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Abstract
Carbon dioxide concentration in enclosed spaces is an air quality indicator that affects occupants’ well-being. To maintain
healthy carbon dioxide levels indoors, enclosed space settings must be adjusted to maximize air quality while minimizing
energy consumption. Studying the effect of these settings on carbon dioxide concentration levels is not feasible through
physical experimentation and data collection. This problem can be solved by using validated simulation models, generat-
ing indoor settings scenarios, simulating those scenarios, and studying results. In previous work, we presented a formal
Cellular Discrete Event System Specifications simulation model for studying carbon dioxide dispersion in rooms with var-
ious settings. However, designers may need to predict the results of altering large combinations of settings on air quality.
Generating and simulating multiple scenarios with different combinations of space settings to test their effect on indoor
air quality is time-consuming. In this research, we solve the two problems of the lack of ground truth data and the ineffi-
ciency of producing and studying simulation results for many combinations of settings by proposing a novel framework.
The framework utilizes a Cellular Discrete Event System Specifications model, simulates different scenarios of enclosed
spaces with various settings, and collects simulation results to form a data set to train a deep neural network. Without
needing to generate all possible scenarios, the trained deep neural network is used to predict unknown settings of the
closed space when other settings are altered. The framework facilitates configuring enclosed spaces to enhance air qual-
ity. We illustrate the framework uses through a case study.

Keywords
Modeling, simulation, Cell Discrete Event System Specifications, sustainability, machine learning, discrete events simula-
tion, complex systems, deep neural networks

1. Introduction

Maintaining the balance between energy efficiency and

providing well-ventilated, comfortable, and healthy indoor

spaces for occupants is a major concern for building

designers and researchers.1,2 For this, and for other reasons

(e.g., detecting the number of occupants indoors),

researchers and engineers have been studying carbon diox-

ide (CO2) dispersion in enclosed spaces.3 CO2 levels are

measured using CO2 sensors installed in different parts of

buildings and closed areas. CO2 Internet of Things (IoT)

sensors are usually preferred over other types of sensors

used for occupant detection because they are non-intrusive

and affordable.4 Despite their advantages, CO2 sensors are

overly sensitive to space settings (e.g., dimensions and

ventilation). Furthermore, the number of variable settings

interacting to affect the dispersion and the concentration

levels of CO2 are huge. As such, there is a need to observe

the effects of the different room settings on the measure-

ments of CO2 sensors and CO2 dispersion in general. Such

settings include, but are not limited to, the space’s dimen-

sions, the windows’ locations, and the number of

occupants.

Observing the effect of changing the room settings by

performing real-life experiments is unrealistic, expensive,
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time-consuming, and in some cases impossible. In previous

research, we have used Cellular Discrete-EVent System

Specifications (Cell-DEVS) to model CO2 dispersion.5,6

We have shown that Modeling and Simulation (M&S) can

solve this dilemma by modeling the indoor spaces and vali-

dating the models by showing the resemblance between

the models’ behavior and the real-life data.7,8 Cell-DEVS

is a combination of Cellular Automata (CA) and Discrete-

Event systems Specifications that has several advantages

described in section 3. Using the Cell-DEVS formalism,

we have defined advanced 3-D models of real-life com-

puter laboratories that consider CO2 sources (i.e., occu-

pants), CO2 sinks (i.e., windows and ventilation ports), and

the configuration of the closed space (e.g., dimensions).

We have calibrated the Cell-DEVS models based on

ground truth data collected from sensors installed in the

corresponding physical system.8 We hereby present our

findings and extend the work by introducing a complete

multistep framework proposal, as shown in Figure 1. The

main contribution of this research and the presented

Figure 1. A framework that integrates data collection, M&S process, and machine learning (ML) to predict values of the
configuration parameters to improve indoor air quality. (a) Physical system. (b) Conceptual model. (c) Computer model. (d)
Simulation results. (e) Simulation model verification. (f) Simulation model validation. (g) ML predictions.
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framework is to provide a solution to two problems. These

problems are the lack of available ground truth data col-

lected for CO2 concentration levels in enclosed spaces with

various settings (e.g., dimensions, ventilation levels, and

occupancy) and the time-consuming process of generating,

simulating, and studying the simulation of altering the val-

ues of the variables representing indoor settings. To the

best of our knowledge at the time of publishing this manu-

script, there are no similar frameworks that apply the

sequence of activities included in our framework to solve

these two problems. The proposed framework can be used

to model and simulate CO2 dispersion indoors, understand

indoor air quality, study the spread of viral infections, or

determine required ventilation.

As shown in Figure 1, the cycle of the presented frame-

work starts by collecting CO2 level data from the physical

space with known settings through the CO2 sensors

(Figure 1(a)). Next, a conceptual cellular model

(Figure 1(b)) is created based on the known settings of the

space (e.g., ambient CO2 concentration and floorplan).

Then, the cellular model rules by which CO2 levels may

change in each area of the space are developed, and those

rules are converted into a Cell-DEVS model (simulation

model) (Figure 1(c)). In the following step, the Cell-

DEVS models are executed to mimic the behavior of the

physical system. This step in Figure 1 shows the simula-

tion results at the beginning of the simulation, where only

a few occupants are present, and during other timestamps

as occupants arrive (Figure 1(d)). At each shown time

stamp, CO2 concentration, and the occupants’ locations

are visualized. Verifying the Cell-DEVS model entails

testing by comparing the simulation results to the results

calculated based on the Cell-DEVS model design and for-

mal definition, as shown in Figure 1(e). Note that if the

simulation results are identical to what is expected by the

model design, this does not necessarily guarantee the mod-

el’s validity. For validity, the simulation results must be

compared against the data collected from the physical sys-

tem. In step (f) of Figure 1, the simulation results are com-

pared to the data collected from IoT devices to ensure they

resemble the physical system and validate the quality of

the results. In the final step (Figure 1(g)), we integrate ML

models that are trained using the simulation results

obtained in Figure 1(d) to predict unknown configuration

parameters of the modeled space (e.g., location for ventila-

tion ports or computer desk arrangements in a laboratory).

The ML integration overcomes the fact that generating,

simulating, and studying the simulation of altering the val-

ues of the several settings that interact to affect CO2 levels

is very time-consuming. Without the ML prediction step,

the designers would need to simulate many possible sce-

narios with minor alterations to find the optimal settings

for better indoor air quality. Building designers can then

use the results to choose the best configuration parameters

for the physical system. We implement the designed

framework using Python scripts and show the application

of the framework through a real-life case study. The data-

set generated in the case study is publicly available

through our repository.9

The rest of this paper is organized as follows. In Section

2, we review related work, and in Section 3, we discuss the

background needed to present our work. In Section 4, we

explain the methodologies and the experimental setup that

we have created to perform our study, and that can be used

in similar studies. In Section 5, we present a case study to

illustrate the models we create, and the framework pro-

posed in Figure 1. Finally, we discuss the research work

done, the experimentation, and the results in Section 6.

2. Literature review

Researchers have used M&S and optimization techniques

to experiment and observe CO2 dispersion indoors in dif-

ferent settings. Batog and Badura model a bedroom that

contains a bed, a wardrobe, and a single-breathing occu-

pant. They simulate the model in two different scenarios.

In the first scenario, CO2 can escape through gaps around

the windows and doors, while in the other scenario, CO2 is

trapped inside the room. The occupant is assumed to spend

8 h sleeping in the room. As a result of the study, the

authors recommend considering the thoughtful placement

of CO2 sensors, as the location of the sensors affects the

accuracy of the measurements. For example, placing CO2

sensors in corners near windows or open doors may result

in lower readings than the actual CO2 concentration levels

close to where the occupant sleeps. They also recommend

that the height at which the sensor is installed should be

above the level of the bed.10 Pantazaras et al. present a

method for tailoring models for specific spaces. The mod-

els consider the CO2 concentration, ventilation, and multi-

ple occupants. Their models are used to predict CO2

concentration levels in the room and are only effective for

short-term predictions of CO2 concentration levels.11

Makmul studies the dispersion of hazardous gases in

enclosed spaces to aid building designers in constructing

public spaces that are safer during evacuation.12 The

author uses CA to model the influence of the spread of gas

on the behavior of pedestrians. In their study, Makmul pre-

sents an experiment on a specific closed space model with

two exits. The have used model is a 2-D model that does

not consider indoor space height.12

Zuraimi et al.13 use ML methods to predict the number

of occupants in enclosed spaces based on CO2 measures.

For their study, they used a large room with a capacity of

200 occupants. In the study, CO2 measurements and actual

number of occupants are collected for 4 months to train

the model. The authors prove by experimentation that

using ML models improves the accuracy of occupants’

detection over dynamic physical models in detecting the
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number of occupants based on CO2 measures. However,

this method can only be applied when the settings, such as

dimensions and ventilation, are constant while the number

of occupants, and hence the CO2 measurements, changes.

Changes in seating arrangements or the number of ventila-

tion ports, for instance, would deem the ML predictions

invalid.

Heo et al.14 propose a deep reinforcement learning

algorithm to design the ventilation system in a subway sta-

tion. The model is trained using synthetic data generated

by a virtual gray box model. The gray box model predicts

the indoor Particle Matter (PM) based on some variables

(e.g., the volume of the subway station and the efficiency

of the ventilation filters). The authors state that the virtual

model does not properly imitate the real subway station

and, hence, the performance of the ML model may not be

stable in real-life scenarios. Despite this shortcoming, the

study has succeeded in reducing the energy consumption

in the subject subway station by adjusting the ventilation

based on the predicted PM levels. The method is specific

to one subway station that was used to collect data and

validate the model as well. As such, the authors suggest

enhancing the method to be able to generalize it to other

types of buildings.14

Tagliabue et al. use real-life data collected from CO2

sensors and feed the data to a recurrent neural network to

predict future CO2 levels in an educational laboratory. The

study aims to adjust the Heating, Ventilation, and Air

Conditioning (HVAC) based on the predicted CO2 con-

centration. Studying the effect of changing any of the set-

tings in the room is not covered in the study.15 Similar to

the previous research, the results can only be applied to

the same space where the data was collected with fixed

room settings.

Taheri and Razban provide a system to control HVAC

based on the CO2 concentration in the environment. They

learned that Artificial Neural Network (ANN) is better

than other ML algorithms at predicting CO2 levels due to

the nonlinearity associated with CO2 data. The CO2 level

estimations were based on university class schedules and

fixed assumptions regarding attendance rate. Like Heo

et al., the ML model was validated against the same space

where the data used to build the model was collected.

Thus, the ML model is valid relative to that space setting.

Furthermore, any changes in dimensions or seating

arrangement are not considered. The study assumes that

the number of occupants is constant over a short period

and changes over a longer period such as 1 h. They use

the ML model to predict the CO2 levels based on occu-

pancy, relative humidity, dew point, and temperature. The

ventilation system is controlled to maintain the required

indoor CO2 levels to achieve a balanced tradeoff between

healthy air quality and energy consumption.16

A more general study, by Ma et al., surveys several

research projects developed to study indoor air quality. To

understand the effect of variables influencing indoor air

quality, the authors review analytical models and consider

using the input variables of those models as inputs for

ANN and reinforcement learning (RL) model predictions.

Based on the review, the authors conclude that a limited

number of studies have considered spatial configuration

(e.g., room dimensions) to adjust the control systems or to

incorporate those factors in predictive models. They also

state that, although analytical models consider many fac-

tors affecting indoor air quality, no research studies the

effect of the combination of those variables using ML. The

authors suggest that the lack of large datasets and the diffi-

culty of collecting field measurements could be the reason

for the deficiency. They recommend future studies to test

variable combinations to develop effective models.17

Based on our research and the findings of Ma et al., the

problem of predicting the combined effect of the different

parameters affecting the enclosed space settings on indoor

air quality is still pertinent due to the lack of large datasets

and the difficulty of collecting ground truth data.

Furthermore, the available research does not provide a rea-

listic generic solution that is not specific to one enclosed

space.

We address the gaps highlighted by three main contri-

butions. First, contrary to previous research that deals with

the problem in a case-by-case manner and considers a

small subset of the indoor room settings, we offer a gen-

eric Cell-DEVS model of CO2 dispersion using well-

established formalism that is supported by tools. The Cell-

DEVS model we present is validated against ground truth

data collected from different real university laboratories

with occupants and various settings. Therefore, it can be

applied to different enclosed spaces. Second, by integrat-

ing the Cell-DEVS model, which has been validated and

calibrated against real-life data, into a framework to gener-

ate scenarios of various enclosed spaces and simulate

those scenarios, we provide a large set of valid synthetic

data that is otherwise unavailable through physical means.

Third, encompassing training an ML algorithm in the

framework and training it using the simulation results

allows for fast predictions without the need to create sce-

narios and run simulations for studying the results of

tweaking the values of each indoor setting. We choose

ML over other methods because it is capable of handling

the complex interaction of all the variables influencing

CO2 dispersion as a simple black box without the need to

understand or model the details of the underlying physics.

That said, the use of ML is not the main contribution of

this research. The main contribution of this research is the

complete framework with methodological and verified

steps. Those defined steps address the lack of real-life CO2

measurement data for all various room settings and the dif-

ficulty of generating valid synthetic data representing vari-

ous combinations of room settings that may affect CO2

levels and dispersion. Building designers and maintainers
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can use the proposed framework to determine values for

unknown parameters or find optimal design configurations

for various enclosed spaces.

3. Background

In this section, we describe the essential background for

the two methods we use: M&S and ML. We model CO2

dispersion using Cell-DEVS.18 Cell-DEVS defines a grid

of cells where each cell is specified as a DEVS model. The

state of the cell is calculated using a predefined computa-

tion function that takes into consideration the current state

of that cell and the states of the neighboring cells. The use

of neighborhoods and spatial complexity makes CA, and

hence Cell-DEVS, inherently suitable for modeling spaces

such as rooms and buildings. However, Cell-DEVS is cho-

sen over CA because it overcomes some of the disadvan-

tages of CA in building advanced cellular models.18 For

example, Cell-DEVS supports asynchronous execution of

the cells forming the grid and allows for defining complex

timing conditions. As such, Cell-DEVS is suitable for

modeling complex environmental and social systems and

is very applicable to spatial models involving interacting

variables.18,19 Another motivation that explains choosing

Cell-DEVS for our framework is the availability of various

tools on different platforms that support Cell-DEVS as an

M&S method.19,20

A Cell-DEVS model can be formalized as follows:

GCC = (Xlist, Ylist, I, X, Y, h, N, {t1, . . ., tn}, C, B, Z),

where Xlist is the list of external input couplings (i.e., input

values to the cell that couples it with its defined neigh-

bors), Ylist is the list of external output couplings, I is the

set of states, X is the external input events set, Y is the

external output events set, h is the neighborhood size, N is

the neighborhood set, {t1, . . ., tn} is the number of cells in

each dimension, C is the cell space, B defines the border

cells, and Z is a translation function that defines internal

and external coupling.

The second concept we explain in this section is the

ML technique we use. We use deep learning to find the

optimal configuration parameters for a given space. Deep

learning is a type of Neural Network (NN) that is in turn

an ML technique inspired by the function of the brain’s

neurons. NN analyzes the data by passing it through a

hierarchy of layers of interconnected neurons. Deep learn-

ing is training an NN that has more than two non-output

layers (Figure 2).21 As shown in Figure 2, a layer in a

Deep Neural Network (DNN) can be either the input layer,

a hidden layer, or the output layer. The input layer groups

the inputs (x1, . . ., xi) and does not perform any comput-

ing, while the output layer is the group of neurons that

provides the outputs (y1, . . ., yj). As for the hidden layers

(h1, . . ., hk), these are the layers of neurons that perform

the actual computing and are not seen by the user. As the

data passes through each hidden layer, the data becomes

clearer based on the analysis and processing done at each

layer until the results are achieved at the output layer.

For a DNN to perform such a task, it needs to be

trained using a labeled data set where the outputs for the

given inputs are already known. In this phase, the DNN

makes predictions and compares them to the expected out-

puts. Based on this comparison, the strengths of the con-

nections between the neurons of the different layers are

adjusted. This adjustment continues until the DNN

becomes able to predict outputs with acceptable accu-

racy.21 Although other ML algorithms may be suggested

to replace the DNN in our framework, many considera-

tions must be studied. For example, we choose DNN over

RL because DNN is more suitable for the problem we are

attempting to solve. RL learns from the data dynamically

and adjusts the parameters based on that. When applying

this to the CO2 dispersion problem, the room settings sce-

nario would have to be adjusted and a new simulation

would have to be executed before the RL continues the

prediction and learning process. The building designer

using the framework would spend more time in the predic-

tion process than required. On the contrary, in the pro-

posed framework, all the scenarios are generated and

simulated in advance before running the DNN and starting

the prediction process. This allows for quicker predictions,

given the data is available. However, we plan to investi-

gate replacing the DNN with other ML algorithms or

Genetic Algorithms (GA) in future work.

4. Methodology and experimental setup

For the simulation model presented in this paper, we use

the Cadmium Cell-DEVS simulator.20 Cadmium is a

cross-platform header-only C++ library that can be used to

implement and simulate Cell-DEVS models. The simula-

tor allows defining a general category of models using the

Figure 2. A hierarchy of several layers of neurons is a deep
learning network.
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programming language (C++) while reading specific con-

figuration details for each model from a JavaScript Object

Notation (JSON) file that is parsed by the simulator. On

the one hand, we have implemented one general model in

C++ for CO2 dispersion and the breathing of occupants.

On the other hand, the JSON file describes different initial

configurations per cell. Each cell represents a specific seg-

ment of the physical space. The JSON file also specifies

the dimensions of the room, the shape of the cells’ neigh-

borhood, and other configuration parameters. For visualiz-

ing the simulation results, we use Advanced Real-time

Simulation Laboratory (ARSLab) DEVSWeb Viewer.22

The general model we are presenting considers the

dimensions of the closed space, ambient CO2 concentra-

tion, size, and location of CO2 sinks (i.e., windows, doors,

and ventilation ports), locations where occupants may

exist, the breathing rate of occupants based on their activ-

ity level, concentration increase due to breathing occu-

pants, and dimensions of the room. The model assumes an

ambient outdoor CO2 concentration of 400 particles per

million (ppm) based on the American Society of Heating,

Refrigerating, and Air-Conditioning Engineers (ASHRAE)

standards.23 However, this value can be adjusted as a para-

meter specified for each JSON scenario. Human breathing

is calculated based on the fact that humans breathe every 5

s, and the produced CO2 in every breath (exhaling and

inhaling) is a parameter that depends on the activity

level.24

To convert the conceptual model to a Cell-DEVS com-

puter model, the details of the enclosed space are trans-

lated into cells of different types. The general model has

eight types of cells: (1) walls and obstacles that do not

allow CO2 diffusion, (2) air cells whose CO2 concentration

is dependent on the concentration values in their

neighborhoods, (3) CO2 sources with a periodic increase

in the CO2 level added at an interval to mimic breathing in

addition to the CO2 diffused from the neighborhood, (4)

open doors that diffuse CO2 to the rest of the building with

a fixed indoor background CO2 level, (5) open windows

that are also CO2 sinks with a fixed outdoor background

CO2, (6) vents that diffuse gas through HVAC system with

a reduced constant CO2 level, (7) workstation cells that act

as normal air cells when not occupied and as CO2 sources

when occupied, and (8) exposed occupants cell that repre-

sents occupants who have been exposed to air with high

CO2 concentration for a long period and thus they are at

risk of infection or other health issues. The CO2 diffusion

is calculated by averaging the concentration level in the

Moore neighborhood of each cell. This means that to get

the concentration of each cell, the concentrations in either

27 or 9 cells are averaged in the cases of 3-D and 2-D

models, respectively.

We illustrate the ML portion of the proposed frame-

work including the data generation, ML model training,

and using the prediction model in Figure 3. We have

implemented a group of Python classes as a toolchain to

generate and simulate multiple scenarios of the model of

the physical space being studied.

The process starts with the Generator class (Figure 3(a))

that takes an initial scenario, the number of vents, vent

size, and the number of occupants in the modeled space as

inputs. The generator then creates many variations (JSON

files) of that scenario with random values (drawn from a

uniform distribution) of the configuration parameters. The

parameters considered can be changed in other experi-

ments using the same experimental setup. The Simulator

(Figure 3(b)) calls Cadmium to simulate all the generated

scenarios produced by the generator. The log files resulting

Figure 3. The experimental setup used to implement the framework is presented in Figure 1. (a) Generator. (b) Simulator. (c)
DataCollector. (d) Predictor.
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from the simulator are locally stored. In the following step,

the DataCollector (Figure 3(c)) parses the log files to col-

lect data about where the generated vents are located, the

locations of occupants, and the number of occupants who

become exposed to air with high CO2 concentration at a

given point during the simulation. The DataCollector pro-

duces a Comma-Separated Values (CSV) file that contains

all the required information from the simulation results of

all scenarios. The final step is the Predictor (Figure 3(d)),

which in turn uses the CSV file generated by the

DataCollector as a labeled dataset to train a DNN model.

Some of the configuration parameters are chosen as input

features to the DNN to predict unknown parameters. The

choice of the input features and the predicted output vary

depending on the objective of the case study.

For implementing the DNN, we use Keras which is an

NN Python library that runs on top of the open-source

platform TensorFlow.25 Usually, the more layers the DNN

has, the better its ability to learn, but the slower the train-

ing is and the more challenging the model becomes due to

possible overfitting (giving accurate predictions for the

training data but not for the new data). Many researchers

provide guidelines for determining the network topology

(e.g., the number of hidden layers) based on the number of

inputs, the number of outputs, and the nature of the prob-

lem, while others recommend a more elaborate approach

for determining the network topology for complex prob-

lems. Based on theoretical guidelines provided in the liter-

ature,26 we started with two hidden layers and manually

experimented with changing the number of layers and the

number of neurons in the hidden layers. The best results

we achieved for the problem at hand were by using two

hidden layers where each layer has 20 nodes. To cross-

validate the machine learning model, we use the k-fold

statistical resampling to evaluate the prediction accuracy

of the model. The k in ‘‘k-fold’’ refers to the number of

groups that the data is to be split into. The dataset is

shuffled randomly and divided into k groups. For each

group i, we use the remaining k21 groups as a training

data set while group i is used as a testing dataset to evalu-

ate the model. We use 10-fold cross-validation for our

dataset. In other words, in each fold, 90% of the data is

used for training while 10% is used for validation and the

process is then repeated 10 times.

5. Case study: predicting number of sick
occupants based on vents locations,
number of vents, and the total number
of occupants

In this section, we present a case study that covers the

framework, starting by creating a conceptual model from

the physical system and ending with the ML prediction of

some room settings.

5.1. From the physical system to the computer
model

The computer laboratory we use in this case study for data

collection and verification is a (9.53 14.243 3.25) m3

room, with 48 workstations where students can sit to work

on their computer assignments. The floor plan of the

laboratory and the furniture layout are shown in Figure 4.

The ground truth data, collected from CO2 sensors

installed in a university laboratory, is based on the number

of attendees for a 110-min tutorial that has taken place in

the Winter term of the year 2019. Thirty-nine students

Figure 4. Approximate floorplan (left) and furniture layout (right) of the physical system of the calibration model.
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attended the tutorial, in addition to the teaching assistant

who was present throughout the tutorial. Students arrive

and leave at different times during the period of the lab

tutorial.

The logged data against which the Cell_DEVS model

in Figure 5 is validated is based on one CO2 sensor

installed close to the door at 1.5 m height and logs the

concentration level every 30 min. As the occupants arrive

at the room, the readings of CO2 concentration start to

increase, reaching the peak after the middle of the lab

tutorial period when all students are present. The CO2

starts to decrease again until all students leave the room.

In Figure 5, snapshots of the simulation show the increase

in CO2 as the occupants arrive. The simulation video

shows a longer coverage of the CO2 dispersion including

the decrease in CO2 as the occupants leave the room.27

Note that we have created two versions of this model: a

3-D detailed version and another 2-D version. Both ver-

sions are calibrated separately based on the real-life data

collected from the university laboratory physical system.

We explain here the detailed 3-D version of the model and

the reader is referred to previous publications for more

details about the 2-D version.24 The physical 9.5 3 14.24

3 3.25 m3 system is mapped to a 233 353 8 cell3

Cell_DEVS model. For this case study, we specify a 40 3

40 3 40 cm3 cell size. Therefore, the physical system is

translated to an approximated (23 3 35 3 8) cell model.

To replicate the physical system, the CO2 production for

each occupant is calculated as follows based on two facts:

(1) an average-sized person doing normal low-activity

office work produces 0.31 liter/min/person of CO22
23 and

(2) breathing occurs every 5 s on average. Therefore, an

average person produces 0.025833 1000 cm3 of CO2 per

breath. Hence, every occupant’s breath increases the con-

centration of CO2 in each occupied cell by:

25:83cm3

cell volume
=

25:83cm3

(403 403 40)cm3
’0:000403 ð1Þ

It is worth noting that Equation (1) gets calculated auto-

matically based on the Cell_DEVS model parameters (i.e.,

cell volume and produced CO2 per breath specified in the

input JSON settings file). We include here how this calcu-

lation is done for the parameters we specify for the pre-

sented case study. The general computation rules for the

different cell types are shown in Table 1. Note that the

workstation cell type is not listed in Table 1 because it

either behaves as a CO2_SOURCE (when occupied) or as

an AIR cell when not occupied. It is not considered as an

IMPERMEABLE_STRUCTURE because we assume that

the type of workstations in this room occupies minimum

space that does not affect CO2 dispersion. The Cell_DEVS

model formalism is specified as follows: CO2 = \Xlist,

Ylist, Zlist, S, X, Y, Z, h, N, {t1, t2, t3}, C, B, Z. , where

Xlist = Ylist = Zlist = {Ø}; S = type: {0, 1, 2, 3, 4, 5, 6}

and conc: {double}; X = Y = Z = Ø; h = 27; N = (0,0,0),

(21,0,0), (1,0,0), (0,1,0), (0,21,0), (21,1,0), (1,1,0),

(21,21,0), (1,21,0), (0,0,1), (21,0,1), (1,0,1), (0,1,1),

(0,21,1), (21,1,1), (1,1,1), (21,21,1), (1,21,1), (0,0,21),

(21,0,21), (1,0,21), (0,1,21), (0,21,21), (21,1,21),

(1,1,21), (21,21,21), (1,21,21)}; t1 = 23; t2 = 35;

t3 = 8; C = {Cijk—i 2 (0, 23[ ^ j 2 [0, 35[ ^ k 2 [0, 8[ };

and B = {Ø} (unwrapped cell space).

The simulation runs 7200 timesteps which are equiva-

lent to 2 h; each time step is 1 s. The session lasted for

110 min and we added 5 min before and after the session

to get a better picture of the CO2 level changes due to the

Figure 5. Simulation results during different timestamps (hh:mm:ss). The legend in the figure illustrates the color code of the CO2

levels in PPM in Layer 4. The red squares in Layer 3 represent occupants, while the gray squares are empty workstations. (a) Time
≈ 09:17:12. (b) Time ≈ 09:20:15. (c) Time ≈ 10:00:00.
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arrival and departure of occupants. Figure 5(a) shows the

simulation results at the beginning of the simulation, where

only a few occupants are present, and during other time-

stamps, as occupants start to arrive (Figure 5(b) and (c)).

CO2 concentration is to the left of each figure (a, b, and c)

and the occupants’ locations are at the right. Occupants are

represented as red squares and empty workstations are

gray. The two grids repeated three times in three time-

stamps in the Figure are Layer 4 (left), which is the cross-

section of the room representing the height at which the

CO2 sensor is installed (120–160 cm), and Layer 3 (right)

representing the height at which the occupants are seated

(80–120 cm). The area in the lower left corner of the room

has fewer occupants and is close to the vents (the locations

of the vents are shown in Figure 4). Hence, it has less CO2

concentration than other areas, as the vents try to offset the

CO2 increase that occurs where the occupants are concen-

trated. Note that Layer 3 in Figure 4 displays only the

workstations, and not the CO2 concentration, as the pur-

pose of displaying Layer 3 here is to show the potential

locations of the occupants.

5.2. Model calibration, verification, and validation

The general model has flexible parameters, some of which

are not available in the set of ground truth data that we

have collected. For example, although the exact number of

attendees in the lab is available, the arrival time of each

person at the computer workstation they have used is not

available. Also, the exact CO2 concentration in the vents

is not available. Thus, we have adjusted the values of the

unknown parameters through several simulation experi-

ments to calibrate the model to get simulation results that

are as close as possible to the ground truth data. The para-

meters that we adjusted are the arrival and departure times

of the occupants, the workstations that the occupants chose

to use, ambient CO2 concentration, and CO2 concentration

in the air bumped into the room through the ventilation

ports. We have documented the exact steps to execute the

model and made it available with the code and the differ-

ent scenarios through the ARSLab repository.6

After calibrating the model by adjusting the initial para-

meters (e.g., initial CO2 concentration level) using the

ground truth data, we validate the rules used in the pre-

sented CO2 Cell_DEVS model using another room in the

same building but on a different floor and with a different

configuration. The physical system used for validation is

another laboratory setting during a different time of the

day, with only 11 occupants, a larger space, and no win-

dows. While we create, calibrate, and verify the Cell-

DEVS model using settings and ground truth data col-

lected from the first laboratory explained in section 5.1,

we validate the Cell-DEVS model using ground truth data

collected from a different laboratory with different set-

tings. This methodology increases the trust in the synthetic

data generated by simulating different scenarios with vari-

ous room settings. Furthermore, it allows for the use of the

generated data in training the ML for the prediction step

of the proposed framework. The dimensions of the physi-

cal system used for validation are 15.8 3 9 3 3.25 m3.

Figure 6 shows the floor plan of the room and the furniture

layout. In this room, there is another lab session following

this one, and hence more students enter the room at the

end of the laboratory, and we have tried to mimic this in

the model. The CO2 sensor is installed close to the door

and logs the concentration level every 15 min.

Table 1. The general computation rules for the different cell types of the CO2 model.

Cell type Computation function

AIR
Cells that have air only.

conc = average concentration of the neighbors.
type = AIR

CO2_SOURCE
Breathing humans

conc = neighborhood average conc excluding cells of type
IMPERMEABLE_STRUCTURE
+ exhaled CO2

IMPERMEABLE_STRUCTURE
Walls do not allow CO2 to diffuse through them

conc = 0
type = IMPERMEABLE_STRUCTURE

DOOR
Open doors to the rest of the building with a fixed
background CO2 concentration

conc = 500 ppm
type = DOOR

WINDOW
Open windows with a fixed outdoor background CO2

conc = 400 ppm
type = WINDOW

VENTILATION
Vents that diffuse gas through with a reduced CO2

background level

conc = 0–400 ppm
type = VENTILATION

EXPOSED_CO2_SOURCE
An occupant who has been breathing air with a CO2

concentration that is greater than 700 ppm for more than
50 min.

conc = neighborhood average conc excluding cells of type
IMPERMEABLE_STRUCTURE
+ exhaled CO2

type = EXPOSED_CO2_SOURCE
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The formal Cell_DEVS scenario for the validation

room is similar to the formal calibration Cell_DEVS sce-

nario explained for the room where the data was collected

except for the following: t1 = 23; t2 = 40; and C = {Cijk—

i 2 (0, 23[ ^ j 2 [0, 40[ ^ k 2 [0, 8[}. We have used the

same ambient CO2 concentration and ventilation concen-

tration that have resulted from calibrating the Cell_DEVS

model. We have executed the Cell_DEVS model for a

simulation period equivalent to 7200 s (2 h). Comparing

the simulation results to the data logged by the real sensors

in the physical system (Figure 7) demonstrates the resem-

blance between the model’s data and the system’s data.

Simulation videos of the validation model and the original

CO2 model are available online through the ARSLab

YouTube channel.27

5.3. ML prediction examples

For the ML prediction example included in this study, we

use the 2-D version of the model that has also been cali-

brated against real-life data. While we chose the 2-D ver-

sion to reduce execution time for this case study, applying

the ML prediction to the 3-D version of the model will be

presented in future studies. We have used the framework

to automatically generate around 600 scenarios with differ-

ent settings of the Cell_DEVS model using the Generator

(Figure 3(a)). The input features to the DNN in this case

study are the locations of the vents, the number of vents,

and the total number of occupants in the room. The output

of the DNN is the location and the number of occupants

exposed to high CO2 concentration by the end of the ses-

sion. Table 2 lists the generated scenarios, the number of

cells of type VENTILATION, and the number of occu-

pants (CO2_SOURCE) generated for those scenarios. Note

that a ventilation port is composed of several cells. For

example, the sample simulation shown in Figure 8 has

ventilation ports composed of 6 (2 3 3) cells each. For

this case study, When the number of sick occupants is

known for each scenario (design of ventilation ports and

their locations), it is easy to decide which ventilation ports’

locations are the most suitable or what the maximum num-

ber of occupants should be in a room with certain settings.

It is important to state that while we present this case study

for illustration, the same framework supports testing the

effect of other settings of the closed space on the CO2 con-

centration or occupants’ health. For example, if the dimen-

sions are the settings to be altered and tested to enhance

the room design, the width, length, and heights would be

added as features when training the DNN model.

When validating the DNN model, we use 10-k cross-

validation. In each fold, the data is split into 540 training

scenarios and around 60 validation scenarios to test the

predictions of the DNN when given new input.

We simulate all the scenarios and collect the data using

the DataCollector (Figure 3(c)). It is worth noting that the

simulation time is highly dependent on the scenario size

and granularity. For this case study, the 2-D version of the

Cell-DEVS model generation and simulation takes approx-

imately 3 s on average, on an i7-1165G7 2.80 GHz proces-

sor and 12.0 GB RAM. However, generating and

simulating many scenarios with different settings is a time-

consuming task, given the large number of possible scenar-

ios. For this case, the enclosed space settings used as input

features to the DNN are the vents’ dimensions, vents’ coor-

dinates, and the number of occupants. The DataCollector

also counts the number of occupants who are specifically

Figure 6. Floor plan and furniture layout of the validation model.

Figure 7. Collected ground truth data points in the validation
model compared to simulation data.
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surrounded by higher CO2 concentrations (hence bad air

quality) for a longer period (EXPOSED_CO2_SOURCE).

The latter is the data label, which will be predicted by the

DNN model once trained and validated. Based on the pre-

dicted values, the settings of the room can be adjusted by

the designer to meet the air quality requirements of the

room. All the generated scenarios and the collected data

are available through our repository.9 Figure 8 is a snap-

shot of the simulation for one of the scenarios generated

and input to the DNN for training. The scenario has a total

Table 2. The scenarios produced by the generator.

Total
Vent cells

Total
occupants

Scenarios Total
Vent cells

Total
occupants

Scenarios Total
Vent cells

Total
occupants

Scenarios

12 4 8 52 4 4 57 12 1
5 39 5 4 13 4
6 53 53 12 1 14 4

22 3 4 14 5 15 4
4 16 15 2 16 4

24 2 7 16 1 17 2
3 19 17 1 18 1
4 54 54 1 1 58 3 1

28 6 1 2 1 4 4
7 3 3 3 5 5
8 9 4 2 13 1
9 6 5 3 14 2
10 1 10 1 15 3

30 4 1 13 3 17 3
5 1 14 1 19 1
6 2 15 2 60 2 3
7 14 16 3 3 9
8 26 55 12 1 4 19
9 28 13 3 5 19
10 8 15 1 9 1

34 4 6 16 3 12 3
5 7 17 2 13 5
6 7 56 2 1 14 2

35 4 6 3 4 15 5
5 6 4 8 16 6
6 8 5 7 17 6

36 4 6 13 1 18 2
5 20 14 3 72 12 1
6 34 15 4 Total number of scenarios = 601

52 3 2 17 2

Figure 8. An automatically generated and simulated scenario using the setup of Figure 3. The legend in the figure illustrates the
color code of the CO2 levels in PPM in Layer 4. The scenario maps to the room in Figure 4. (a) Time ≈ 0. (b) Time ≈ 1 h.
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of 30 cells of type VENTILATION and a total of 8 occu-

pants. Seven out of the eight occupants are breathing bad

air quality after an hour of being in the closed space

(Figure 8(b)).

The trained DNN model managed to predict the output

(number of occupants exposed to bad air quality) with a

mean absolute error of 0.79. We have used the trained and

validated DNN to predict the number of occupants for sev-

eral examples of scenarios with different ventilation ports’

locations, occupancy density, and locations of occupants.

For example, we use the DNN to predict the number of

sick occupants of the scenario in Figure 9 without simulat-

ing the scenario. The DNN predicted the number of occu-

pants exposed to high CO2 concentration to be 5.69. Then,

we simulate the scenario to verify the prediction. The

simulation results show that close to the end of the simula-

tion, the number of sick occupants reaches 5, and it

remains 5 until the end of the simulation.

6. Discussion and conclusion

Motivated by the need to study the effects of room settings

on recorded CO2 concentration, we have developed a gen-

eric Cell-DEVS model that accepts different room settings

as input parameters. Then, we validated the Cell_DEVS

model using data collected from another closed space in

the same building during a different time and with differ-

ent configurations. When comparing the simulation results

to the data collected from IoT devices, the Cell_DEVS

model is evinced successful at replicating the behavior of

the physical indoor space. In this paper, we integrate the

Cell_DEVS model into a novel framework to predict

unknown settings of the input space. The framework is

composed of several steps: (a) collecting data from

physical systems, (b) creating a conceptual model of the

collected data, (c) creating a corresponding computer

model using Cell-DEVS, (d) simulating scenarios of the

created Cell_DEVS model, (e) verifying the simulation

results by comparing them to physically measured CO2

levels, (f) validating the created Cell_DEVS model by

comparing results of simulating other variations of that

model to data collected from the physical system, and (g)

generating a dataset from simulation results to train DNN

models for predicting the desired values for settings of

enclosed spaces to find optimal designs to enhance air

quality. We have illustrated the usability of the framework

through a case study where we have generated hundreds

of simulation scenarios and used the simulation results to

train and validate a DNN model.

The results suggest that the framework is suitable for

studying the spread of CO2 indoors and a presented case

study shows that it is successful at predicting variables

such as the number of occupants exposed to high CO2

concentrations for a long time due to inadequate ventila-

tion or misplacements of occupants’ seating. However, as

in any other experimental study, some threats to validity

are worthy of discussion. A minor validity threat is the

existence of some approximations, that do not exceed

20 cm along each dimension when converting the physical

system into a model. Nevertheless, this approximation

does not affect the usability of the model as the model user

is aware of it and can handle slight approximations if

needed. A second validity threat is that the current model

assumes that the air in the room is at a steady state and the

CO2 is diffused evenly in all directions. This is not usually

the case due to the different types of HVAC and occupants

breathing in different directions. Incorporating airflow in

the room is a feature that we have implemented in the 2-D

Figure 9. An example of a simulation model where the simulation results in five occupants being exposed to high CO2 levels, while
the DDN model predicts an output of 5.69. The legend in the figure illustrates the color code of the CO2 levels in PPM in Layer 4.
The scenario maps to the room in Figure 4.
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version of the model,24 and we aim to include it in the 3-D

version and the complete framework in future work.

However, the model in its current state has successfully

mimicked the physical system. Moreover, using more

advanced fluid dynamics equations to model the CO2 dis-

persion is anticipated to enhance the validity of the results

in future work while increasing the simulation time. Other

possible future work includes considering occupants’

motion for modeling more dynamic environments (e.g.,

gymnasiums). Moreover, the ground truth data collected

for this study is from two physical spaces. Future studies

will increase the trust in the model by collecting data from

more physical spaces and comparing the collected data to

the model results. Finally, we plan to run experiments to

replace the DNN with other methods (e.g., GAs) and tar-

get testing and predicting other room settings that may

result in better air quality (e.g., furniture layout and venti-

lation power).

Funding

The author(s) disclosed receipt of the following financial support

for the research, authorship, and/or publication of this article:

This work has been partially funded by NSERC (Canada).

ORCID iDs

Hoda Khalil https://orcid.org/0000-0002-3459-616X

Gabriel Wainer https://orcid.org/0000-0003-3366-9184

References

1. Al Horr Y, Arif M, Katafygiotoua M, et al. Impact of indoor

environmental quality on occupant well-being and comfort: a

review of the literature. Int J Sustain Built Environ 2016; 5:

1–11.

2. Jiang A, Masooda MK, Soh YC, et al. Indoor occupancy esti-

mation from carbon dioxide concentration. Energy Build

2016; 131: 132–141.

3. Labeodan T, Zeiler W, Boxem G, et al. Occupancy measure-

ment in commercial office buildings for demand-driven con-

trol applications—a survey and detection system evaluation.

Energy Build 2015; 93: 303–314.

4. Arief-Ang IB, Hamilton M and Salim FD. RUP: large room

utilization prediction with carbon dioxide sensor. Pervasive

Mob Comput 2918; 46: 49–72.

5. Wainer G. Discrete-event modeling and simulation: a practi-

tioner’s approach. 1st ed. Boca Raton, FL: CRC Press, 2009.

6. Khalil H and Wainer G. CO2 spread computer lab model user

manual, https://github.com/SimulationEverywhere-Models/

Cell-DEVS-_spread_indoor/blob/master/User%20Manual.txt

7. Khalil H, Wainer G and Dunnigan Z. Cell-DEVS models for

CO2 sensors locations in closed spaces. In: Proceedings of

2020 winter simulation conference (WSC), Virtual, 14–18

December 2020.

8. Khalil H and Wainer G.Modeling carbon dioxide dispersion

indoors: a Cell-DEVS experiment. In: Gwizda11a TM,

Manzoni L, Sirakoulis GC, et al. (eds) Cellular automata.

Cham: Springer, 2021, pp. 226–236.

9. Khalil H and Wainer G. Cell-DEVS-CO2_spread_indoor,

https://github.com/SimulationEverywhere-Models/Cell-DEVS-

CO2_spread_indoor/tree/master/scripts/Cell-DEVS_DNN

10. Batog P and Badura M. Dynamic of changes in carbon diox-

ide concentration in bedrooms. Proced Eng 2013; 57:

175–182.

11. Pantazaras A, Lee SE, Santamouris M, et al. Predicting the

CO2 levels in buildings using deterministic and identified

models. Energy Build 2016; 127: 774–785.

12. Makmul J. Microscopic and macroscopic for pedestrian

crowds. PhD Thesis, Mannheim University, Mannheim,

2016.

13. Zuraimi MS, Pantazaras A, Chaturvedi KA, et al. Predicting

occupancy counts using physical and statistical CO2-based

modeling methodologies. Build Environ 2017; 123:

517–528.

14. Heo S, Nam K, Loy-Benitez J, et al. A deep reinforcement

learning-based autonomous ventilation control system for

SMART indoor air quality management in a subway station.

Energy Build 2019; 202: 109440.

15. Tagliabue LC, Re Cecconi F, Rinaldi S, et al. Data driven

indoor air quality prediction in educational facilities based

on IOT network. Energy Build 2021; 236: 110782.

16. Taheri S and Razban A. Learning-based CO2 concentration

prediction: application to indoor air quality control using

demand-controlled ventilation. Build Environ 2021; 205:

108164.

17. Ma N, Aviv D, Guo H, et al. Measuring the right factors: a

review of variables and models for thermal comfort and

indoor air quality. Renew Sustain Energ Rev 2021; 135:

110436.

18. Wainer G and Giambiasi N. Cell-DEVS/GDEVS for com-

plex continuous systems. Simulation 2005; 81: 137–151.

19. Khalil H and Wainer G. Cell-DEVS for social phenomena

modeling. IEEE Trans Comput Soc Syst 2020; 7: 725–740.
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