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ABSTRACT

In next generation networks, knowing if a channel has a Line of Sight (LOS) path between the transmitter
and the receiver is becoming increasingly important. For example, researchers have optimized channel
estimation and wireless localization algorithms for both LOS and Non-LOS (NLOS) scenarios. Knowing
the LOS status of a channel will allow system performance enhancement by employing the best algorithm
available. This study explores the use of various machine learning classifiers to identify the LOS status of
simulated massive-MIMO channels. The classifiers make their predictions based on limited Channel State
Information (CSI) feedback received at the base station. This study identifies and properly manages the class
imbalance problem present in LOS/NLOS identification. Promising results are achieved and demonstrated
using a synthetic benchmark.

Keywords: Machine Learning, Neural Networks, Wireless Channel, LOS identification.

1 INTRODUCTION

Wireless communications technology has been witnessing an exponential growth in the requirements with
each generation (ITU-R 2015). Massive Multi Input Multi Output (m-MIMO) antenna arrays are becom-
ing a necessary technology to meet the increasing user count, data rate, and reliability expectations in next
generation networks (Björnson, Hoydis, and Sanguinetti 2017). These systems accomplish this through
improved beamforming, which increases signal strength and improves spectral efficiency using spatial mul-
tiplexing. Channel Estimation (CE) is a major challenge for m-MIMO systems, since the channel matrix
size is multiplicative based on antenna count. Knowing if a channel has a Line of Sight (LOS) path between
the transmitter and the receiver allows the devices to optimize their transmissions. CE algorithms are an
example of an algorithm which can perform better based on the LOS status of the channel. Furthermore,
User Equipment (UE) localization is a topic of rising interest due to novel use cases in 5G systems (Ericsson
2020). Many localization algorithms also benefit from knowing if the channel has a LOS path or is entirely
Non-LOS (NLOS), ultimately making LOS/NLOS identification an asset to optimize wireless systems.

This paper explores the use of Machine Learning (ML) classification algorithms to identify the LOS status
of a given channel. The data is generated using a MATLAB simulator with a combination of custom and
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5G Toolbox functions. The simulator uses the 3GPP Clustered Delay Line (CDL) channels (3rd Generation
Partnership Project 2020), which are statistical models which assume the channel is made up of several
clusters of reflectors. Each channel will have several clusters, each cluster will have several paths with
similar path parameters. The channels are implemented with 5G Toolbox and the cluster parameters are
created using a custom generation script. Channel State Information (CSI) metrics are calculated at the UE
based on simulated reference signals. Limited CSI are fed-back to the Base Station (BS) and used by the ML
models to predict the LOS/NLOS status of the channel. A data frame that contains simulation CSI and the
ground truth value for LOS/NLOS status is used as the supervised learning data set for training and testing
ML models. The following ML algorithms are used in this study: K-Nearest Neighbours (KNN), Random
Forest (RF), several different Neural Network (NN) architectures, and a meta-learning solution.

Similar studies have been conducted in this space, however they all focus only on classification accuracy
or error as their performance metric. In practice there are many scenarios (such as, urban or indoor) where
most of the wireless channels are NLOS. The imbalance between LOS and NLOS cases invalidates the use
of accuracy as a sole performance metric. Instead of accuracy, this study uses the Area Under the Curve
(AUC) of a Precision-Recall (Pr-Re) plot. Pr-Re plots focus on the minority class and provide two metrics
which show the complete performance of the classifier. The AUC of a Pr-Re curve is the preferred metric
for reporting on generic classifiers in the presence of class imbalance. The performance of several ML
classifiers is shown on three different simulated scenarios. Additionally, their performance is analyzed on
a synthetic model which emulates a real world scenario. Their performance in this synthetic benchmark
exceeds that of a classifier that always reports the dominant class (NLOS), despite having lower accuracy.

The remainder of this paper is organized as follows. First, Section 2 provides the background on the use-
fulness of LOS identification, the channel models used, related work, and a high level description of the
ML algorithms used in the study. Section 3 describes the simulator structure and data sets used. Section 4
discusses the implementation details of each of the ML models. Section 5 presents the results, which include
Pr-Re curves for our best performing models. Finally, Section 6 provides the conclusion and future work.

2 BACKGROUND

Transmitted wireless signals are affected by the physical environment when propagating to the receiver. The
wireless channel will distort the signal, altering the gain and phase of the wireless waves. Furthermore,
the waves can reflect and refract off surfaces, causing multiple copies of the signal to arrive at the receiver
at separate times, different powers, and out of phase. These phenomena are modeled by the CDL channel
model defined in (3rd Generation Partnership Project 2020); which is a multi-path clustering based statistical
model. A cluster is made up of several rays (individual paths between transmitter and receiver) which are
all traveling in the same general direction. A given reflector will have several rays that represent the same
cluster. The cluster is defined by a delay, average gain and angle. The delay and gain are relative to the
first cluster to arrive and the highest cluster gain. Each ray within the cluster will have essentially the same
delay, and a slightly different gain and angle. The CDL model allows custom channels to be created, where
the user may select the channel parameters. Channel parameters are broken into two categories: Large Scale
Parameters (LSPs), and Small Scale Parameters (SSPs). LSPs are determined by the physical environment,
such as distance between BS and UE, the LOS status, the LOS angle, and the path loss. LSPs are shadow
fading, K-factor, delay spread, and azimuth and zenith angle spread for arrival and departure angles. SSPs
are random values calculated using the LSPs. They are the individual cluster delays, powers, azimuth and
zenith angles of arrival and departure, and the cross power ratios. The SSPs are then used when calculating
the channel matrix as a function of time.

Channels are often modeled as a complex matrix, with each element representing the delay and gain that a
given transmitter will experience at the receiver (Rappaport 2001). Channel sounding is the process where
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a known signal is transmitted so that the receiver can calculate the channel’s effect on the signal. The BS
controls the communication protocols and transmission parameters used (encoding scheme, data rate, etc.),
where the optimal protocols and parameters are dependent on the physical channel. When sounding the
channel between the BS and UE, the UE must estimate the channel and return the results to the BS. Any
resources spent sending control data, such as the channel estimate, are resources lost that could have been
spent sending data. Therefore, to minimize this overhead, the UE calculates Channel State Information
(CSI) metrics to send to the BS, instead of sending a full channel estimate. In practice the BS must then
select its transmission protocols based on this fed-back CSI; for that reason, CSI is the chosen input for
the machine learning models in this study. The models will use the CSI data to predict if the channel has
a LOS cluster, aiding in the BS algorithm and protocol selection. Specifically, the models are limited to
the following CSI: Received Signal Strength Indicator (RSSI), Reference Signal Received Power (RSRP),
Reference Signal Received Quality (RSRQ), Channel Quality Indicator (CQI), Precoding Matrix Indicator
(PMI), and Rank Indicator (RI). RSSI, RSRP, and RSRQ are all reference powers in Db or DBm. The CQI
is an index into a predetermined list of signal to noise ratios. The PMI is an index into a list of matrices that
will tell the BS what gain and phase shift to give to each antenna to maximize the received signal. Finally,
the RI indicates the number of orthogonal paths to the receiver.

Knowing if the channel has a LOS path allows the BS to select the best algorithms in different parts of
the system, such as CE or localization. For instance, the geometrical channel model proposed (Liberti
and Rappaport 1996) is only valid for LOS channels, as is the delay domain channel model from (Kyro,
Kolmonen, and Vainikainen 2012) for mm-wave channels, and the CE strategy from (Ji, Fan, and Pedersen
2017) for indoor spherical wave channels. Similarly, if a system is known to be NLOS then it could use the
advanced CE method in (Milenkovic, Panic, Denic, and Radenkovic 2017) for mm-wave, or the optimized
CE algorithm presented in (Zhang, Gong, and Xu 2014) for optical wireless channel estimation. Similar
optimizations can be made to wireless localization problems. (Adebomehin and Walker 2016) proposes
an algorithm for LOS localization, and (Fan, Chu, Wang, and Lu 2020), (Yang, Li, and Ye 2016), (Cheng
et al. 2017) and (Wang, Cheng, and Hu 2015) all propose wireless sensor localization algorithms for the
more-probable NLOS scenario. LOS/NLOS identification is prerequisite to being able to use any of the
aforementioned algorithms, and thus is an important problem to solve.

This study uses exclusively supervised learning, meaning that the ML algorithms were trained and tested
on labeled data sets. The models used were KNN, RF, NN, and a meta-learning solution. KNN is a simple
algorithm used in this work as a baseline to show how well other solutions are performing. When classifying
a data point, KNN uses the training data features to find the k closest training labels and averages their classes
to make a prediction (Hastie, Tibshirani, and Friedman 2009). In these models k is an integer and the optimal
value is determined while training. A Decision Tree (DT) is essentially a flow chart where each node checks
the value(s) of a specific feature(s) and then progresses in a different direction depending on the result. Each
layer will have some kind of branching conditions leading to the next layer. In the final layer of the tree,
a classification is assigned. RF is a set of many un-correlated DTs, when classifying a data point the RF
will average the result of all the DTs. A NN is a network model which consists of neurons (Burkov 2019).
Each neuron does a linear combination of its inputs along with training weights, then decides based on the
activation function what it should output. When designing a NN, one can vary the width (number of nodes
per layer) and the depth (number of layers in the network). During training, the network will optimize the
weights in each neuron. In a classification problem, like the one presented in this paper, the final layer of the
network will output values from 0-1, where each value indicates the probability that the input data belongs
to certain class in the classification problem.

ML and statistical modeling has been used for LOS identification in several other studies. (Zhang, Salmi, and
Lohan 2013) proposed LOS/NLOS identification for localization purposes using kurtosis of the amplitude
of the channel impulse response. (Wang et al. 2019) used Convolutional NN (CNN) on the channel impulse
response to identify LOS status with a very high accuracy for indoor ultra-wide band scenarios. (Zeng et al.
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Figure 1: Confusion matrix structure.

2018) also used a CNN, the features in their model are the m-MIMO antenna powers during up-link channel
sounding. Their reported accuracy is 97.5%. (Huang et al. 2020) used support vector machine, random
forest, and NN to predict LOS/NLOs conditions from the channel impulse response. They also report an
accuracy of 99% in their test cases. (Carpi et al. 2019) used the values from several consecutive channel
estimates with NN classifiers and other statistical estimators to predict the LOS status of the channel. They
designed their system for IEEE 802.11 links and reported an accuracy of 85%-90% for their models. These
studies predicted LOS status to assist CE or UE localization, using different statistical models and features.
One thing that they all had in common was that they used accuracy or raw error rate as their only reported
metric. These studies did not report other metrics, or provide a confusion matrix for their classifier. This is
an important issue because a majority of urban and indoor channels (which are used in these studies) will
have a much higher NLOS probability due to their environments. This creates a class imbalance problem
for LOS/NLOS identification which is not addressed in previous works.

Data which has a disproportionately large number of one class (normally the negative class in a binary
classification problem) within the population are said to have class imbalance. Typically, in these scenarios
the purpose of the model is to identify the rare class, so it is important that it is not overlooked (for example,
finding fraudulent charges on a credit card, or diseased patients in a medical scan). Class imbalance, when
not dealt with properly, can cause the statistical model to favor the dominant class and skew accuracy
metrics. For instance, if 99% of the channels evaluated are NLOS, and we classify all channels as NLOS,
we will achieve 99% prediction accuracy without actually gaining any knowledge about the channel. In
studies that deal with class imbalance, it is better to report the raw results of the classifier in a confusion
matrix, shown in figure 1, since it demonstrates the complete performance of the classifier (Nandi and
Ahmed 2020).

The horizontal axis shows the true class and the vertical axis the predicted class. The True Positives (TP)
are instances where the classifier correctly assigns the positive class to the data point. False Positives (FP)
are instances where the classifier predicted positive but the actual value is negative. True Negatives (TN)
and False Negatives (FN) are defined similarly, only the class is reversed. Accuracy is defined as follows,

Accuracy =
T P+T N

N
, (1)

where N is the total number of samples in the population, making accuracy the fraction of the population
that was correctly classified. This becomes a problem when only a small percentage (e.g., 1%) of our data
belongs to the positive class. In this scenario, the classifier could predict that every sample is negative,
the TP’s would be zero, and the classifier would still achieve an accuracy of 99%. Alternatively, more
meaningful metrics for this type of problem are Precision and Recall, defined as,
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Table 1: Simulation Parameters and Scenarios.
(a) Input Parameters

Input Value
Number of Channels 5000

Scenario UMa
Max Delay Spread 1000ns
Carrier Frequency 2GHz

Transmitter Antennas 32
Receiver Antennas 4

(b) Scenarios
Scenario Cell Radius LOS Channels LOS %

S1 5,000m 47 0.94%
S2 1,000m 238 4.76%
S3 200m 1605 32.1%

Precision =
T P

T P+FP
, (2)

Recall =
T P

T P+FN
. (3)

Precision is the fraction of positive data points that are correctly classified. Recall is the fraction of positive
classifications that were correct. These two values are inversely related and dependent on the classification
threshold. Binary classifiers output a value between 0 and 1, the higher the value the more likely the clas-
sifier believes the inputs to be part of the positive class. A classifier that is very strict will have a higher
classification threshold. This means only classifying data as positive when it is very certain, which will
achieve a very high precision; since there will be several TPs and very few FPs. However this high precision
classifier will miss many of the positive classes, increasing the FN count and driving down the Recall. Like-
wise, a more lenient classifier, with a lower classification threshold, will favor the positive class. The lenient
classifier will have a high TP, low FN, and high FP rate; thus driving up the recall and down the precision.
Plotting the Precision against the Recall at each classification threshold between zero and one shows the
classifier performance at various operating points. The ideal operating point depends on the specific appli-
cation (is a FP or FN more costly?). Without knowing the exact cost of an incorrect classification the Pr-Re
AUC acts as an ideal metric for generic classifier performance when a class imbalance is present.

3 SIMULATOR DESIGN AND SCENARIO PARAMETERS

The channel simulator is an improved version of the one used in (Earle et al. 2021). It is designed to simulate
as many 3GPP CDL channels as described in (3rd Generation Partnership Project 2020) with realistic and
custom channel parameters, and log the conditions of the simulation and CSI fed back to the BS. Currently,
only Urban Macro channels have been considered. However, the simulator supports Urban Micro channels
and work is underway to add indoor channels as well. The primary parameter that was adjusted in this study
was the size of the cell, as this directly impacted the LOS probability for a given channel. The remainder
of the input parameters, along with their values, are shown in table 1 (a). Three data sets were simulated
called S1, S2, and S3 using the above conditions and cell size of 5,000m, 1,000m, and 200m, respectively.
The resulting data distribution of each of these data sets is shown in table 1 (b). S1 is a realistic size
for an UMa cell, S2 is small, and S3 is unrealistically small. Running the simulator for 5000 channels
took approximately 8 hours, so the channel size was decreased to artificially increase the number of LOS
channels in the data set to improve the models ability to identify the LOS case.

The simulator architecture is shown in figure 2. The channel parameter generation is defined in (3rd Gen-
eration Partnership Project 2020). All inputs shown are adjustable, however, they were set to the shown
values in this study. The parameter generation follows the definition in (3rd Generation Partnership Project

649
Authorized licensed use limited to: Carleton University. Downloaded on October 07,2023 at 17:19:30 UTC from IEEE Xplore.  Restrictions apply. 



Earle, Al-Habashna, Li, Xue, and Wainer

Figure 2: Simulation Architecture.

2020); the process was implemented and explained in (Riviello, Di Stasio, and Tuninato 2022), along with
their MATLAB code being available on gitlab (Riviello 2022). Their parameter generation script was used
as a starting point and significantly updated to meet the parameter generation needs of this project. The
parameters were used to create custom CDL channels using the 5G Toolbox, which handled the resource
grid creation, modulation, and application of the channel effects. Afterwards, path loss is applied along
with additive white Gaussian noise. Then, a combination of custom and 5G Toolbox functions are used to
calculate the CSI based on the received CSI-RS signal. The CSI and the channel parameters are logged to
be used by the ML models.

4 MACHINE LEARNING MODELS

This section will include the data pre-processing, the hyper-parameters used for the models in this study, and
the methods used to manage class imbalance. Many combinations of pre-processing and class imbalance
management were tested to find the optimal results. The results from all combinations are presented in
section 5, along with Pr-Re curves and a theoretical example use-case for the best performing models.

Data pre-processing is important for efficiently training models that are sensitive to the absolute value of
their inputs, such as NN. If some features have larger values, like RSSI, then their updates will be larger
and they will have artificially higher impact on the output until the model learns to decrease their weight
accordingly. This problem is prevented through scaling or standardizing the data. In this work we tested
two scalers, the first was l2 normalization (Scikit-Learn b), which was abbreviated to NRM in resulting Pr-
Re figures. The second is the Min Max Scaler (MMS), which subtracts the minimum value for the feature
from each entry then divides by the difference between the minimum and maximum values (Scikit-Learn
a). This results in a scaled value between zero and one. Scalers change the magnitude but preserve the
feature data’s original distribution; whereas standardizers will change the values and distribution. We tested
one standardizer, which removed the mean and scaled the values to have unit variance, abbreviated to SS.
The NRM, MMS, and SS data pre-processors were tested on all the models without any data balancing on
the S3 data set with 50 epochs. This was chosen since S3 has an artificially high positive count. The best
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Table 2: NN Architectures.
N1

Layer Neurons Activation
Input 33 Relu
Hidden 1 32 Relu
Hidden 2 8 Relu
Output 1 Sigmoid

N2
Layer Neurons Activation
Input 33 Relu
Hidden 1 128 Relu
Hidden 2 32 Relu
Output 1 Sigmoid

N3
Layer Neuron Activation
Input 33 Relu
Hidden 1-4 128 Relu
Hidden 5-8 64 Relu
Hidden 9-12 32 Relu
Hidden 13-16 16 Relu
Hidden 17 8 Relu
Output 1 Sigmoid

N4
Layer Neuron Activation
Input 33 Relu
Hidden 1-4 128 Relu
Hidden 5-8 64 Relu
Hidden 9-12 32 Relu
Hidden 13-16 16 Relu
Hidden 17 8 Relu
Output 1 Sigmoid

N5
Layer Neuron Activation
Input 5 Relu
Hidden 1 16 Relu
Hidden 2 8 Relu
Output 1 Sigmoid

performing pre-processor was MMS as it had the highest average and maximum Pr-Re AUC so it was used
for all future analysis.

Machine learning models have difficulty in identifying the non-dominant class in the presence of class
imbalance. A common way to improve the model’s ability to identify the minority class is to balance
the training data. It is important to note that the training and validation data may be balanced but the
final hold-out test must not be, to reflect the actual performance on the population. Three methods of
training data balancing were tested in this study: Over-sampling, Under-sampling, and Synthetic Minority
Oversampling Technique (SMOTE). The goal of data balancing is to have an equivalent amount of LOS and
NLOS channels in the training data set so the optimization algorithm values them evenly. Over-sampling
is when data from the minority class is increased (either by duplicating some samples or creating synthetic
samples). Under-sampling is when fewer data points from the majority class are considered. SMOTE is
an algorithm that generates fake data points for the minority class that match its feature distribution. These
algorithms were tested on all three scenarios since their level of imbalance is different. Overall, not balancing
the training data performed the best for all three data sets. This was not the expected outcome. Although it
is expected that this happened because all models used the Pr-Re AUC as their performance metric during
training. The models trained on balanced data over predicted the LOS case causing the Pr-Re curves to be
worse than those trained with the real data distribution when testing on the hold-out data.

There were seven different models tested and tuned for this study. The first two are RF and KNN models,
the remaining five are NN of varying architectures. The data was partitioned to be 70% for training and
validation, and %30 as a hold-out test. The RF used the validation data to optimize the hyper-parameters,
typically the optimal structure had 100 DTs voting on the classification. Likewise, the validation set was used
to tune the KNN model, and typically the model used the 5-7 nearest neighbours. Note that the Pr-RE curves
for the KNN model are not smooth, since the number of neighbours used is low. The NNs are numbered
N1-N5 and their architectures are shown in table 2. The networks each represent a specific architecture
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style: N1 is shallow and narrow, N2 is deep and narrow, N3 is shallow and wide, and N4 is both Deep and
Wide. N5 is a meta-learning network; instead of using the CSI values like the other models, its inputs are
the outputs from the RF model and N1-N4. It does not use the KNN output because its performance was
relatively poor and it only made N5’s decision making worse overall.

5 MODEL VALIDATION AND SYNTHETIC BENCHMARK

The first series of tests conducted were to determine the best pre-processing methodology. The S3 data set
was used since it had a reasonable number of LOS and NLOS samples. The number of epochs was held
constant at 50 while varying the pre-processing algorithm. The results of this test are shown in table 3 (a).
The method, average AUC, best model and the best model’s AUC are all presented. Overall, pre-processing
algorithm did not seem to have a major impact on this data. MMS was used for all future testing since it tied
others for average AUC and the best AUC recorded was using MMS. Testing was also done to determine the
best data-balancing technique. These tests were conducted for all three scenarios, since each scenario has
different degrees of class imbalance. The results are shown in table 3 (b). Interestingly, balancing the data
did not seem to help in any of the scenarios. All three found that training on the unbalanced data achieved
better Pr-Re AUCs on the hold-out test. Additionally, these results show that the scenarios with more class
imbalance favor the meta-learning models (N5 and RF). The final test conducted was to see how the number
of epochs affected the models results. The results are shown in table 3 (c). These tests were done with MMS
and no training data balancing for all three scenarios. Overall, these results show an improvement in average
and best AUC as the number of epochs approach 50, then they start to perform worse, since the algorithms
over-fit with too many training epochs. In this batch of tests, the meta-learners continued to outperform the
NN and KNN models. The best performing model’s Pr-Re curve for each scenario is shown in figure ??.

In a real world application, the system would have three choices based on the LOS/NLOS classifier output.
The system may use an LOS or NLOS specific algorithm, or it could use a generic algorithm. Therefore,
only the classifications above a certain confidence level need to be considered. Applying this information to
the problem, the following equation is used when assigning classes to the classifiers output,

1 : prediction > 1− threshold

0 : prediction < threshold

? : otherwise

(4)

In a hypothetical example, consider a system that has a generic localization algorithm which has a 10m
accuracy. The system may use a LOS specific algorithm with a 1m accuracy when properly applied to
LOS channels and 50m accuracy, when incorrectly applied to NLOS channels. The system also has an
NLOS specific algorithm which has a 5m accuracy when applied to NLOS channels and 50m accuracy
when applied to LOS channels. Several thresholds were tested with the optimal configuration described
previously. The results of the best performing algorithm for each scenario are presented in table 4. The
performance is the average estimation accuracy for the synthesized scenario. The TP, FP, FN, and TN are
the values in the confusion matrix for the data points that were classified with the confidence threshold.
The Acc, Pr, and Re columns are the Accuracy, Precision, and Recall, respectively. The final column,
class, is the ratio of data points that were given a class instead of left to the unknown class. There are two
baselines that the ML models need to outperform. The first is "All ?", which is the result when treating all
the channels as the unknown LOS status. The second baseline is specific to the scenario; it is what happens
if all channels are given the NLOS class. The second baseline is more difficult to beat in S1 since it has the
largest class imbalance. In S1, the baseline that must be beat is 5.42m, the best performing model was RF
with a 5.32m estimation accuracy, and the optimal result was 5.0m. In S2, the baseline was 7.1m, the best
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Table 3: Hyper Parameter Tuning

(a) Pre-Processing Evaluation.
Method Average

AUC
Best
Model

Best AUC

NRM 0.81 N2, N4 0.84
SS 0.79 N2, N4 0.82
MMS 0.81 RF 0.86
None 0.81 RF, N3,

N4
0.84

(b) Training Data Balancing Evaluation.
Scenario Method Average

AUC
Best
Model

Best
AUC

S1 ROS 0.19 N5 0.44
S1 RUS 0.06 N5 0.23
S1 SMOTE 0.13 N5 0.28
S1 None 0.33 N5, RF 0.50
S2 ROS 0.37 RF, N5 0.6
S2 RUS 0.28 N5 0.38
S2 SMOTE 0.38 N5 0.47
S2 None 0.45 RF, N5 0.61
S3 ROS 0.79 N2, N4 0.83
S3 RUS 0.78 N2, N4 0.81
S3 SMOTE 0.73 RF 0.84
S3 None 0.81 RF,

N3, N4
0.86

(c) Epoch Evaluation.
Scenario Epochs Average

AUC
Best
Model

Best
AUC

S1 10 0.30 N5 0.52
S1 25 0.27 N5 0.45
S1 50 0.24 RF 0.44
S1 150 0.21 RF 0.42
S1 250 0.25 RF 0.42
S1 500 0.31 N5 0.44
S2 10 0.38 RF, N5 0.51
S2 25 0.38 N5 0.51
S2 50 0.39 RF, N5 0.5
S2 150 0.37 RF 0.51
S2 250 0.38 N5 0.52
S2 500 0.37 N5, RF 0.52
S3 10 0.81 RF, N5 0.85
S3 25 0.81 RF, N5 0.85
S3 50 0.80 RF, N5 0.84
S3 150 0.79 RF 0.85
S3 250 0.78 RF 0.85
S3 500 0.77 RF 0.85

performing model was RF at 6.0m, and the perfect estimator was 4.8m. Finally, S3’s baseline was the "All"
model at 10m, the best model was N1 which achieved 7.7m, and the optimal classifier gets an accuracy of
3.7m. Ultimately, the ML models improved the systems performance when compared to the baseline in the
synthetic benchmark scenario. The improvement relative to the baseline was about 2% for S1, 24% for S2,
and 29% for S3.

6 CONCLUSION AND FUTURE WORK

This paper explores the use of various ML models to estimate the LOS status of a channel based on CSI
feedback. The channels used were custom 3GPP CDL channels. An RF, KNN, and four NNs used RSSI,
RSRP, RSRQ, CQI, PMI, and RI to predict the probability a channel had a LOS path. Additionally, a fifth
NN was used as a meta-learner to combine the results of the RF and NNs. The study focused on the AUC
of the Pr-Re plot to accurately report the classification performance in presence of class imbalance. Finally,
a theoretical example was used to show the developed model’s potential. The results were promising for a
preliminary study and the remainder of this section will explore next steps to improve this research.

In future iterations of this work, more ML models should be tested on larger data sets. The results for S1
and S2 were not as good as they could have been due to the lack of samples of LOS channels to learn from.
If larger simulated data sets were used, there would be more positive classes and the results could improve.
Additionally, there are many other types of ML classification models which is worth testing. Some examples
are Support Vector Machines, Naive Bayes, Boosting, and other NN architectures. Primarily, future work
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Table 4: Algorithm Performance in the Synthesized Scenario.

Scenario Model Threshold Performance TP FP FN TN Acc Pr Re Class
All All ? 0 10 0 0 0 0 0 0 0 0
S1 All NLOS 0 5.42 0 0 14 1486 0.991 0 0 1
S1 RF 0.05 5.32 0 0 6 1452 0.996 0 0 0.97
S2 All NLOS 0 7.1 0 0 70 1430 0.95 0 0 1
S2 RF 0.2 6.0 3 0 24 1373 0.98 1 0.11 0.93
S3 All NLOS 0 19.43 0 482 0 1018 0.68 0 0 1
S3 N1 0.1 7.7 176 13 17 600 0.96 0.93 0.91 0.54

should focus on meta-learning strategies, as the two tested in this preliminary research lead to the best
results. It would also be beneficial to implement one of the LOS/NLOS identification algorithms discussed
in the background to compare with our CSI-based solution for additional perspective. Furthermore, this
study can be extended by finding a real world example for the performance gain/cost for TP, FP, TN, and FN
classifications. Finally, in our results we found that a substantial amount of the LOS classes had an NLOS
path with more power than their LOS path. So a future classifier may benefit from identifying between these
two scenarios as well.

CDL channel models are useful for designing and testing a systems performance under generic channel
conditions. Future iterations of this work could be extended by including UMi and indoor environments,
since a majority of UE localization problems use smaller cells. Improvements to the simulator to add
support for these models is already underway. Additionally, a LOS/NLOS identification algorithm would
actually benefit from learning the characteristics of the cell they are deployed in. Hypothetically, a cell with
a park surrounded by tall buildings will have a much higher LOS probability if a user’s signal is coming
from the park instead of the buildings. Furthermore, by using online-learning, an ML model could infer
direction using the PMI, and improve the prediction results over time. This system would first be trained
on the statistical channel model, then have a simulated deployment using a geometric channel model. The
hypothesis is that the online-learning model should adapt to its environment and outperform the starting
model fairly quickly.
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