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ABSTRACT 

In this paper, we propose using Multi-agent Reinforcement Learning (MARL) for distributed resource 

allocation in 5G networks. We consider the case where the resource allocation is performed by each User 

Equipment (UE). The goal will be to learn a joint policy that can be executed by the UEs in a distributed 

manner. Such policy can achieve a minimum data rate for each user and maximize the sum rate of the users 

in the network. We consider two different MARL paradigms, namely, Independent Learners (ILs) and 

Value Function Factorization (VFF). In the latter, we adopt the QTRAN algorithm, which is a value 

function decomposition-based algorithm that is categorized under the Centralized Training with Distributed 

Execution (CTDE) regime. Results show that MARL algorithms can be used to learn a joint policy that can 

be used by UEs for distributed resource allocation.  

Keywords: multi-agent reinforcement learning, deep reinforcement learning, 5G, resource allocation.   

1 INTRODUCTION 

The Fifth Generation (5G) wireless networks support many applications that require high data rates, low 

latency, and high reliability. For example, ultra-high-definition streaming requires data rates around 25 

Mbps with less than 100 milliseconds of latency. Other mission-critical applications such as self-driving 

cars require 50-100 Mbps but a very low latency of 10 milliseconds. The requirements above have increased 

the need for radio spectrum. 

As the need for spectrum access dramatically increased over the past decade, especially with the 

introduction of 5G, the radio spectrum has become a valuable and scarce resource. A significant amount of 

research has been conducted to increase the efficiency of spectrum assignment and utilization. A promising 

solution to meet the 5G performance requirements is to use multiple tiers in the network architecture with 

a co‐channel deployment scenario (Hossain, et al. 2014) and (Chin, Fan and Haines 2014). In such 

architecture, in addition to the conventional macrocell‐tier with macrocells, there are heterogeneous 

network tiers that include low‐power nodes such as picocells, femtocells, and relays. In addition to the 

above, wireless peer‐to‐peer (P2P) communication can be overlaid with the tiers above such as Device-to-

Device (D2D) and Machine-to-Machine (M2M) communication, as well as and sensor nodes. Such network 

architecture would complicate the power and resource allocation problem. There are other scenarios that 
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add to the complexity of the problem such as Cognitive Radio (CR); a DSA-based approach that allows 

secondary users to sense the spectrum and exploit vacant spectrum bands without causing significant 

interference to other users. Other scenarios might involve multiple operators that share the same 

infrastructure. In such network architectures, the different traffic loads, transmission powers, channel access 

priorities, and the provision of P2P communication complicate the dynamics of resource allocation. 

Recent studies have shown that optimal resource allocation in multi‐tier networks is generally an NP‐hard 

problem, and hence computationally expensive. Centralized methods for resource allocation problems in 

such scenarios are not scalable due to computationally complexity. Furthermore, with the centralized 

approaches, a centralized node usually performs resource allocation, and such node requires information of 

the network and its nodes to manage resource allocation, which causes a lot of signaling overhead. On the 

other hand, distributed or semi‐distributed resource allocation methods can provide more efficient solutions 

for multi‐tier networks due to the reduced amount of signaling and computational complexity. In such 

solutions, multiple nodes can perform resource allocation independently. This includes operator-deployed 

nodes (e.g., eNBs, relays) or even user devices such as User Equipment (UE) themselves.  

Reinforcement Learning (RL) and Deep RL (DRL) have been increasingly used to solve problems in 5G 

systems such as resource and power allocation. Such algorithms are promising for complicated problems 

because they allow agents to learn the characteristics of the environment, avoid the exhaustive search in the 

action space of the problem, and can provide near-optimal solutions to maximize the end-user performance 

(e.g., SINR and data rate). This is particularly useful in cases with non-convex optimization problems.   

However, traditional RL and Deep RL (DRL) algorithms might not be suitable to develop algorithms for 

distributed execution. Multi-agent Reinforcement Learning (MARL) algorithms can provide a promising 

solution for such scenarios. MARL includes algorithms for systems that have multiple agents that are 

interacting within a common environment. Each time step, each agent makes a decision to achieve a 

predetermined goal that maximizes expected future return. The goal in this case would be for agents to learn 

a policy such that all agents together achieve the goal of the system. This is very suitable for the case of 

distributed resource allocation, where UEs need to achieve their data rate requirements and also maximize 

the performance of the network.   

As such, in this paper we propose using MARL for distributed resource allocation in 5G networks. We 

consider the case where the resource allocation is performed by the UEs themselves.  

The goal will be to learn a joint policy that can be executed by the UEs in a distributed manner. Such policy 

can achieve a minimum data rate for each user and maximize the sum rate of the users in the network. We 

consider two different MARL paradigms, namely, Independent Learners (ILs) and Value Function 

Factorization (VFF). In the latter, we adopt the QTRAN algorithm (K. Son, D. Kim and W. J. Kang, et al. 

2019b), which is a VFF-based algorithm that is categorized under the Centralized Training with Distributed 

Execution (CTDE) regime. Results show that MARL algorithms can be used to learn a joint policy that can 

be used by UEs for distributed resource allocation.  

The rest of this paper is organized as follows: Section 2 reviews the background of this work and related 

work in the literature. Section 3 discusses VFF and QTRAN; the adopted algorithm for resource allocation. 

Section 4 presents our results, and Section 5 states the conclusion and future work. 

2 BACKGROUND AND RELATED WORK 

2.1 Reinforcement Learning  

Reinforcement Learning (RL) is an area of Machine Learning (ML) focused on sequential decision-making 

problems in which an agent exists in a mutable environment. The agent can take actions, possibly changing 
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the state of the environment. When the agent is placed in the environment, it has no prior knowledge, and 

collects information by interacting with the environment. Each action the agent takes is a decision that is 

part of the sequential decision-making problem (Sutton and Barto 2018). Deciding which action to take is 

determined by an action-producing function called the policy, π (Graesser and Keng 2019). The policy is a 

function that will output the best action for a particular state of the environment. The reward function 

determines the value of an action by evaluating the transition between the environment's current state, the 

agent's chosen action, and the new states (Graesser and Keng 2019). The agent uses the reward to learn 

good and bad decisions in the environment. As the agent learns, it uses its experiences to adjust its policy 

for better performance. 

Figure 1 shows the agent's interaction with the environment consisting of four main steps to the RL cycle. 

At each time step, t, the agent observes the environment's state (st 𝜖 S). In step 2, the agent chooses an action 

(at 𝜖 A) and executes it. In step 3, the agent receives a reward, r(st, at, st+1) 𝜖 Ra, evaluated from the current 

state, current action, and next state, st+1. Lastly, in step 4, the environment changes its state based on the 

agent's action, determining the next state, st+1. The cycle continues, and the agent reinforces its policy by 

learning the states and actions that provide the best rewards. 

 

Figure 1: The lifecycle of RL 

In RL the agent uses rewards received during training to find the best actions and learn the policy. In a 

sequential decision-making problem, in addition to the immediate reward, the consecutive rewards from 

future time steps also matter. The cumulative discounted reward, defined in equation (1), takes into 

consideration the immediate reward and the reward obtained from next time steps. 

 𝑅 = 𝑟0+𝛾𝑟1+𝛾2𝑟2+𝛾3𝑟3+ … 𝛾𝑡𝑟𝑡 
(1) 

Gamma, γ, is the discount factor, that takes a value between 0 and 1. It is a crucial variable that controls the 

importance of future rewards. The larger gamma, the more emphasis on future rewards. As gamma 

approaches 1, the discounted equation becomes farsighted, and as it approaches 0, nearsighted (Graesser 

and Keng 2019). With the addition of future rewards, the objective can be represented using the long term 

cumulative discounted rewards equation, 

 
𝐽 = E𝜋,𝑠o

[∑ 𝛾𝑡𝑟(s𝑡, a𝑡 , s𝑡+1)|a𝑡 = 𝜋(. |s𝑡)

∞

𝑡=0

]
 

(2) 

The objective J can be calculated using the average reward over many episodes. The agent’s policy should 

maximize the objective, which will require maximizing the reward for each action. However, since the 

reward function is a part of the environment and unknown to the agent, future rewards can only be 

determined by predicting how valuable the agent thinks the next state is, not its actual value. The agent uses 

value functions to quantify the value of the current states and possible actions concerning the expected 
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future reward. A value function, Vπ(s), evaluates the current states observed by the agent. Using equation 

(3), the expected return is predicted from the expected trajectory of the current state. 

 
𝑉𝜋(𝑠) = E𝜋,𝑠𝑜=𝑠[∑ 𝛾𝑡𝑟𝑡

∞

𝑡=0

]
 

(3) 

Eπ,s is the expected value of the return from the state at the current time step, until the state at the last time 

step. The Q-function, Qπ(s, a), is the second value function. The Q-function evaluates a state-action pair, 

i.e., the expected return from being in state s, and taking an action a, as can be seen in equation (4). 

 
𝑄𝜋(𝑠, 𝑎) = E𝜋,𝑠𝑜=𝑠,𝑎𝑜=𝑎[∑ 𝛾𝑡𝑟𝑡

∞

𝑡=0

]
 

(4) 

Similarly, Eπ,s,a is the expected value of the return from being in state s, taking action a, and following 

policy 𝜋 until the last time step. An agent’s policy is a mapped relation between the current observation of 

the environment and the chosen action described as, 

 π: (S → A)
 

(5) 

During training, the agent attempts actions and observes the reward obtained. A common approach to 

facilitate learning and to collect information is through an epsilon-greedy policy to balance exploration and 

exploitation in the environment (François-Lavet, et al. 2018). Exploration allows the agent to explore more 

actions of the environment, while exploitation directs the agent towards its perceived maximum reward. 

The type of action chosen by the epsilon-greedy policy is determined using equation (6). 

 𝑃(𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛) = 1−∈
 

(6-a) 

 𝑃(𝐸𝑥𝑝𝑙𝑜𝑡𝑎𝑡𝑖𝑜𝑛) = ∈
 

(6-b) 

 

With each action taken, a random variable is sampled and compared to epsilon 𝜖. If the random variable is 

less than epsilon a random action is taken; otherwise, the agent’s policy determines the following action. 

Additionally, as training progresses, epsilon slowly decreases until it reaches a pre-defined minimum value. 

As epsilon decreases, the agent transitions from an exploration-biased action to an exploitation-biased 

action.  

One method for the agent to learn and implement a policy is by learning the Q function. The Bellman's 

equation is commonly used to learn the Q function to find the best Q value for each state-action 

combination. For example, with Deep Q Network (DQN); a popular DRL algorithm, the Q value for the 

state-action pair, (s, a), is given by,  

 𝑄𝜋
∗ (𝑠𝑡 , 𝑎𝑡) = E𝜋, 𝑠′[𝑟𝑠, 𝑎, 𝑠′ + 𝛾max𝑎′𝑄𝜋

∗ (𝑠′, 𝑎′)|𝑠𝑡 , 𝑎𝑡]
 

(6) 

According to the equation, the best Q value, i.e., 𝑄∗ equals the reward for the current (s, a) state-action pair 

with the future reward determined by multiplying the gamma value by the maximum expected Q-value of 

the new states s' when taking action a'. The Q-value mapping for (s', a') is derived from the agent's previous 

experience.    

Different algorithms can be used to learn the Q function. The Q function can then be used to generate a 

policy. For example, an agent, can use the Q function to choose the action with the maximum Q value. A 

simple value-based approach to convert the agent's experience into a policy is done through Q learning. At 

the beginning of training, a tabular representation called a Q table can be initialized (e.g., with zeros) for 

every cell. With each new state encountered by the agent throughout training, the reward for taking the 

action is recorded in the Q table. Although this algorithm is simple, it is not guaranteed all state-action 

combinations will be explored. As such, this algorithm is unsuitable for problems with continuous and high-

dimensional action space since the entire state-action space needs to be explored constantly. Furthermore, 
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unvisited states will have an unknown Q value and cannot outperform random guessing, while visited states 

will be overrepresented resulting in overfitting (Huang, Chen and Gong 2021).  

DQN is an advanced algorithm that involves using a deep neural network (DNN) instead of a table to 

approximate the Q-value function. The DNN's architecture consists of an input layer to receive the agent's 

state of the environment, one or more hidden layers, and an output layer to predict the Q values for the 

actions at that state. The entire DNN uses multiple layers with individual parameters θ, known as weights, 

to create a mapping of inputs to outputs. When the network receives an input, it propagates the values 

forward, layer by layer to produce an output. A trained Q network can be used to generate a policy by 

selecting actions. At each time step, the environment state is fed into the DNN, and the predicted Q values 

are outputted. The action resulting in the maximum Q value is chosen and executed.  

The neural network is trained on the agent's experience by minimizing the error loss between the actual and 

predicted Q values. While the agent is training in the environment, experience is collected and stored as a 

tuple (s, a, r, s’) into a buffer-replay memory (François-Lavet, et al. 2018). For every N time steps, a sample 

batch of B experiences from the memory is selected. yt is computed using Bellman's equation for each 

sample, and Qπ is calculated using the DNN. Equation (8), shows the network’s loss function calculated by 

finding the mean square error, Es,a from y(t) and Q(π). The DNN’s parameters are updated to minimize the 

loss, and training resumes. 

 𝐿𝑡(𝜃𝑡) = E𝑠,𝑎[(𝑦𝑡 − 𝑄𝜋(𝑠, 𝑠, 𝑎, 𝜃𝑡))2] (7) 

Training the DNN may vary from less than a thousand to multiple million training batches depending on 

the problem (Graesser and Keng 2019). The DNN can extrapolate the data and develop an optimal policy 

through training on a subset of the possible environment states. Deep neural networks have state-of-the-art 

predictive performance, accurately choosing the right action with new unencountered data. 

2.2 Multi-Agent Reinforcement Learning 

Multi-Agent Reinforcement Learning (MARL) is an adaptation of standard RL where the common 

environment now includes two or more agents. Agents can have global or individual rewards to promote 

competitive or cooperative relationships between one another. In competitive environments, each agent 

learns independently, while in cooperative environments, the agents must work together to satisfy the goal 

of the system. A global reward is shared between agents whose evaluation is based on the group rather than 

one single agent. Additionally, an individual reward may exist for individual performance, but not always. 

Each agent is a learnable unit that aims to develop its policy alongside other agents to maximize the long-

term cumulative discounted reward. Due to the non-stationary problem with each agent learning 

independently and manipulating the environment, training the agents is typically a challenging task 

categorized as NP-hard problems.     

Independent learning is a common method used to implement MARL. All agents are unaware of each other 

in the environment and learn actions and states individually. One of the most established independent 

learning algorithms is Independent Q-learning (IQL), proposed by (Watkins. 1989), which uses a Q-

function like the previously mentioned ones for its policy. IQLs are simple and can be distributed and 

trained decentralized, allowing for parallel training of multiple agents. Training an independent learner is 

the same as training a single agent, where the agent performs an action, obtains a reward, and updates their 

Q-values without considering the actions taken by any other agents. However, the reward is no longer 

individual and now represents the performance of all agents, not just oneself. With each agent impacting 

the state of the environment, estimating the Q-value for a state-action pair can be challenging. Independent 

learning is appealing as it is simple, scalable, and does not require communication between agents. 

However, IQLs simplicity also exposes some problems. Independent learners' main drawback is their 

susceptibility to the non-stationary problem. The agent's single point of view depicts a stationary 

environment, not influenced by other agents. Agents try to optimize their polices while other agents are 

doing the same. This simultaneous policy update makes the environment intractable and causes the non-

stationary problem.  
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2.3 Related Work 

In (Elsayed and Erol-Kantarci 2019), the authors proposed using a Q-learning RL algorithm to balance 

latency and reliability in Ultra-Reliable Low-Latency communication and throughput for Mobile Broad-

Band (MBB) users using 5G networks. Their results demonstrated that the RL algorithm outperformed 

standard AI fixed power allocation by increasing the throughput 21 times without significantly impacting 

latency or reliability. Moreover, in (He, et al. 2017), the authors also proposed using a Q-learning RL 

algorithm to obtain the optimal interference alignment policy in wireless networks. Likewise, the results 

concluded that the RL algorithm resulted in a significant sum rate and energy performance over previously 

used methods. In (Shi, Sagduyu and Erpek 2020), the authors used RL for dynamic resource allocation for 

network slicing in 5G Radio Access Networks. Their results concluded RL outperforms traditional 

allocation methods well also scaling with an increasing number of UEs. Another proposal by (Mismar, 

Evans and Alkhateeb 2020) utilizes Q-learning's future reward prediction to improve SINR and sum-rate 

capacities in sub-6 GHz frequency bands. Similarly, the results favored the RL solution over the industry 

standards for link adaptation. (Cong and Lang 2021) expand on Q-learning through deep recurrent neural 

Q-networks (DDRQN) for solving multi-user channel allocation in dynamic multichannel access (DMA). 

DDRQN can prevent the normal exponential growth associated with each additional channel added, while 

allowing secondary users to acquire higher spectrum access. As reported in (Cong and Lang 2021), 

traditional DRL approaches might not be suitable to solve distributed resource allocation problems. MARL 

algorithms can be used to develop distributed resource allocation algorithms in 5G networks. In this paper, 

we propose the use of MARL algorithms for distributed resource allocation in 5G networks. We consider 

two classes of MARL, namely independent learners and CTDE. In the CTDE regime, we adopt the QTRAN 

framework (K. Son, D. Kim and W. J. Kang, et al. 2019b) built around value factorization function (VFF) 

to promote joint-action optimization between agents while maintaining decentralized execution without 

inter-agent communication. 

3 CTDE, VFF, AND QTRAN 

3.1 CTDE and VFF 

An alternative method to independent learning with decentralized training and execution is to use 

centralized training with decentralized execution (CTDE). With CTDE, each agent has its individualized 

policy, which uses local observations to compute an individual action (Gronauer & Dieopold, 2022). A 

decentralized learner’s policy is still similar to that of independent learning; however, their optimization is 

facilitated by the centralized network, not themselves. The centralized network enables information to be 

universally shared throughout all agents during training, while maintaining partial observability with 

restricted or non-existent inter-agent communication during execution. The centralized network fully 

observes the environment, decreasing the non-stationary problem (Gronauer and Dieopold 2022), allowing 

easier optimization towards a successful joint-action policy. An increasing number of studies have 

demonstrated CTDE produces successful results in MARL environments (Foerset, et al. 2016) and (Jorge, 

et al. 2016). One method for training CTDE networks is to use VFF to discretize individual contributions 

to the joint-action function. VFF allows the agents to learn individual action-value functions, such that 

optimization for an individual agent leads to optimization of the global joint action-value function. This, in 

turn, enables agents at execution time to select an optimal action simply by using the individual action-

value function, without having to refer to the joint one. 

3.2 QTRAN 

QTRAN is a recently proposed VFF designed to provide more general factorization than previously 

proposed methods (K. Son, D. Kim and W. J. Kang, et al. 2019b). For CTDE with VFF, QTRAN 

interconnects three different deep-neural networks estimators:  

• Each agent’s individual action-value network 𝑓𝑞: (𝜏𝑖 , 𝑢𝑖) → 𝑄𝑖 
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• Centralized joint action-value network 𝑓𝑟: (𝜏,  𝑢) → 𝑄jt 

• Centralized state-value network 𝑓𝑣: 𝜏 → 𝑉jt 

Each agent has an individual action-value network used to compute the Q Values for partially observed 

states. A centralized joint-action value network receives the chosen action from each agent and computes 

the global Q-values for the joint-action taken. Finally, a state-value network evaluates the state-action 

combination, ensuring the optimized action-state combination for individual agents matches the optimized 

action-state combination for the joint action. Training QTRAN starts by gathering experiences for each 

agent in the environment. After enough experiences have been obtained, a sample batch can be used for 

training at each time step. Each decentralized agent evaluates its states and predicts the corresponding Q-

values. The chosen actions of all agents are passed into the centralized joint-action network which produces 

its own predicted Q values for the joint action. The loss between the predicted Q values and the actual is 

combined with the loss between the state-value and action-value networks. The combined loss is 

backpropagated through the centralized networks and into each decentralized agent's network. Using the 

centralized networks to calculate loss pushes the decentralized agent's Q values towards the optimal joint 

action without revealing any additional information to the agents. With each agent's Q value matching the 

joint action value-network, the agents can be fully disconnected once training is completed and maintain a 

collaborative joint action even with completely decentralized execution. QTRAN advanced VFF has 

allowed complex joint optimal actions to be found in MARL environments while previous algorithms have 

had no success. 

4 CASE STUDY 

4.1 Simulation Setup 

A resource allocation scenario is adopted in this study to evaluate the performance of MARL-based resource 

allocation in cellular networks. The scenario consists of a single cell that contains N UEs and N available 

subchannels, with one base-station. The UEs in the cell will be the MARL agents that need to learn a joint 

policy for resource allocation. Through each episode, agents will be distributed within the range of the cell. 

Each UE is considered an agent that can transmit on any of the subchannels with two power level: -60 dBm 

which corresponds to no transmission, and 10 dBm. A UE can transmit on more than one subchannel 

simultaneously. The agents will use their X and Y coordinates, and their transmission power levels on each 

of the subchannels as input states to their neural network. While the calculation for path loss, SINR, and 

spectral efficiency use values in dB (logarithmic domain), the values will be converted to the watts (linear 

domain) for the agents’ observations. The linear domain provides the agent’s neural network with a uniform 

distribution between values, compared to logarithmic, which is harder to estimate. Additionally, each of the 

states will be normalized between ±1. Each subchannel will have a bandwidth of 5MHZ. The goal is to 

maximize the group sum rate, and each agent must achieve a minimum data rate of 40 Mbps at each timestep 

to solve the environment.  

We consider multiple scenarios each with N UEs (i.e., agents), and N subchannels. We use the notation 

N×N to label a specific scenario. As an example, the scenario for 4 agents and 4 subchannels will be called 

4×4. 

The agents will use a global reward that is a combination of two factors; the mean data rate which is a factor 

that is used to maximize the sum rate, and the standard deviation of the data rate which is used to increase 

the fairness between UEs so that they achieve the minimum data rate requirement. The global reward is 

calculated by taking the mean throughput of each agent and subtracting the standard deviation as follows,                             

 𝑅 = 𝛼. 𝜇 − 𝛽. 𝜎
 

(8) 

where 𝜇 and 𝜎 are the average and standard deviation of the data rates, respectively, and 𝛼 and 𝛽 are factors 

to control fairness among UEs. The only way to maximize this reward is for all UEs to converge towards 

the maximum mean data rate without any single UE hogging multiple subchannels. Each time a new best 
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reward is obtained, each agent learns and saves the channel it achieves the best SINR value. The agent's 

individual reward is calculated based on the data rates achieved on all the available subchannels. If the 

agent is transmitting on a single subchannel, the reward is the data rate achieved on that subchannel. If the 

agent is transmitting on more than one channel, the individual reward received is the minimum throughput 

of any agents in the environment. By receiving the minimum throughput when transmitting to multiple 

channels, the agent will be directed towards transmitting on the least number of subchannels unless it will 

not negatively impact any other agents. The individual reward helps guide the agents towards a 

collaborative solution. The agents will learn not to transmit on multiple channels unless the total throughput 

increases without negatively affecting other agents.  

Each scenario is implemented with our own simulator which was built using Python. The TensorFlow Keras 

API was used to develop the QTRAN framework (K. Son, D. Kim and J. W. Kang, et al. 2019a). To deploy 

QTRAN, a central BS would contain the join action-value network and the centralized state-value network, 

while each UE would have its own action-value network. During training, the UEs will transmit their 

observations and chosen action to the BS for centralized training. Once the QTRAN network is fully trained, 

the distributed action-value networks will operate in a decentralized manner and can execute without 

additional communication with the BS.  

4.2 Brute-force Solution 

To evaluate the results achieved with the MARL-based algorithms, we compare the results to those 

achieved with brute-force solution, that performs exhaustive search over all the action space to find the 

optimal solution for the N UEs (agents) and N subchannels. The action space can be calculated using 

equation (10). 

 𝐴𝑐𝑡𝑖𝑜𝑛𝑆𝑝𝑎𝑐𝑒 = 2𝑁2

 
(9) 

N is the number of UEs (and also the number of subchannels). The action space is a double exponential 

function and grows substantially faster than a standard exponential or factorial function. The actions space 

for each attempted configuration is shown in Table 1.  

Table 1: Calculated action space for each amount of agents and subchannels 

Number of agents  Number of subchannels Action space 

3 3 512 

4 4 65,536 

5 5 33,554,432 

6 6 68,719,476,736 

  

As the brute force algorithm attempts all possible actions, it is significantly impacted by the double 

exponential growth of the action space. The brute force algorithm solved 3×3 in 0.017 seconds, 4×4 in 

2.639 seconds, and 5×5 in 31 minutes and 27 seconds. With the action space expanding rapidly, so does 

the time taken for the brute force algorithm. The action space for 6×6 is too large, and with our current 

implementation of the brute force algorithm, it would take 48 days to do the exhaustive search and find the 

optimal solution. While the brute force algorithm can solve the optimal solution, it is infeasible in this case. 

4.3 QTRAN Solution 

To compare the results achieved with the QTRAN algorithm, we create a baseline with the results achieved 

using a brute-force solution. The brute-force solution may reach a partial solution by only evaluating a 

portion of the action space, however this does not guarantee the optimal solution has been found. A partial 

solution may be used if it is infeasible to search the entire action space, as is in the 6×6 environment where 

the estimated brute force time to find the optimal solution is 48 days.  
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A QTRAN model is considered completely trained for the presented scenarios, when the mode performs 

with over 99% success rate, i.e., the resource allocation results in maximizing the sum rate with all the UEs 

achieving the minimum data rate in 99% or more of the time steps. At this point, the model is at optimal 

capacity with an ideal balance between training error and generalization error. Any further training after 

this point will result in the model overfitting the current environment and preforming worse in any other 

environment. Given this, at 99% success rate, the models will be considered completely trained, outputting 

a proper solution to the environment.   

Each training figure below shows the training curve of QTRAN for the set scenario. The training cycle can 

be divided into three distinct phases. In Phase 1, also called the exploration phase, each of the agent’s neural 

network are randomized and untrained. During this phase, agents interact with the environment and take 

actions to fill the buffer replay without training. In Phase 2, training begins on each of the neural networks. 

Almost immediately, the throughput for each agent plumets. As the agent’s do the first training step on their 

models, they all converged to taking the same action. With each agent’s action being the same, they interfere 

with each other immensely resulting in almost no throughput. As the training phase progresses, the agents 

learn to coordinate with each other, and consequently converge to joint policy. Lastly, there is Phase 3. 

During Phase 3, the agents have reached a plateau in learning, and will not achieve significant performance 

improvement. Each action results in almost the exact same optimal throughput calculated by the brute force 

algorithm. At this point the agents can properly solve over 99% of any environment configuration 

encountered and are considered completely trained.  

4.4 Results: Predefined Discrete Number of Locations 

With 5 UEs and 5 subchannels, the action space is large. 128 out of 33.5 million joint-action combinations 

will result in success, allowing for the occasional successful combination to be found during random 

exploration. Figure 2-a shows the model is able to immediately begin converging after populating the reply 

buffer and training on the data.  

 

(a)                                                                                    (b) 

Figure 2: Data rates of all UEs throughout training (a) 5×5 and (b) 6×6. 

The brute force algorithm was able to try all 33.5 million joint-actions in 31 minutes 27 seconds. QTRAN 

trained over 120,000 episodes and reached over 99% success rate in very close but faster time of 26 minutes. 

The two models were compared, using the completely trained QTRAN models alongside the brute force 

algorithm to evaluate 10,000 random configurations of the UEs. The brute force algorithm had a peak 

throughput of 77.70 Mbps with an average throughput of 77.70Mbps and 0 episodes where the throughput 

was below 40Mbps for any UE. QTRAN had a peak throughput of 77.70Mbps with an average throughput 

of 77.679Mbps. QTRAN was able to reach a throughput above 40Mbps for all users in 9,988 out of the 

10,000 episodes.  
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With 6 UEs and 6 subchannels, the action space is significantly larger than the 5×5 with a total size of 68.7 

billion joint-actions. Additionally, only 720 joint-action combination would result in all UE’s obtaining a 

throughput above 40Mbps, reducing the odds of finding a successful combination to essentially zero during 

random exploration. Figure 2-b shows QTRAN is slower than in the case of 5×5 but can still make steady 

progress towards converging to an optimal policy.  

Due to the large action space for this scenario, it was infeasible to search the whole action space with the 

brute force algorithm to find the optimal solution. After running for 1.1 billion timesteps and exploring only 

2% of the possible combinations, the algorithm reached its first successful joint action in 23.65 hours. The 

time taken to solve the environment with QTRAN is extremely shorter than that of the brute force algorithm. 

This partial solution is used to benchmark against MARL. QTRAN trained over 145,000 episodes in 38 

minutes to reach over 99% success rate and be considered completely trained. The two solutions were 

compared, i.e., the completely-trained QTRAN model alongside the partial solution found by the brute 

force algorithm to evaluate 10,000 random configurations of the UEs. The brute force algorithm had a peak 

throughput of 74.34 Mbps with an average throughput of 74.34Mbps and 0 episodes where the throughput 

was below 40Mbps for any UE. QTRAN had a peak throughput of 74.34Mbps with an average throughput 

of 74.31Mbps. QTRAN was able to reach a throughput above 40Mbps for all users in 9989 out of the 10,000 

episodes (almost 100% success).  

4.5 Results: Randomly-Distributed UEs 

In this scenario, the environment will remain the same as previously describe with N agents and N 

subchannels, with one base station. Unlike the last scenario, the UEs’ locations will not be selected based 

on a list of predefined distances, but rather the UEs will be randomly distributed throughout the cell here at 

every time step. The base station will still have a range with a radius of 1400m, and all the UE’s within the 

radius but not closer than 50m to the BS. As in the previous scenario, each UE should achieve a minimum 

data rate of 40Mbps.  

As mentioned in the last scenario, with 5 UEs and 5 subchannels, 128 out of 33.5 million joint-action 

combinations will result in success, allowing for the occasional successful combination to be found during 

random exploration. Figure 3-a shows the model is still able to immediately begin converging after 

populating the replay buffer and training on the data.  

  

(a)                                                                                    (b) 

Figure 3: Data rates of all UEs throughout training (a) 5×5 and (b) 6×6. 

The brute force algorithm was able to try all 33.55 million joint actions in 31 minutes 27 seconds. QTRAN 

trained over 175,000 episodes with a very similar time in 31 minutes and 33 seconds to reach 99% success 

rate and be considered completely trained. The completely-trained QTRAN models were compared to the 

brute-force solution to evaluate 10,000 random episodes with UEs randomly distributed at each episode. 

The brute force algorithm had a peak throughput of 69.45Mbps with an average throughput of 67.74Mbps 

and 0 episodes where the throughput was below 40Mbps for any UE. QTRAN had a peak throughput of 
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69.01Mbps with an average throughput of 67.47Mbps. However, with QTRAN, there were 96 episodes 

(out of 10,000) where the throughput was below 40Mbps for some UEs.  

Figure 3-b shows the training curve for QTRAN in the 6×6 environment. The training cycle is similar to 

that of the 5×5 scenario, however the training phase was twice as long. With the increased size of the action 

space for 6×6, the agents were given over double the time to fill their buffer replay. This ensures the models 

have adequate data to train on, and do not get stuck in a local minimum.  

The brute force algorithm’s partial solution was found after 23.65 hours, with one single action combination 

that can solve the environment. It is likely there are more combinations with equal or better performance, 

but finding a complete solution is infeasible due to the large action space. QTRAN trained over 390,000 

episodes in 1 hours 26 minutes to reach 99% success rate and be considered completely trained. The 

solutions were compared, i.e., the completely-trained QTRAN models alongside the partial brute-force 

solution to evaluate 10,000 random episode configurations. The brute force algorithm had a peak 

throughput of 68.80Mbps with an average throughput of 67.75 Mbps and 0 episodes where the throughput 

was below 40Mbps. QTRAN had a peak throughput of 68.80 Mbps with an average throughput of 67.22 

Mbps and 144 episodes (1.44%) where the throughput was below 40Mbps for some UEs.  

5 CONCLUSION AND FUTURE WORK 

In this paper, we propose MARL-based distributed resource allocation in 5G networks. MARL provides a 

promising solution to implement resource allocation policies with distributed execution. Using QTRAN, a 

MARL algorithm that is based on VFF, we demonstrated the advantages of CTDE paradigm for resource 

allocation, while proving MARL can be used to learn a joint policy executed by UEs for distributed 

execution. Additionally, we showed a near-optimum solution can be obtained for computationally 

infeasible problems. We plan to continue researching other CTDE-based algorithms as well as fully 

distributed algorithms. Moreover, we will explore the use of MARL in other areas of 5G system operation.   
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