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ABSTRACT 

Complex models in science and engineering need better techniques to execute simulations efficiently. The 

Discrete-Event System Specification (DEVS) formalism, a well-known technique for modeling and 

simulation, has been enhanced by executing in parallel computers. Here, we present the design and 

implementation of a parallel version of the Cadmium DEVS simulator. We conducted empirical evaluation 

for executing the protocol in multithreading architectures and discuss performance by applying these 

techniques in real problems. 

Keywords: DEVS, parallel simulation, concurrency 

1 INTRODUCTION 

Discrete Event System Specification (DEVS) (Zeigler et al. 2000) is a well-known formalism for modeling 

and simulation where models are described in a hierarchical and modular manner. DEVS has been used for 

modeling and simulations of systems in multiple fields of study and there has been a growing demand to 

simulate complex models, leading to increasing execution times. There have been multiple attempts to 

achieve parallel executions of DEVS using parallel discrete-event simulation approaches, but, in practice, 

the resulting simulation architectures end up being very complex and several issues arise related to zero 

lookahead loops and correctness, in the sense that the correct result for the simulation cannot be achieved 

in every situation. 

In (Zeigler 2017), the authors introduce a simple high-level DEVS simulation protocol with parallel 

execution was presented, allowing multiple simultaneous transitions in the model to execute in parallel, 

while guaranteeing the correctness on the execution of the simulation. Here, we introduce a software 

architecture and an implementation of such protocol. We also discuss a few results obtained when studying 

the benefits of executing it in a parallel computer empirically.  

The implementation we present is aimed for shared memory architectures parallel computers, as recently 

they have become an industry standard and almost every personal computing device has multiple cores. In 

this context, multithreaded systems have become popular due to the efficient use of systems resources and 

low communication latency compared to distributed memory systems. Nevertheless, many new challenges 
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arise in the programming of these architectures: race conditions, synchronization and coordination 

problems, and context switching between the threads. 

We use the protocol proposed in (Zeigler 2017) and define a solution using shared-memory parallelism and 

the thread pool design pattern. It was built as a feature of Cadmium (Vicino et al. 2019), a DEVS simulator. 

We conducted an empirical evaluation to compare execution times of the sequential and concurrent 

implementations and a study of how different characteristics of the model affect speedup gains is presented. 

Both synthetic and real-life models were used to conduct experimentation. 

2 BACKGROUND 

In discrete-event simulation, the operation of a system is represented as an ordered sequence of events, 

where each event occurs at an instant in time. There have been different research efforts related to running 

discrete event simulations in parallel. The reader can find the main efforts in the Proceedings of the PADS 

conferences between 1990 and 2019, and an introduction to this field can be found in (Fujimoto 1999).  

The main methods presented in Parallel Discrete-Event Simulation (PDES) consist on the concept of 

Logical Processes (LPs) LPs act as the simulation entities, which do not share any state variables, and 

interact with each other through timestamped event messages. The major challenge in PDES is being able 

to produce exactly the same results as in a sequential execution. Synchronization among these LPs is 

violated when one of the LPs receives an event that is older than the current clock time of the recipient LP. 

Such violation is referred to as causality error. To deal with causality errors, different synchronization 

techniques have been proposed (Fujimoto 1990, Fujimoto 1999). 

In this work we focus on the parallel execution of DEVS simulations. In DEVS, atomic models provide 

behavior and coupled models provided structure. DEVS is a mathematical formalism that provides a 

theoretical framework to think about modeling using a hierarchical, modular approach. This formalism is 

proven universal for discrete-event simulation modeling, meaning that any model described by other 

discrete-event model formalism has an equivalent model in DEVS. In DEVS there is clear separation 

between model and simulation: models are described using a formal notation, and simulation algorithms 

are provided for executing any model. Parallel DEVS (PDEVS) (Chow and Zeigler 1994, Chow et al. 1994) 

was introduced to deal with tie-breaking of simultaneous events and better handling in when simultaneous 

events occur.  

To implement parallel DEVS simulations, there have been efforts on traditional optimistic (Liu et al. 2009, 

Nutaro 2009) as well as conservative approaches (Jafer at al. 2011). Nevertheless, as stated in (Zeigler 

2017), only some conservative techniques have been proven to exactly represent the behavior of the DEVS 

reference simulator, for example the ones presented in (Adegoke at al. 2013, Cardoen et al. 2018). This 

feature distinguishes DEVS from the numerous other simulation engines derived from the LP approaches, 

which cannot reproduce the behavior of the DEVS reference simulator in all scenarios. 

A different approach proposed in (Zeigler 2017) enables the execution of simultaneous events in parallel. 

The main idea behind this approach is to allow a simple and error free algorithm for the execution of DEVS 

simulations by identifying the tasks that are independent on the execution, and therefore can be executed in 

parallel guaranteeing a correct execution. The protocol consists in the following steps: 

1. Until a specified number of global transitions done 

2. Do global transition { 

3.   For each imminent model (own tN=global tN), compute output and send it to receivers (*) 

4.   For each active model (imminent and input receiver), compute state transition    

   (internal, external, confluent) (*) 

5.   Send own tN 

6.   Advance global clock, global tN = min active tNs } 

 

Steps 1 and 2 set the main loop for the simulation: it will finish after a sequence of global transitions Each 

global transition is a sequence of tasks where all the events occurring on a specific time are computed, and 
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the simulation time advances. In Step 3 the output function is calculated for every imminent model and the 

outputs are converted into inputs and send to the receiver components. This loop can be executed in parallel 

(*). In step 4, the receivers and imminent components compute their state transitions. The imminent 

components compute an internal transition if they do not receive any input, and a confluent function when 

they do. Receivers compute their external transition. This step can also be executed in parallel (*). In Steps 

5 and 6 each component sends the time for its next event and the minimum of then is calculated to advance 

the simulation time. 

The protocol guarantees the correct execution of the simulation in the sense that if the component models 

are DEVS models, then the result is also a well-defined DEVS coupled model. As it can be observed on the 

protocol, the execution time can be reduced by applying the parallelism on the execution of the simulation 

in two situations: 

• When multiple atomic models have their internal transitions scheduled at the same time, the output 

functions can be executed in parallel; after that, all internal transitions can be executed in parallel. 

• When the output of a model is connected to the input of one or more models, the internal transition 

of the first model can be computed concurrently with the external transitions of the receiving 

models. 

In (Zeigler 2017), a theoretical analysis was made, concluding that speedups are related to specific model 

characteristics, such as the level of activity defined as the probability of being imminent on a global 

transition. The level of coupling is defined as the probability of a model of receiving an external event. The 

theoretical analysis concludes that this protocol can achieve an execution time 60% higher on average than 

the best possible parallel execution with this simple parallel implementation which has little overhead. 

Nevertheless, no empirical results exist to show the actual speedups. 

Shared memory multiprocessor architectures are now standard in most devices, and multithreaded systems 

are popular (Hennessy at al. 2011). To program multithreaded systems efficiently several techniques can 

be used. One of the most used technique in well-known multithreading libraries like OpenMP (Dagum et. 

al. 1998) is the fork-join approach (Nyman 2016). In this technique, every time a part of the code can be 

executed in parallel, new threads are created and the work is distributed among them, when the parallel part 

concludes the threads are destroyed and the main thread continues with the execution. However, creation 

and destruction of threads require runtime memory allocation and deallocation that can end up affecting the 

overall execution time. A thread pool architecture (Schmidt et. al 1996) addresses this problem by creating 

a pool of threads that are reused between tasks, this means a set of threads is created only once at the 

beginning of the execution and they are always ready to execute the parallel parts of the algorithm. The size 

of the pool can influence the performance considerably; if the size is too small, the level of concurrency of 

the system would be suboptimal, and if is too large, the pool introduces an excessive amount of context 

switching and synchronization overhead. 

To evaluate the performance of our proposed datatypes empirically, we used the DEVStone synthetic 

benchmark (Wainer et al. 2011). This benchmark creates varied synthetic models with different structure 

that are representative of those found in real world applications. Hence, it is possible to analyze the 

efficiency of a simulation engine with relation to the characteristics of a category of models of interest. A 

DEVStone generator builds varied models using the following parameters: 

• type: different structure and interconnection schemes between the components. 

• depth: the number of levels in the modeling hierarchy. 

• width: the number of components in each intermediate coupled model. 

• internal transition time: the execution time spent by internal transition functions. 

• external transition time: the execution time spent by external transition functions. 

Internal and external transition functions are programmed to execute an amount of time specified by the 

user, which execute Dhrystones (Weicker 1984). The Dhrystone synthetic benchmark, intended to be 

Authorized licensed use limited to: Carleton University. Downloaded on May 16,2022 at 16:05:49 UTC from IEEE Xplore.  Restrictions apply. 



Lanuza, Trabes, and Wainer 

representative for system programming, uses published statistics on the use of programming language 

features, and it is available for different programming languages (C++, Java, Python, etc.). Dhrystone code 

consists of a mix of instructions using integer arithmetic; therefore, it is a good choice for analyzing models 

like DEVS in which we use discrete state variables. Any simulation tool based on a programming language 

in which Dhrystones can be defined and executed, can be adapted to execute the DEVStone benchmark. 

DEVStone uses two key parameters: d, the depth and w, the width, with which a DEVStone model of any 

given size can be implemented, where each depth level, except the last, will have w-1 atomic models, and 

each atomic model provides customizable Dhrystone running time. The inner model of such scheme is 

comprised of a coupled model that embeds a single atomic model. In general, being d the depth and w the 

width, we build a coupled model with d coupled components in the hierarchy, all of which consist of w-1 

atomic models (in the lower level of the hierarchy, the coupled component consists of a single atomic 

model). The model can be conceived as a coupled component that wraps w atomic components and another 

coupled component, which in turn has a similar structure. The connection with the exterior is done by one 

input and one output links. The input feeds the first coupled component; the coupled component then builds 

links from the single input each of its subcomponents. Non-hierarchical modeling and simulation tools can 

use DEVStone by defining d=0 and use a single-level model to test the performance. DEVStone uses four 

different types of internal and external structures: 

• LI: models with a low level of interconnections for each coupled model. Each coupled component 

has only one input and one output port. The input port is connected to each component but only 

one component produced an output through the output port. 

• HI: models with a high level of input couplings. HI models have the same number of atomic 

components with more interconnections: each atomic component (a) connects its output port to the 

input port of the (a+1)th component. 

• HO: models with high level of coupling and numerous outputs. The HO type models have a more 

complex interconnection scheme with the same number of atomic and coupled components. HO 

coupled models have two input and two output ports in each level. The second input port in the 

coupled component is connected to its first atomic component. 

• HOmod: models with an exponential level of coupling and outputs. The HOmod models increment 

the message traffic, and they exponentially explode the interchange of messages among coupled 

models. They use a second set of (w-1) models where each one of the atomic components triggers 

the entire first set of (w-1) atomic models. These in turn have their outputs connected to the second 

input of the coupled model within the level. With such interconnections, the inner model receives 

a number of events that has an exponential relationship between the width and the depth at each 

level. External events are forwarded by each coupled component to its w-1 atomic children and to 

its coupled child, and the process is repeated in each coupled module until the arrival to the leaf 

component. 

The implementation presented here is an extension to the Cadmium DEVS simulator (Belloli et al. 2019), 

which is an open source simulator written in C++ that implements a single-threaded sequential 

algorithmdescribed in (Vicino et al. 2015). Cadmium uses typed messages and typed ports, a time 

representation independent of the model implementation and it includes automated checking of some 

properties of the DEVS models for early error detection. 

As in many DEVS simulation tools, Cadmium is developed in a way that the user only defines the models 

and does not need to know the simulation execution details. The user defines the coupled and atomic models 

and then executes the simulation. In the case of Cadmium, this is done invoking a runner class, which, 

when initialized, creates a simulator for each atomic model and a coordinator for each coupled model. A 

simulator manages the state of the atomic model over the execution and triggers the atomic model’s 

functions and a coordinator handles intercommunication and synchronization between subcomponents 

(coordinators and simulators), as described in Figure 1. 
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Figure 1: A DEVS model defined by the user and the corresponding simulation instances. 

All message passing is done in a call/return fashion and the simulation is executed on a single thread. This 

design was proposed to guarantee predictable execution traces and to achieve efficient performance for 

single core computers by avoiding the overhead of message passing and synchronization between the 

simulation components, with the goal of make it predictable for real-time execution. 

Runner: 
Member variables: top_coordinator, next (time of the next event) 
run_until(t) { 
    while (next < t) { 
        top_coordinator.collect_outputs(next); 
        top_coordinator.advance_simulation(next); 
        next = top_coordinator.next(); 
    } 
} 
 
Coordinator (coupled model): 
Member variable: subcoordinators, eics, ics, eocs, outbox, inbox, next 
 
collect_output(t) { 
    for coordinator in subcoordinators: coordinator.collect_outputs(t)  
    outbox = route_messages_by_eoc(eocs) 
} 
advance_simulation(t) { 
    route_internal_coupled_messages_on_subcoordinators(ics) 
    route_external_input_coupled_messages_on_subcoordinators(inbox, eics) 
    for coordinator in subcoordinators: coordinator.advance_simulation(t) 
    next = min_next_in_subcoordinators() 
} 
 
Simulator (atomic model): 
Member variables: inbox, outbox, next, model 
 
collect_output(t){ 
    if (next == t) { outbox = model->output(); } 
} 
advance_simulation(t){ 
    executes state transition (int, ext, conf) if it should 
    update_next() 
} 

Figure 2: Runner component. 

Figure 2 shows the runner component. For each virtual time, the runner calls the collect_output function on 

the top coordinator, which recursively calls collect_outputs on its coordinators or simulators and fills its 

outbox according to the external output couplings (EOCs). All coordinators have the same behavior and the 

simulators fill their outboxes by computing the user-defined output function (only for imminent models). 
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When all outputs are collected and routed through EOCs, the runner calls advance_simulation on the top 

coordinator. The top and all other coordinators route the messages standing in the outboxes to mapped 

inboxes following the internal and external input couplings (ICs and EICs respectively). Afterwards, 

advance_simulation is executed on all children, and the time of the next event is updated to be the earliest 

event of all children. When each simulator is reached, it calls the user-defined state transitions (internal, 

external or confluence) depending on the current conditions, and updates the time of the next internal event 

according to the time advance defined in the model. When advance_simulation finishes executing on the 

top coordinator, the runner sets the current global time to be the time of the next event on the top 

coordinator. 

In the following section, we present an implementation of the concurrent DEVS execution by using the 

Later, we compare the execution time of the concurrent and the sequential version of the Cadmium 

simulator by executing DEVStone models and a real-life DEVS model of metabolic pathways. Additional 

experiments are done to determine the optimal size of the thread pool. 

3 PARALLEL CADMIUM ARCHITECTURE AND IMPLEMENTATION 

In this section, we discuss the algorithms defined and their implementation. The simulation algorithms were 

modified to run multiple threads to accelerate the execution. We analyzed the protocol using a task-based 

parallelism approach. For every global transition, we can see that the output functions of all the imminent 

models are executed concurrently, and then the same happens for the transition functions of all the active 

models (imminent and/or input receivers). If the model has many of components or many global transitions 

are executed, the number of tasks will grow. Also, as tasks are user-defined output or transition functions, 

they could have a short execution time. In order to avoid the overhead of creating and destroying threads 

for each task, our implementation uses a thread pool (basic_thread pool provided by Boost.Thread, a 

popular library for C++). To integrate the thread pool into Cadmium’s architecture, it was added as a 

member variable of the runner class, and when child coordinators are instantiated, they save a reference to 

that thread pool. When the coordinators execute the collect_output and advance_simulation functions, they 

submit the recursive calls to the thread pool instead of executing it in the same thread. 

On Figure 3, we show the concurrent coordinator. A helper function concurrent_for_each was defined to 

abstract the concurrent execution. This function submits all tasks received by the parameter to the thread 

pool, and the function does not return until all the tasks are finished. The execution of all tasks is guaranteed 

because in the worst case scenario (when all threads in the pool are busy) the current thread will execute 

sequentially. Figure 4 shows concurrent_for_each. 

Coordinator (coupled model) 
collect_output(t) { 
    concurrent_for_each(thread pool, subcoordinators.begin(), subcoordinators.end(), collect_outputs)  
    _outbox = route_messages_by_eoc() 
} 
 
advance_simulation(t) { 
    Route the messages standing in the outboxes to     
mapped inboxes following ICs and EICs 
    concurrent_for_each(thread pool, subcoordinators.begin(), subcoordinators.end(), advance_simulation) 
    _next = min_next_in_subcoordinators() 
} 

Figure 3: Concurrent coordinator component. 

Regarding correctness, it is trivial to notice that all the outputs functions (called in collect_output) are 

executed before all transitions (called in advance_simulation). What is not clear is that all the output 

messages are routed correctly through the couplings before calling the transition functions. For each 

coordinator in the coordinator tree, collect_output executes in all its children (if they are simulators, the 

outbox is filled with the result of the output function) and then the coordinator fills its outbox according to 

EOCs, leaving it full for the coordinator one level up. The advance_simulation function is not called until 
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the outboxes on all levels are full. Afterwards, for each level, the messages are routed through EICs and 

ICs before calling to advance simulation on its children (which end up executing the transition functions). 

The next event time is set correctly because it is calculated after the coordinators finish advancing the 

simulation and updating their next event time. 

concurrent_for_each(basic_thread_pool thread pool, ITERATOR first, ITERATOR last, FUNC& f) { 
 vector<future<void>> task_statuses; 
 for (auto it= first; it != last; it++) { 
 packaged_task<void> task(bind(f, *it)); 
 task_statuses.push_back(task.get_future()); 
 thread pool.submit(task); 
} 
while(!all_of(task_statuses.begin(), task_statuses.end(), future_ready))) { 
 // if there are tasks wait to be executed, the current thread executes one 
 thread pool.schedule_one_or_yield(); 
} 
// when concurrent_for_each ends, all tasks have been executed 
} 

Figure 4: concurrent_for_each function.  

4 EXPERMENTAL RESULTS 

In this section we present an empirical evaluation for the implementation proposed (which is available at 

https://github.com/SimulationEverywhere/). Several experiments were made in order to compare the 

concurrent solution with the sequential algorithm. Experiments involve studying execution times of 

DEVStone models to understand how different properties of the model impact the speedup of the parallel 

algorithm. The execution time of both implementations was also measured with a real DEVS model of 

metabolic pathways. Finally, speedup was studied in relation to the number of threads used in the execution. 

All the experiments were executed on a computer using an Intel i7 -7700 CPU with 4 cores and 

hyperthreading support for two threads per core. Unless specified otherwise, each experiment was executed 

using 8 threads, the main thread and 7 for the threads pool. This value was used because it is the number of 

threads specified by the hardware.  

For the first experiment, we executed DEVStone models type LI and HI using a fixed value for depth (D=5) 

and width (W=20), and a variable number of executions of the Dhrystone benchmark in the internal and 

external transitions of each atomic model. In all the executions, the number of internal transitions is equal 

to the number of the external transition. 

Figure 5 shows the execution time of an LI model using the sequential and the concurrent implementations 

and the speedup obtained by the concurrent version. Figure 6 shows the results of the same experiment for 

the HI model. In both models, when each transition function has a larger execution time, the time of the 

concurrent algorithm is much smaller than the sequential one, getting up to a speedup of 2 (50% of 

execution time). For smaller execution time of the transitions, less speedup is achieved and even in some 

cases, the sequential version ends up being faster than the concurrent. Also, the execution time in both 

algorithms seem to grow linearly as a function of the number of operations executed and for both models, 

the speedup gets up to a value around 2, and then remains constant. 

Based on the results of this experiment, we decided to study more in detail models with transition functions 

with a small number of computations. For this experiment, we simulated LI and HI models of different 

sizes and we set internal and external transitions to execute only one Dhrystone benchmark operation 

execution. Results are shown in Figure 7 for the LI topology and in Figure 8 for the HI. 

The results suggest that if the model is big enough, even when only small computations are done in 

transition functions, the concurrent algorithm will outperform the sequential. This behavior for large models 

could be explained by many tasks being sent to the thread pool queue in a short period of time. 

Consequently, when a thread finishes one task, it directly continues with the next one, already in the queue, 

and does not allow another process to run. For small models, the number of tasks that each thread executes 
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until they all must be synchronized is much smaller and could also lead to an unbalanced workload between 

threads. 

 

      Figure 5: LI model with Depth=5 and width=20.      Figure 6: HI model with Depth=5 and width=20. 

 

    Figure 7: LI model.                                              Figure 8: HI model. 

The next experiment is based on the predications from (Zeigler 2017) where is stated that the probability 

of a model being imminent, and the effect of coupling are two important parameters that affect the speedup 

of concurrent execution of the DEVS protocol. In the following experiment, we measure the speedup of the 

four different types of DEVStones topologies (LI, HI, HO, HOmod) and measure their level of activity and 

coupling. This was done using internal_cycles=2000, external_cycles=2000, D= 3 and W=40. 

We used two empirical metrics to evaluate the level of activity and coupling of models: 

• level_of_activity = (#internal transitions + #confluence transitions) / (#atomics x #global transi-

tions) 

• level_of_coupling = (#external transitions + #confluence transitions) / (#atomics x #global transi-

tions) 

The level_of_activity represents the estimated probability of a model having an internal transition at a given 

instant and the level_of_coupling represents the probability of a model receiving an input (which executes 

an external transition) at a given virtual time. 

On Table 1, a comparison between different DEVStone execution performance is presented. For all four 

types of DEVStone models, the concurrent version’s execution time is considerably smaller than the 

sequential. On the other side, levels of activity and coupling for all of them have very high values and do 

not seem to represent accurately most real-life DEVS models. 
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Table 1: DEVStones results summary. 

 Sequential 

execution time 

(s) 

Concurrent 

execution time 

(s) 

 

Speedup 

 

level_of_activity 

 

level_of_coupling 

LI 0.4870 0.2451 1.9868 0.923 0.911 

HI 9.5841 5.252250 1.8247 0.923 0.948 

HO 10.2476 5.8990 1.7372 0.923 0.948 

HOmod 212.8980 108.8790 1.9553 0.544 0.580 

 

To test our implementation on a real-world problem, we made another experiment where we compared by 

execution times of both algorithms on a complex real DEVS model of metabolic pathways (Belloli et al. 

2016). The model structure has 1608 atomic models and 23 coupled models distributed in 4 levels of 

hierarchy. Additionally, both metrics of level_of_activity and level_of_coupling were calculated for the 

model. 

The results from executing this problem are the following ones: 

• Sequential execution time (in seconds): 90.8599 

• Concurrent execution time (in seconds): 51.4995 

• Speedup: 1.7643 

• level_of_activity: 0.2585 

• level_of_coupling: 0.2665 

 As it can be seen, even though the metrics of the level of activity and level of coupling are much lower 

than for the different DEVStone topologies, there is still a considerable speedup in execution. 

In the last experiment, we measured the execution times of simulating DEVStones and the metabolic 

pathway models using different numbers of threads. DEVStone models of the four topologies were 

simulated using width=100, depth=5, internal_cycles=200 and external_cycles=200. 

Results are show in Figure 9. The total number of threads from the x axis includes the main thread and the 

threads from the thread pool. The DEVStone models seem to have a very similar behavior: if less than 5 

threads are used the sequential algorithm is faster than the concurrent one (speedup is smaller than 1) and 

for a larger number of threads the speedup grows until it reaches its peak with 8 or 9 threads. For bigger 

values the speedup declines. 

When the size of the thread pool is too small, the performance gains of using multiple threads declines and 

the overhead of the communication between threads becomes an important factor. If the number of threads 

used is too big, then scheduling overheads grow because of excessive context switching and memory 

resources are wasted resulting in a performance decline. The best value is close to 8 threads, which seems 

to be highly correlated with the number of simultaneous threads supported by the hardware. 

Results for the metabolic pathway model also show an important increase in speedup from using 2 threads 

to 3, but after that the slope declines and no considerable improvements are obtained by using more threads. 

This is related to the number of tasks submitted in each global transition and the internal structure of the 

model. 
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Figure 9: Speedup of DEVS models with different number of threads. 

5 CONCLUSIONS AND FUTURE WORK 

In this work we presented an implementation for the DEVS protocol to execute in parallel in multithreading 

architectures. We discussed the details in this implementation, and we show an empirical evaluation with 

benchmarks models and a real application. The results obtained show how this implementation can achieve 

lower execution times and therefore speedup over the sequential version. As future work we propose to 

evaluate this implementation on different multithreading architectures and to implement additional real 

applications to test the advantage of using this implementation. 
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