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ABSTRACT  

Complex models in science and engineering need better techniques to execute simulations efficiently. As 

we need high performance computers with many processors and memory to execute complex simulations 
faster, we face a problem with the consumption of energy. Therefore, we need new ways to define efficiency 
in simulations, measured not only in terms of computation time, but in terms of the amount of energy 
required to execute them. The Discrete-Event System Specification (DEVS) formalism, a well-known 
technique for modeling and simulation, includes simulation algorithms that allow running DEVS models 
in parallel computers. Nevertheless, no studies exist on the execution of DEVS simulations on parallel 

computers efficiently in terms of energy use. In this work, we show an energy efficiency evaluation of the 
execution of DEVS simulations on a shared-memory multicore architecture. The results presented show 
that executing in parallel can improve energy efficiency in these architectures. 

1 INTRODUCTION 

Discrete Event System Specification (DEVS) (Zeigler et al. 2000) is a well know formalism for modeling 
and simulation where models are described in a hierarchical and modular manner. DEVS has been used for 

modeling and simulations of systems in multiple fields of study and there has been a growing demand to 
simulate complex models, leading to increasing execution times. There have been multiple attempts to 
achieve parallel executions of DEVS using parallel discrete-event simulation approaches, but, in practice, 
the resulting simulation architectures end up being very complex and several issues arise related to zero 
lookahead loops and correctness. 

In (Zeigler 2017), the author introduces a high-level DEVS simulation protocol for parallel execution, 

allowing multiple simultaneous transitions in the model to execute in parallel, while guaranteeing the 
correctness on the execution of the simulation. However, this protocol has not been tested with empirical 
results on parallel computers. Nowadays, parallel computers are composed by multithreaded systems.  

Multithreaded systems have become popular due to the efficient use of systems resources and low 
communication latency compared to distributed memory systems. Nevertheless, many challenges arise in 
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the programming of these architectures: race conditions, synchronization and coordination problems, and 
resource allocation and management. In addition, time performance and energy consumption are two 
important characteristics of applications, especially when they are executed in parallel machines. The main 

objective in these architectures is to minimize the execution time on the execution of applications. However, 
the energy consumption is becoming a problem, as computers grow in size. 

The goal for the execution of simulations are maximum time performance and minimum energy 
consumption. The execution of a simulation can be done using different number of processors available in 
a multithreaded system. Executing with different number of processors can give different results both in 
terms of time and energy. In addition, it is not clear how many processors should be used to achieve the 

best performance per energy used.  
In this work we present an empirical approach these problems. We perform an energy efficiency 

evaluation executing the protocol presented in (Zeigler 2017), in parallel computers, and we discuss a few 
results obtained when studying the benefits of executing it in a parallel computer empirically. To perform 
the evaluation, we use an implementation that uses shared-memory parallelism and the thread pool design 
pattern. It was built as a feature of Cadmium (Vicino et al. 2015), a DEVS simulator. We conducted 

empirical evaluations to compare execution times and energy consumption varying the number of threads 
used. Both synthetic and real-life models were used to conduct experimentation. This work is an extension 
of the one presented in (Lanuza et al. 2020). 

2 BACKGROUND AND RELATED WORK 

In this section we discuss the related concepts used on this work. First, we discuss the protocol used to 
perform simulations. Second, we show how this protocol was implemented. In third place, we describe a 

benchmark to generate different models. Finally, we describe the energy efficiency approach used to 
perform our evaluation. 

2.1 Parallel DEVS Protocol 

In discrete-event simulation, the operation of a system is represented as an ordered sequence of events, 
where each event occurs at an instant in time. There have been different research efforts related to running 
discrete event simulations in parallel. The reader can find the main efforts in the Proceedings of the PADS 

conferences between 1990 and 2019, and an introduction to this field can be found in (Fujimoto 1999). 
 The main methods presented in Parallel Discrete-Event Simulation (PDES) consist of the concept of 
Logical Processes (LPs). LPs function as the simulation entities, which do not share any state variables, and 
interact with each other through timestamped event messages. The major challenge in PDES is being able 
to produce the same results as in a sequential execution. Synchronization among these LPs is violated when 
one of the LPs receives an event that is older than the current clock time of the recipient LP. Such violation 

is referred to as causality error. To deal with causality errors, different synchronization techniques have 
been proposed (Fujimoto 1990; Fujimoto 1999). 
 In this work we focus on the parallel execution of DEVS simulations. In DEVS, atomic models are 
used to define behavior and coupled models are used to specify the structure of the system under study. 
DEVS is a mathematical formalism that provides a theoretical framework to think about modeling using a 
hierarchical, modular approach. This formalism is proven universal for discrete-event simulation modeling, 

meaning that any model described by other discrete-event model formalism has an equivalent model in 
DEVS. In DEVS there is clear separation between model and simulation: models are described using a 
formal notation, and simulation algorithms are defined for executing any model. Parallel DEVS (PDEVS) 
(Chow and Zeigler 1994; Chow et al. 1994) was introduced to deal with tie-breaking of simultaneous events 
and better handling in when simultaneous events occur. 
 To implement parallel DEVS simulations, there have been efforts on traditional optimistic (Liu and 

Wainer 2009; Nutaro 1999) as well as conservative approaches (Jafer and Wainer 2011). Nevertheless, as 
stated in (Zeigler 2017) only some conservative techniques have been proven to exactly represent the 
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behavior of the DEVS reference simulator, for example the ones presented in (Adegoke et al. 2013; Cardoen 
et al. 2018). This feature distinguishes DEVS from the many other simulation engines derived from the LP 
approaches, which cannot reproduce the behavior of the DEVS reference simulator in all scenarios. 

 A different approach proposed in (Zeigler 2017) enables the execution of simultaneous events in 
parallel. The main idea behind this approach is to allow a simple and error free algorithm for the execution 
of DEVS simulations by identifying the tasks that are independent on the execution, and therefore can be 
executed in parallel guaranteeing a correct execution. The protocol consists in the following steps: 

 
 1. Until a specified number of global transitions done 

 2. Do global transition { 
 3.   For each imminent model (own tN=global tN), compute output and send it to receivers (*) 
 4.   For each active model (imminent and input receiver), compute state transition (internal, external, 

confluent) (*) 
 5.   Send own tN 
 6.   Advance global clock, global tN = min active tNs } 

 
 Steps 1 and 2 set the main loop for the simulation: it will finish after a sequence of global transitions 
Each global transition is a sequence of tasks where all the events occurring on a specific time are computed, 
and the simulation time advances. In Step 3, the output function is calculated for every imminent model 
and the outputs are converted into inputs and sent to the receiver components. This loop can be executed in 
parallel (*). In step 4, the receivers and imminent components compute their state transitions. The imminent 

components compute an internal transition if they do not receive any input, and a confluent function when 
they do. Receivers compute their external transition. This step can also be executed in parallel (*). In Steps 
5 and 6 each component sends the time for its next event and the minimum of then is calculated to advance 
the simulation time. 

 

Figure 1: A DEVS model defined by a user and the corresponding simulation components. 

The protocol guarantees the correct execution of the simulation in the sense that if the component 
models are DEVS models, then the result is also a well-defined DEVS coupled model. As it can be seen on 
the protocol, the execution time can be reduced by applying the parallelism on the execution of the 
simulation in two situations: 
 

• When multiple atomic models have their internal transitions scheduled at the same time, the output 
functions can be executed in parallel; after that, all internal transitions can be executed in parallel. 
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• When the output of a model is connected to the input of one or more models, the internal transition 
of the first model can be computed concurrently with the external transitions of the receiving 
models. 

 
 In (Zeigler 2017) a theoretical analysis was made with this idea, concluding that speedups are related 
to specific model characteristics, such as the level of activity defined as the probability of being imminent 
on a global transition. The level of coupling is defined as the probability of a model of receiving an external 
event. The theoretical analysis concludes that this protocol can achieve an execution time 60% higher on 
average than the best possible parallel execution with this simple parallel implementation. Nevertheless, no 

results have been shown on how the simulations will perform applying this idea. We propose to give an 
empirical evaluation from an energy efficiency approach. 

2.2 Cadmium Simulator 

The software that we will use to perform our evaluation is the Cadmium DEVS simulator (Belloli et al. 
2019), which is an open source simulator written in C++ originally designed to execute a single-threaded 
sequential algorithm described in (Vicino et al. 2017). Cadmium uses typed messages and typed ports, a 

time representation independent of the model implementation and it includes automated checking of some 
properties of the DEVS models for early error detection. 
 As in many DEVS simulation tools, Cadmium is developed in a way that the user only defines the 
models and does not need to know the simulation execution details. The user defines the coupled and atomic 
models and then executes the simulation. In the case of Cadmium, this is done invoking a runner class, 
which, when initialized, creates a simulator for each atomic model and a coordinator for each coupled 

model. A simulator manages the state of the atomic model over the execution and triggers the atomic 
model’s functions and a coordinator handles intercommunication and synchronization between 
subcomponents (coordinators and simulators), as described in Figure 1. 
 The simulation algorithms were changed to run multiple threads and accelerate the execution. For every 
global transition, we can see that the output functions of all the imminent models are executed concurrently, 
and then the same happens for the transition functions of all the active models (imminent and/or input 

receivers). If the model has many components or many global transitions are executed, the number of tasks 
will grow. Also, as tasks are user-defined output or transition functions, they could have a short execution 
time. In order to avoid the overhead of creating and destroying threads for each task, the parallel 
implementation uses a thread pool (basic_thread pool provided by Boost.Thread, a popular library for 
C++). To integrate the thread pool into Cadmium’s architecture, it was added as a member variable of the 
runner class, and when child coordinators are instantiated, they save a reference to that thread pool. When 

the coordinators execute the functions to collect the outputs and execute the transitions, they submit calls 
to the thread pool instead of executing it in the same thread. 

2.3 DEVStone Benchmark 

To perform our empirical evaluation, we used the DEVStone synthetic benchmark (Wainer et al. 2011). 
This benchmark creates varied synthetic models with different structure that are representative of those 
found in real world applications. Hence, it is possible to analyze the efficiency of a simulation engine with 

relation to the characteristics of a category of models of interest. A DEVStone generator builds varied 
models using the following parameters: 

 
• type: different structure and interconnection schemes between the components. 
• depth: the number of levels in the modeling hierarchy. 
• width: the number of components in each intermediate coupled model. 

• internal transition time: the execution time spent by internal transition functions. 
• external transition time: the execution time spent by external transition functions. 
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Internal and external transition functions are programmed to execute an amount of time specified by 
the user, which execute Dhrystones (Weicker 1984). The Dhrystone synthetic benchmark, intended to be 
representative for system programming, uses published statistics on the use of programming language 

features, and it is available for different programming languages (C++, Java, Python, etc.). Dhrystone code 
consists of a mix of instructions using integer arithmetic; therefore, it is an appropriate choice for analyzing 
models like DEVS in which we use discrete state variables. Any simulation tool based on a programming 
language in which Dhrystones can be defined and executed, can be adapted to execute the DEVStone 
benchmark.  

DEVStone uses two key parameters: d, the depth and w, the width, with which a DEVStone model of 

any given size can be implemented, where each depth level, except the last, will have w-1 atomic models, 
and each atomic model provides customizable Dhrystone running time. The inner model of such scheme is 
made up of a coupled model that embeds a single atomic model. In general, being d the depth and w the 
width, we build a coupled model with d coupled components in the hierarchy, all of which consist of w-1 
atomic models (in the lower level of the hierarchy, the coupled component consists of a single atomic 
model). The model can be conceived as a coupled component that wraps w atomic components and another 

coupled component, which in turn has a similar structure. The connection with the exterior is done by one 
input and one output links. The input feeds the first coupled component; the coupled component then builds 
links from the single input each of its subcomponents. Non-hierarchical modeling and simulation tools can 
use DEVStone by defining d=0 and use a single-level model to evaluate the performance. DEVStone uses 
four several types of internal and external structures: 

 

• LI: models with a low level of interconnections for each coupled model. Each coupled component 
has only one input and one output port. The input port is connected to each component but only 
one component produced an output through the output port. 

• HI: models with a high level of input couplings. HI models have the same number of atomic 
components with more interconnections: each atomic component (a) connects its output port to the 
input port of the (a+1)th component. 

• HO: models with high level of coupling and numerous outputs. The HO type models have a more 
complex interconnection scheme with the same number of atomic and coupled components. HO 
coupled models have two input and two output ports in each level. The second input port in the 
coupled component is connected to its first atomic component. 

• HOmod: models with an exponential level of coupling and outputs. The HOmod models increment 
the message traffic, and they exponentially explode the interchange of messages among coupled 

models. They use a second set of (w-1) models where each one of the atomic components triggers 
the entire first set of (w-1) atomic models. These in turn have their outputs connected to the second 
input of the coupled model within the level. With such interconnections, the inner model receives 
several events that has an exponential relationship between the width and the depth at each level. 
External events are forwarded by each coupled component to its w-1 atomic children and to its 
coupled child, and the process is repeated in each coupled module until the arrival to the leaf 

component. 

2.4 Energy Efficiency 

As mentioned in previous sections, our main concern in this work is to evaluate the energy efficiency on 
the execution of DEVS simulations. To achieve this, we propose in our approach to measure two parameters 
for every execution of a simulation with different number of processors: execution time (in seconds) and 
energy used to execute the simulation (in Joules). 

 To measure execution time there are several libraries available, some of them as tools implemented in 
operating systems. However, to measure energy consumption in the execution of programs, only some exist 
and very few have been proven to perform accurate measures. 
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 In this work we use the tool Running Average Power Limit (RAPL) (David et al. 2010; Hähnel et al. 
2012;). RAPL is a tool designed by Intel that allows to monitor energy consumption across different 
domains of the CPU chip, attached DRAM, and on-chip GPU with promising accuracy (Khan et al. 2018). 
RAPL is included in the papi library (Terpstra et al. 2010). An example of the execution of the RAPL 
component can be seen in Figure 2. Here we can see how different values can be obtained. For each 

multiprocessor the tool reports a PACKAGE value, in this example packages 0 and 1. For each package, 
the energy is measure for the processors (PP_ENERGY), main memory (DRAM_ENERGY) and the 
multicore and main memory combined (PACKAGE_ENERGY). In this work we use as the measurement 
for our evaluation the PACKAGE_ENERGY, as it provides the most complete information about the 
energy used on an application. 
 The energy efficiency of a program is defined as performance (i.e. floating-point operations 

(flops)/seconds) per energy unit (i.e Watts per second) (Rauber at al. 2017). To measure the energy 
efficiency, we will use a metric called Energy-Delay Product (EDP) metric (Horowitz et al. 1994; Rong et 
al. 2010): 
 
                                                       𝐸𝐷𝑃(𝑝) = 𝐸(𝑝) ∗ 𝑇(𝑝)                                                       (1) 

 

 Where p is the number of processors, E(p) is the energy consumed by executing with p processors and 
T(p) is the execution time for the application using p processors. When comparing different EDP values, 
smaller EPD indicates a better energy efficiency, a larger performance per energy unit. 

3 EXPERIMENTAL SETUP 

To perform our energy efficiency analysis, we used a desktop machine with an intel i5-9400 multiprocessor, 
with 6 cores and 16GB of RAM, in Figure 3 a graphical representation for the processor’s architecture is 

show. Figure 3 was made with the hwloc tool [23] (Broquedis et al. 2010). 
Our approach is to evaluate the execution of different problems on this platform by considering 

different number of threads on the thread pool for the execution of the Cadmium simulator. In addition, to 
evaluate the simulation executions on this platform, we use two types of DEVS models: synthetic models 
and a real-world model. 

In first place, we performed experiments using the DEVStone benchmark. A version of the DEVStone 

benchmark was used to execute in the Cadmium simulator. This way, DEVStone models were generated 
automatically. As detailed on Section 2.3, DEVStone allows to generate synthetic models that represent the 
structure of real-world models. The structure chosen for this evaluation, has 5 levels of depth, and a width 
of 100, to represent a complex model. The time for the internal and external transitions we chose is 100 ms. 
In addition, to evaluate different degrees of complexity on the models, we use all possible types of models 
that can be generated with DEVStone. Therefore, we consider four models, one for each type: LI, HI, HO 

and HOmod with the following parameters: 

Energy measurements: 

PACKAGE_ENERGY:PACKAGE0 176.450363J (42.9W) 

PACKAGE_ENERGY:PACKAGE1  75.812454J (18.4W) 

DRAM_ENERGY:PACKAGE0   11.450363J (2.9W) 

DRAM_ENERGY:PACKAGE1    8.450363J (2.0W) 

PP0_ENERGY:PACKAGE0   118.029236J (28.7W) 

PP0_ENERGY:PACKAGE1    16.759064J (4.1W) 

 
 Figure 2: An example of RAPL measurements. 
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Figure 3: Desktop platform with Intel i5-9400 multicore processor. 

• width = 100. 
• depth = 5. 

• internal transition time = 100 ms. 
• external transition time = 100 ms. 
 

 These 4 models have the same amount of atomic and coupled models, the difference is in the 
connections they have. As the connections increase between the subcomponents more computation is 
needed to execute them and therefore more time and energy is required to execute. 

 In second place, we perform our evaluation on a complex real-world problem: the study of metabolic 
pathways in biological cells. In biology and biochemistry, biological cells and their subsystems play a 
fundamental role and their study is essential. One of the main phenomena occurring in cells are called 
“metabolic pathways", a series of linked reactions that produce transformations of different metabolites 
(metabolites are small molecules, like hydrogen or oxygen, that are either consumed or produced by 
chemical reactions in the cell). These reactions conform the metabolism of the cells and their life; therefore, 

the study of this phenomenon has become popular in different fields related to medicine, biology, and 
healthcare, among others.  
 The model used in this work is the metabolic pathways for the E. Coli bacteria. This model involves all 
the information regarding the cell structure, enzymes and reactions involved in the E. Coli metabolic 
pathways. The DEVS model structure for this problem has 1608 atomic models and 23 coupled models 
distributed in 4 levels of hierarchy. This model is defined by stochastic behavior. More information about 

this problem and the complete model can be found in (Belloli et al. 2016; Belloli 2019). 

4 EXPERIMENTAL RESULTS 

In this section we present the results obtained when we executed the models described in the previous 
section on the multicore platform discussed in Section 3. The results from the experiments are show on 
Tables 1, 2, 3, 4 and 5. As expected. the DEVStone model that requires less time and energy to execute 
from all is the LI, followed by the HI, HO and HOmod in increasing model complexity order. 

 On Table 1 the results for the LI model are presented. For this model, the best result in time is obtained 
with 6 thread and the best result in energy is obtained by the sequential version. The minimum EDP is 
obtained by using 6 threads, and therefore the best energy efficiency. The speedup obtained with 6 threads 
is 1.6 and the energy consumed is increased 15.55% with respect of the sequential version. It is important 
to notice that using more threads is not always better, as using 2, 3 and 4 threads is worse in time and energy 
than the sequential version. 
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Table 1: LI model execution results 

Number of 

Threads 

Time 

(seconds) 

Energy 

(Joules) 
EDP 

1 1.011 21.795 22.041 

2 1.817 35.999 65.399 

3 1.250 30.260 37.825 

4 1.016 29.170 29.622 

5 0.798 27.655 22.078 

6 0.622 25.185 15.665 

 

Table 2: HI model execution results 

Number of 

Threads 

Time 

(seconds) 

Energy 

(Joules) 
EDP 

1 10.198 218.28 2226.061 

2 18.304 363.59 6655.260 

3 13.074 320.98 4196.492 

4 9.895 291.09 2880.527 

5 6.923 262.86 1819.990 

6 6.172 255.06 1574.464 

 
 On Table 2 the results for the HI model are presented. The best result in time is obtained by using 6 
threads. The speedup obtained with 6 threads is 1.65. To obtain this performance the configuration uses 
16.84% more energy than the sequential version, which achieves the minimum energy consumption. 

Nevertheless, evaluating the energy efficiency in terms of the EDP metric, the most energy efficient 
execution is obtained by using 6 threads, as this configuration is the best in terms of performance per energy 
used. 

Table 3: HO model execution results 

Number of 

Threads 

Time 

(seconds) 

Energy 

(Joules) 
EDP 

1 22.613 472.16 10680.019 

2 31.980 624.81 19981.995 

3 26.527 583.75 15485.452 

4 22.998 591.12 13594.742 

5 19.904 571.07 11367.017 

6 19.173 566.67 10864.947 

 
 The results for HO model are show in Table 3. As in the previous cases, the best results are obtained 
by using 6 threads in terms of time and by the sequential version in terms of energy. The speedup obtained 
with 6 threads is 1.17 and the energy used is 16.67% higher than the sequential version. In this case, the 

lower EPD is obtained by the sequential version. The difference between the 6 thread and the sequential 
execution is 1.7% in EDP. 

In Table 4 the results for the HOmod model are presented. Again, the best result in time is obtained by 
using 6 threads. The speedup obtained with 6 threads is 1.74. As in previous results, to obtain this 
performance, the configuration uses 15.14% more energy than the sequential version, which achieves the 
minimum energy consumption. But. evaluating the energy efficiency in terms of the EDP metric, the most  
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Table 4. HOmod model execution results 

Number of 
Threads 

Time 
(seconds) 

Energy 
(Joules) 

EDP 

1 468.807 9960.56 4669578.334 

2 909.233 15206.47 13826227.700 

3 657.079 15595.63 10247559.850 

4 479.343 14138.08 6776988.373 

5 308.811 12049.02 3720870.996 

6 268.409 11738.41 3150694.293 

 
energy efficient execution is obtained by using 6 threads, as this configuration is the best in terms of 
performance per energy used. 

Table 5. Metabolic pathways model execution results. 

Number of 
Threads 

Time 
(seconds) 

Energy 
(Joules) 

EDP 

1 116.081 2097.18 243442.382 

2 83.241 1925.06 160245.074 

3 63.113 1851.83 116875.102 

4 61.464 1930.13 118634.282 

5 60.751 1946.77 118269.358 

6 59.5151 1951.31 116132.409 

 

 Finally, the results for the metabolic pathways are presented in Table 5. Here, the best result in time 
and energy is obtained by using 6 threads, and therefore the minimum EDP is obtained by this configuration. 
The speedup obtained with 6 threads is 1.95 and the energy reduction is 7,47% compared to the sequential 
version. 
 These results show how using the same amount of threads as processors on the multicore, the best result 
is obtained in energy efficiency in almost all cases. Even in the cases when the sequential version obtains 

the minor energy consumption, the best performance per energy used is obtained by using 6 threads. 
Another important insight from these results is that in many cases using 2, 3 and 4 processors is worst in 
time and energy than the sequential version. 

5 CONCLUSIONS AND FUTURE WORK 

In this work we presented an empirical evaluation of the energy efficiency obtained by executing DEVS 
simulations in parallel in multithreading architectures. The results obtained show how parallel executions 

can achieve better performance than sequential version in terms of performance and energy consumption. 
Nevertheless, still more work is required to achieve more efficient simulations in time and energy. As future 
work we perform more implementation on different multithreading architectures and to compare the thread 
pool structure against other patterns for parallel programming, as the fork-join approach provided by the 
OpenMP library. 
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