individual level or collective level. 

It depends on the influence on its surrounding. For example, 

at a collective level, a person sitting close to windows may 

have more daylight compared to the person sitting on the far 

end. Hence, a person sitting at the far end may need more 

artificial light than the person sitting closest to the windows. 

Likewise, a person sitting closest to the window may feel 

colder during winter compared to the person sitting at the far 

end. Hence, considering the location and corresponding 

measurable data will help in refining occupant comfort.  

The comfort of an occupant needs to be considered at an in-

dividual level and a group level. 

5 BIM AND BUILDING OCCUPANCY SIMULATION 

We use BIM models as a host where to produce simulations, 

to apply building retrofitting concepts (using data extracted 

from the occupancy count estimation as a parameter in the 

model to inform future designs); and as a tool for digitally 

assisted storytelling (which refers to graphical dissemination 

of data and visual communication of the simulation results).  

 

Figure 6. Render of InfraWorks of the Digital Campus model. 

We built a BIM model of Carleton University campus, con-

sisting of a federated digital assembly of more than 50 build-

ings, roads, tunnels, landscape, etc. (Figure 6). The model 

includes many different layers of data received from various 

parties, some of which are anticipated to be beneficial for the 

three applications mentioned above [19]. 

5.1 Using BIM models for prediction 

To produce simulations, an architectural setting is needed; 

however, in some cases, it is not necessary to have a model 

that reflects an actual physical place. If one has an accurate 

virtual representation of a real building that contains all the 

attributes required for occupancy count estimation and track-

ing, one can replace the need for a physical one. For this rea-

son, a digital model was a more feasible alternative. The dig-

ital campus has all the essential elements required to run the 

simulations and has the potential of holding more parameters 

if it is required in the future. The campus BIM model con-

tains rooms with parameters for spatial attributes, such as 

their area, volume, uses, etc. It also contains walls, ceilings, 

floors and all the architectural elements needed to understand 

the space, as well as location and all the attributes of the 

eNBs. With these components, it is possible to simulate sce-

narios as accurate and as close to reality as possible. The vir-

tual representation of physical spaces and architectural ele-

ments creates a good environment for hosting both the sim-

ulation and the personas. 

The model can be used at different scales. At building scale, 

it is possible to understand the characteristics of the indoor 

environment. For example, one can simulate the impact on 

new buildings over existing buildings to predict the conse-

quences this new relationship is going to have over the occu-

pants of the existing space. Additionally, at campus scale, it 

is possible to visualize occupancy in relation to groups of 

buildings, circulation, services, shared areas, landscape, etc. 

This could be beneficial to larger scale planning strategies by 

producing a better understanding of campus use. 

5.2 Using collected data to inform design 

The second BIM application for this study refers to the use 

of data collected from the occupancy count estimation, as 

well as the behavior of people and their location in space to 

inform future designs. For example, every few years, the uni-

versity produces a campus master plans to set the parameters, 

policies and directions for the physical development of its 

campus. This master plan aim to set the basis for future de-

velopments, guiding them to be in harmony with the univer-

sity’s principles. Having a better understanding of the occu-

pancy, behavior and location of people on campus could help 

designers to generate better and more accurate master plans. 

For instance, the campus that we used to run the simulation 

in this study has tunnels to connect different buildings during 

the winter months. Should the collected occupancy data re-

veal one tunnel having more intensive use than another, the 

designers can respond to this information, potentially widen-

ing tunnels, reducing others, or even building new ones to 

reduce congestion in future master plans. Another applica-

tion could be to define the dimensions of new spaces. For 

example, if a space demonstrates a greater occupancy than 

expected, a similar typology in a new building could be de-

signed taking into consideration the results of the simulation. 

Additionally, it could help to make decisions regarding ma-

teriality: designers could pick stronger tiles for a floor that 

proves to be used more intensely than another do, or to re-

duce the dimensions of beams supporting a space that is not 

as frequently occupied. In both cases, the process may result 

in using materials and elements that are better fitted for their 

use, thus making them more durable and cost-effective in the 

construction of new buildings. The collected occupancy data, 

treated as a parameter in the BIM model, could become ad-

ditional information for HVAC system designers (see Figure 

7). Here, optimal systems and equipment for the ventilation 

of a new building can be developed, taking into consideration 

the potential use of its spaces. Finally, the data could be used 

through the BIM model for operation and maintenance 

(O&M). It is becoming increasingly common for Facility 



Managers (FMs) to use BIM models to operate buildings. In-

tegrating real time collection of occupancy data such as lo-

cation and behavior into a BIM model, could help FMs better 

understand the use of different spaces, enabling a higher ef-

ficiency of O&M management [17]. 

 

Figure 7. Mechanical, Electrical and Plumbing model (MEP) of the 

Health Science Building (digital campus model). 

5.3 Digital Assisted Storytelling 

Digital Assisted Storytelling refers to the use of digital tech-

niques to create narratives that disseminate information and 

ideas. BIM platforms, such as Revit, provide powerful visu-

alization features that allow users, through two or tri-dimen-

sional geometry, to display data in intuitive and interactive 

ways. This includes diagrams, adaptive geometry and inter-

active parameters, among others. This way of disseminating 

the data obtained through simulation could help non-special-

ized users or those without any AECO background to under-

stand and interact with the results of the study in real-time. 

 

Figure 8. Simulated occupancy diagram. 

BIM helps to graphically disseminate the results of a simula-

tion in multiple ways; since the BIM model contains all the 

architectural and geometrical information of each building in 

the campus, the data could be displayed as floor plans, sec-

tions, elevations, axonometric views, renderings, etc. In 

Revit, through Visibility Graphic Display, it is possible to 

pre-set the expected visualization to update according to the 

changes in the data (Figure 8). One can also create View 

Templates that can adjust the properties of multiple views at 

the same time, making the process more efficient while also 

providing visual consistency. Furthermore, through Revit, 

one can use Dynamo, a visual programming tool, to manip-

ulate large amounts of data and complex geometry with great 

precision. With Dynamo, it is possible to manipulate the data 

and produce real time diagrams and graphs. This way of vis-

ualizing data helps us to better communicate the results of 

our simulation, making the information available to more 

people, and allowing better feedback and collaboration. 

Using a BIM model allows us to generate a bridge between 

complex technical language—which was required for the 

simulation—and the common designer or user. This commu-

nication enriches the process of Storytelling. As the architect 

and scholar, Marco Frascari wrote: “Buildings are not expe-

rienced as data ‘fed to passive spectators’ but, instead, are 

experienced culturally through the stories found embodied in 

buildings and retold by architects… the real architectural 

craftsmanship is the crafting of a good story” [13]. Data, on 

its own, has no real power to generate an impact on people, 

or to have a deep implication towards their experience; the 

real power is in the story that one is able to tell or to graph-

ically display. We are facilitating the understanding of com-

plex processes in a simplistic and didactic way.  

When working on multidisciplinary projects, it is important 

to maximize the diverse capabilities of each team member. 

Indeed, for a group composed by professionals and academ-

ics with diverse backgrounds, BIM becomes an ideal tool to 

congregate technical analysis and qualitative results with a 

rich and intuitive visualization. “BIM has the untapped po-

tential to unhinge the link between instrumentality and archi-

tectural representation. For example, the capacity to simulta-

neously incorporate large and diverse sources and types of 

information, represent it in multiple formats, and react to in-

put in real time present an opportunity to develop modes of 

architectural representation that are in flux and responsive to 

the people, history, materials, and environment that contrib-

ute to the making of architecture.” [9]. BIM promotes collab-

oration and communication among professionals of the 

AECO industry and it has the capability to transmit the pro-

duced information massively and in elemental ways.  

6 CONCLUSION 

We propose the use of LTE-A UDNs to provide estimates for 

occupancy count and user location and tracking in buildings. 

We specifically proposed to use CQI or RSSI values from 

the UEs to the eNBs. To use this data, we are building a da-

tabase of pairs of locations inside the building and corre-

sponding CQI or RSSI values. We will use different algo-

rithms for the localization phase. We will also evaluate the 

performance of those algorithms and provide a comparison. 

We will evaluate them on different simulation scenarios cre-

ated from the information stored in BIM models. 



The advantage of using LTE-A UDNs over other approaches 

based on data collected over a network of sensors (e.g. CO2 

levels, camera data, humidity, etc.) is that it eliminates the 

need to install and set up sensors in the building. We reuse 

the LTE-A infrastructure that is already deployed for cellular 

communications. Because we do not need to deploy specific 

sensors for occupancy and user location, we expect that this 

approach will reduce the cost of the building equipment and 

its maintenance. Additionally, the LTE-A UDNs are main-

tained by the cellular service provider. We also expect that 

this method will provide better results than other methods 

that also use already deployed infrastructure for communica-

tions (e.g. Wi-Fi AP). As future work, we will validate this 

assumption comparing our proposed method with others 

based on Wi-Fi APs and Bluetooth.  

Having accurate occupancy count estimation, and user loca-

tion and tracking can have an impact in optimizing building 

Operation and Management. Employing occupancy detec-

tion and localization (using LTE-A UDNs) is being investi-

gated. We propose using occupancy data to optimize the op-

eration of the building through actuators and controllers 

(e.g., controlling HVAC systems). We also propose using 

both sensor data as well as occupants’ locations and count 

estimation to study occupants’ behavior and generate per-

sonas (e.g., movement patterns, preferred locations within 

offices, etc.) that are also used in the process of analysis and 

design of the building and its controllers through simulation. 

Furthermore, occupants tracking, and count estimation will 

be included as parameters in BIM models and visualized. 

Such data will be used to design future buildings with the 

same purpose as  the current building, or to generate designs 

during expansion or retrofitting of the same building.  
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