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Complexity measure based 
on sensitivity analysis applied 
to an intensive care unit system
Joao R. B. Paiva 1,2*, Viviane M. G. Pacheco 1,2, Poliana S. Barbosa 2, Fabiana R. Almeida 2, 
Gabriel A. Wainer 3, Flavio A. Gomes 1,2, Antonio P. Coimbra 4 & Wesley P. Calixto 1,2*

This work proposes a system complexity metric and its application to Intensive Care Unit (ICU) 
system. The methodology for applying said complexity metric comprises: (i) parameters sensitivity 
indices calculation, (ii) mapping connections dynamics between system components, and 
(iii) system’s complexity calculation. After simulating the ICU computer model and using the proposed 
methodology, we obtained results regarding: number of admissions, number of patients in the queue, 
length of stay, beds in use, ICU performance, and system complexity values (in regular or overloaded 
operation). As the number of patients in the queue increased, the ICU system complexity also 
increased, indicating a need for policies to promote system robustness.

In critical care, we usually need to connect diverse interdependent entities to build a cohesive system capable 
to provide health recovery to patients. Those characteristics make the Intensive Care Unit (ICU) a complex 
system whose behavior is determined by rules that may change according to different  needs1–3 (for instance, the 
different medical protocols). From admission to minimum operating conditions, multidisciplinary teams work 
cooperatively and effectively to achieve goals related to critical or potentially seriously sick patients recovery. 
In addition to human resources, critical care units need various devices, equipment and medicine, and this 
represents a significant cost for hospital management. Measuring ICU complexity can be useful to understand 
the health system dynamics in the intensive care context, and the impact of small changes in some variables.

To address critical care mechanisms complexity, we need to see health care reality as a set of heterogene-
ous components that act as a whole. According to  Morin4, complexity is a tissue of heterogeneous constituents 
inseparably associated or the tissue of events, actions, interactions, feedback, determinations, and accidents that 
make up our phenomenal world.

Nature itself is characterized by complex organization patterns that combine regularity and randomness in 
its structure and  behavior5,6. Recurring patterns are often found in nature’s ever-changing configurations, and 
even a limited number of rules or laws may produce complex structures, e.g. DNA consists of strings of the same 
four nucleotides, yet no two individuals are exactly alike. This characteristic is known as perpetual novelty and 
is present in most complex  systems3. For some decades, several studies have been addressing complexity as the 
quality of being complex or as a scientific field with several  branches3,7–10. These studies identify that complex 
systems may have some of these characteristics: non-linearity, emergence, self-organization, diversity, interde-
pendence, evolution, and perpetual novelty, among others.

In intensive care context, we focus on two aspects: diversity and interdependence. From materials to people, 
we may observe the diversity of intensive care services in terms of devices, equipment, drugs, procedures, and 
professionals (physicians, residents, nurses, physiotherapists, and technicians). According to  Page1, diversity 
may enhance the robustness of complex systems maintaining their functionality, in addition to driving innova-
tion and productivity. However, if one part strongly coupled with others is affected, the whole system may be 
 compromised11,12.

By observing these aspects in the ICU environment, we may analyze: (i) the diversity based on resources 
needed for intensive care and (ii) the interdependence based on adverse events cases. In addition to the impact 
on patients physical integrity, adverse events result in increased healthcare costs due to longer hospital stays; they 
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affect health professionals psychologically and undermine confidence in medical staff. These implications have led 
to studies on safety culture that ensure early identification and prevention of major groups of adverse  events13,14.

Forster et al.15 investigated whether adverse events are associated with length of stay at ICU and mortality. 
Adverse events were observed in 19% of ICU patients and refer to (i) procedural complication, (ii) nosoco-
mial infection, (iii) adverse drug event, (iv) surgical complication, (v) therapeutic error, (vi) system error, and 
(vii) diagnostic error. The number of preventable events was 6/18, 8/13, 2/12, 0/6, 5/5, 1/1 and 1/1, respectively. 
As research findings, adverse events were independently associated with an average increase in hospital length of 
stay of 31 days, however a significant statistical association between adverse events and mortality was not found.

As the length of stay at the ICU increased, the number of available beds decreased, which affects new patients 
admission. Using queuing theory and sensitivity analysis, McManus et al.16 assessed the impact of bed unavail-
ability on ICU performance in a pediatric hospital during a 2-year period. Based on the admission, discharge and 
turn-away data, the authors observed that the rejection rate increased exponentially as ICU utilization exceeded 
80% . This behavior was confirmed from results given by the queuing model, which also allowed to predict system 
performance from changes in unit size.

The ICU system overload makes the critical care environment more susceptible to errors or negligence, requir-
ing greater staff attention and cooperation. Based on a game-theoretic experiment, Guazzini et al.17 verified that 
humans accurately estimate the benefits of collaboration when facing hard problems. Thus the staff ’s behavioral 
responses in the ICU environment may change according to the situation complexity.

Although there are studies on the intensive care  complexity2,18,19, none of them applies complexity metrics 
and sensitivity analysis at the same time. Considering the restricted number of resources in intensive care, stay 
extension at the ICU due to adverse events, financial costs for the health system, psychological and physical 
problems associated with adverse events or bed unavailability, this paper presents a quantitative study on ICU 
complexity and applies sensitivity analysis for defining the relevance of the connections between elements. We 
propose a complexity metric that considers both internal and external factors, measuring the impact generated 
on outputs due to parameters variation, such as resources and patient arrival rate, to use sensitivity indices as 
connection weights.

In addition to the complexity metric, this work presents an ICU performance metric and the relationship 
between complexity, performance, and workload. The proposed complexity measure encompasses different 
aspects of the system: (i) arrangement, based on connections, (ii) configuration, obtained by adjusting the 
parameters, (iii) performance, used as system output in the calculation of sensitivity indices and, (iv) workload, 
checked by the number of connections.

Theoretical background
Systems, models and simulation. Systems are composed of units that interact with each other through 
connections and with the environment through boundary components. These units or system components work-
ing together achieve results that could not be obtained by individual  components20–22. Systems have the quality 
of encompassing subsystems and being encompassed by larger systems at the same  time12,23. Thus, systems are 
differentiated by their properties, which are: (i) totality – the internal cohesion among elements and boundaries 
components, (ii)  composition – the elements and their interactions, (iii)  internal organization – the way its 
structure performs functions, and (iv) external organization – the interaction rules with the  environment12,23,24.

System modeling is the process of representing the system through behavior rules and interaction with the 
environment. Several studies and analyses can be performed using the  model25. During the modeling process, it is 
necessary to define which systems details are necessary for the study, without addressing irrelevant particularities. 
The definition of scope and modeling technique depends on the modeler’s experience and research  emphasis26.

One of the techniques used to model real systems is Discrete Event System (DES) modeling. This technique 
refers to the class of systems that depend on events occurrence to evolve. The events are the result of intentional 
actions or triggered upon verification of a certain condition. These actions promote system state changes at ran-
dom time  intervals27. Both the events and states that describe discrete event systems can be mapped into finite 
discrete sets in the modeling  process26. Using the model, input parameters (historical, real, or hypothetical) can be 
manipulated during experiments to observe the  outputs27. These experiments can be performed using simulation, 
which aims to reproduce the modeled system dynamics behavior, allowing us to understand its  functioning28.

System’s complexity metrics. Systems complexity comprises the system as an interacting whole (inter-
action between its parts and the whole with the environment). From a behavioral perspective, complexity is a 
subjective matter, since the system’s behaviors are described by those who observe the  system29,30. Complex sys-
tems have the following characteristics: (i) nonlinearity – the superposition property absence, since only linear 
relations are represented by partial processes that can be superimposed to obtain the total  process20, (ii) emer-
gence – the collective behavior of the system elements, which can appear in a small part of the system or in the 
system as a  whole31, (iii) self-organization – the ability to establish its own rules and generate new behavior pat-
terns without external  intervention1,32,33, (iv) diversity – heterogeneity of its member agents, allowing for coop-
erative  relations1, (v) interdependence – the level of influence existing between its parts and the  whole11, and 
(vi) evolution – the ability to develop trajectory in space and time by recombining structures that compose  it3.

The literature presents several complexity metrics. Deacon and  Koutroufinis5 and Gell-Mann34 propose that 
complexity consists of the balance between order and disorder, regularity, and randomness. Considering the 
system under study,  Lloyd35 lists forty system complexity metrics in three groups: (i) description difficulty, 
(ii) creation difficulty, and (iii) degree of organization. Complexity metrics can be based on  entropy36, degree of 
 hierarchy10, algorithmic information  content37,38, computational  capacity39, thermodynamic  depth40,  statistics41, 
fractal  dimension42, logical  depth43, dynamic  depth5, amount of  information31,  size8, and  connections44.
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Sensitivity analysis. Sensitivity analysis allows measuring the impact generated on system outputs due to 
variations in input  variables45–47. Figure 1, adapted from  Paiva48, illustrates the sensitivity analysis process for a 
system with n input parameters given by x1, x2, · · · , xi , · · · xn.

Using local sensitivity analysis, we first investigate the parameters reference values that drive the system to 
its best performance. Thus, we define these reference values set, called the base case 

−→
β  , given by:

where xβi  is the reference value for xi parameter. After defining the parameter base value, we must choose a set 
of values for each parameter in the range between – 100 and 100% from the base value. In Fig. 1, we can see that 
the analysis cycle is performed for each system parameter. While modifying one parameter (red arrow), oth-
ers are kept constant (blue arrows) in their reference values. Thus, we can check the system’s sensitivity to each 
xi parameter variations. This analysis comprises scenarios definition, that is, different values of the parameter 
under analysis in the variation range combined with the reference values of other parameters. These scenarios 
are simulated (or applied to the real system) and the obtained outputs are stored in −→Yi .

Eschenbach and  McKeague49 propose a visual method using a graph called spider diagram. Figure 2, adapted 
from  Pannell50, illustrates a spider diagram considering system sensitivity analysis with three input parameters: 
x1 , x2 and x3 . Figure 2 shows the output values in the ordinate axis, the input parameters variation from the base 
value in the abscissa axis, and the ordered pairs corresponding to analyzed scenarios using markers.

In the spider diagram illustrated in Fig. 2, all parameters can be modified in the range of −100 to 100% from 
the base value given by 

−→
β  . However, in practical situations, some parameters may have physical limitations that 

restrict this variation range. The more sensitive the parameter (considering the difference between obtained 
output value and the output value corresponding to 

−→
β  scenario), the greater its impact on the system output. 

Based on this statement,  Gomes51 proposes the area method to obtain the sensitivity indices of input parameters. 
The spider diagram analysis interval is defined by the analyst, considering possible parameter restrictions.

The area method consists of the relationship between areas defined by the parameter curves. The axis par-
allel to the abscissa axis in the spider diagram is called the base axis. Thus, the areas between each parameter 
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Figure 1.  Sensitivity analysis cycles using the one-at-a-time method.
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curve and the base axis correspond to the parameter contribution in relation to the total area. The parameter’s 
sensitivity index is given by:

where Saxi is the sensitivity index of xi parameter, Axi is the area formed by the variation curve of xi parameter and 
the base axis, n is the number of input  parameters51.

Methodology
Proposed complexity metric. The proposed complexity metric uses sensitivity indices to calculate com-
plexity. These indices are used as connection weights of the system under study. Figure 3 illustrates the steps to 
apply the proposed metric. Based on the system model, we carry out the pre-analysis, when we define: (i) base 
scenario or base case, (ii) parameters variation range, and (iii) analysis interval in the spider diagram.

Using the area method, we can calculate the system parameters sensitivity indices, according to expression 
(2). The output variable can be defined as the system performance. Considering modifying the reference values 
using the one-at-a-time method, we can get performance values corresponding to different scenarios. Thus, 
the parameters can be related to the different system connections through sensitivity indices. For example, the 
connection between components A and B can be related to parameters x2 , x3 , and x5 . Therefore, the relevance of 
this connection γc would be equal to the sum of these parameters sensitivity indices ( Sax2 + Sax3 + Sax5 ). Generi-
cally, the connection relevance γci is obtained by the sum of parameters sensitivity indices Saxj directly related to 
the connection ci , expressed by:

The use of sensitivity analysis in the metric of system complexity was proposed by  Gomes51, in which the connec-
tion relevance γc corresponds to the connection weight in the system. This metric bases on the entropy conception 
to quantify the influence of the uncertainty inside the system added to the influence of the uncertainty generated 
by external elements, given by sensitivity indices. Thus, the system complexity is calculated by:

(2)
Saxi =

Axi
n

∑

i=1

Axi

,

(3)γci =

n
∑
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Figure 2.  Hypothetical spider-diagram of the system sensitivity analysis with three input parameters.
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where ψ(c, γ ) is the system complexity based on weighted connections, ρ is the number of active connections at 
each instant, P(ci) is the connection probability ci to occur, and γci is the connection relevance. The connection 
occurrence probability P(ci) can be theoretical or experimental, according to the system analysis. The number 
of active connections ρ is given during system operation.

Intensive care unit model. The intensive care unit proposed model is defined based on the ICU patient 
flow. In summary, the model consists of the patients arrival, resource demand, patients permanence in the ICU, 
adverse events occurrence, and patients exit after being discharged or dying. These relationships can be modeled 
as connections between system elements, as illustrated in Fig. 4.

The ICU patient flow starts by requesting an ICU bed. The patient waits in the queue until resources are avail-
able and the intensivist physician confirms his/her admission. If the patient is admitted, resources are allocated, 
and the patient occupies an ICU bed and receives care from staff. If the patient is not admitted, the bed request 
is canceled. In the case of hospitalization, the length of stay in the ICU is increased whenever an adverse event 
occurs. During his/her stay in ICU, the patient can die. When the patient is discharged or dies, the resources are 
deallocated and the patient flow ends, as shown in Fig. 5.

Considering the ICU patient flow shown in Fig. 5, the system dynamics are defined according to probability 
distributions. The system can be expressed in terms of states and events to perform system simulation of dis-
crete events. The set of discrete states of patients in the intensive care unit is: (i) in queue waiting for admission, 
(ii) in consultation with an intensivist physician, (iii) refused admission, (iv) hospitalized, (v) recovered, and 
(vi) deceased. The set of events is: (i) patient arrival (registration of vacancy demand), (ii) evaluation of patient’s 

(4)ψ(c, γ ) =

ρ
∑

i=1

[

γci − P(ci) · log2 P(ci)
]

,

patient staff

adverse
event

bed

equipmentICU

queue

patients
arrival

patients
exit

Figure 4.  Connection-based ICU model.
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clinical status, (iii) refusal of admission, (iv) admission, (v) allocation of resources, (vi) occurrence of adverse 
event, (vii) death, (viii) patient exit (discharged patient or deceased patient), and (ix) resource deallocation.

In the proposed model, the queue is modeled by priorities. The moment resources are available, the priority 
patient is evaluated by the intensivist. The patient’s hospitalization admission or refusal depends on prognosis 
and potential benefit generated by therapeutic interventions. The admission criteria and discharge from the 
intensive care unit are established according to the ICU Admission, Discharge, and Triage Guidelines, accepted 
by the Society of Critical Care  Medicine52. Thus, patients referred for ICU admission are prioritized according 
to their condition, as expressed in Table 1.

Patients classified as priority 2 and priority 4 according to Table 1 have a high risk of needing immediate 
intervention, so they should be monitored. Patients assessed as priority 5 are usually terminally ill, dying or 
potential organ donors, indicated to be in ICU only when there is a medical specification. The intensive care 
unit is an open system in which patients can arrive at any time. Thus, the number of patients in the queue and 
resource usage vary over time. Here, we propose ICU performance metric such as the relationship between the 
number of admissions na , length of stay ls in days, number of patients in queue nq , and number of beds in use nb . 
These variables are measured as average for the whole unit during a given period of time. The ICU performance 
ηicu expression is given by:

where the variables naref  , lsref  , nqref  and nbref  are fixed at the maximum reference value of variables na , ls , nq e nb , 
respectively. The variable naref  is calculated following the steps: (i) to calculate the length of stay distribution that 
represents all patients based on the frequency and the length of stay related to the patients priority, (ii) to weigh 
the adverse events cases considering the extension of stay in the ICU, (iii) to calculate the average length of stay 
in ICU, (iv) to divide 365 (days of a normal year) by the average length of stay in ICU and (v) to multiply by the 
number of ICU beds. The variable lsref  is determined by applying the steps: (i) to get the length of stay distribu-
tion representing all patients, (ii) to define the number of standard deviations that will be added to the mean of 
the distribution, (iii) to weigh the adverse events cases considering the extension of stay in the ICU. The variable 
nqref  is calculated following the steps: (i) to define critical arrival rates distributions, (ii) to calculate the average 
arrival rate, (iii) to calculate the minimum number of patients treated in the ICU during one year considering 
the maximum reference length of stay lsref  , (iv) to calculate nqref  as the difference between the total demand for 
ICU beds and the minimum number of patients treated in the ICU. We recommend that the variable nbref  be 
defined based on the medical literature.

The ICU parameters sensitivity are: number of beds nbed , percentage of equipment nequipment , percentage of 
staff nstaff  , adverse event rate rae and arrival rate mean µarrival . Using the ICU model illustrated in Fig. 4, the base 
scenario or base case β is defined as the optimized system configuration case: maximum number of resources 
nbed , nequipment and nstaff  available in the ICU to meet demand given by µarrival (obtained empirically) and adverse 
event rate equal to the sum of preventable event rate and non-preventable event rate, in which the preventable 
event rate is zero and the non-preventable event rate is given by the medical literature. The complexity measure 
is calculated using (4) during the simulation of the model illustrated in Fig. 4. Each patient in the queue adds a 
connection to the system and when hospitalized the patient adds three to four connections. After admission, the 
patient connects with the bed, the equipment, the staff, and the adverse events (if affected by any adverse event).

Results
The ICU base scenario for simulation consisted of 10 beds, 100% of equipment, and 100% of the staff workload, 
with a 5% addition margin. This margin refers to cases in which the professional needs to extend their working 
hours, for example, cardiac resuscitation close to the staff ’s shift change. Considering the knowledge of special-
ists, patients were ranked by priority, as follows: 35% for Priority 1, 50% for Priority 2, 7% for Priority 3, 7% for 
Priority 4, and 1% for Priority 5. The waiting queue type was first in, first out (FIFO), conditioned to the priority 
order. The admission refusal rate was set at 10% . For each admitted patient, the following were allocated: one 
bed, from 6% to 12% of the total equipment and from 6% to 12% of the staff ’s workload, following a uniform 
distribution U(6, 12) for equipment and staff. The ICU average length of stay, in days, was related to the patients 
 priority53, represented by a normal distribution equal to: N(8, 3) for Priority 1, N(5, 2) for Priority 2, N(7, 1) for 
Priority 3, N(7, 1) for Priority 4 and N(30, 7) for Priority 5.

(5)
ηicu =

na

naref
+

lsref − ls

lsref
+

nqref − nq

nqref
+

nb

nbref

4
,

Table 1.  Patient admission priority classification.

Admission priority Recovery probability Therapeutic support limitation Need for intervention Need for  monitoring

1 High No Yes Yes

2 High No No Yes

3 Low Yes Yes Yes

4 Low Yes No Yes

5 Null Yes Yes Yes
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Based on the medical  literature13–15, the adverse event rate was set at 12% . For each adverse event occur-
rence, the patient length of stay was increased by a period between 15 and 45 days, represented by a U(15, 45) 
uniform distribution. The ICU death rate was set at 20% . The patient leaves when he or she is discharged or dies, 
situations in which it’s reserved resources are deallocated. For cases of admission refusal, the patient leaves the 
system before entering the ICU room. Patients who received intensive care can be classified as (i) recovered with 
no adverse event history, (ii) deceased with no adverse event history, (iii) recovered with adverse event history, 
and (iv) deceased with adverse event history. In the base scenario or base case, the patient arrival rate was rep-
resented by a normal distribution with 36 hours mean and 4 hours standard deviation, N(36, 4). In other words, 
every 36 hours on average there is one ICU bed request. All simulations were performed using the Simulink 
computational tool from MATLAB© software.

The system performance was measured using the expression (5). We calculated the variables naref  , lsref  , nqref  
and nbref  through experiments considering the aforementioned distributions. The maximum reference number 
of admissions naref  was calculated based on the mean of the length of stay distribution N(6.58, 2.26), which 
represents all patients. Considering the adverse event rate, 88% of the total number of patients admitted stay in 
ICU for an average of 6.58 days, and 12% stay for an average of 36.58 days since the ICU length of stay in these 
cases increases an average of 30 days. Therefore, the average length of stay is 10.18 days. In one year, 360 patients, 
approximately, are admitted into an ICU with 10 beds.

The value lsref  was equal 17.6 days, as a result of the steps: (i) to get the length of stay distribution representing 
all patients, (ii) to add three standard deviations to the mean value of the length of stay distribution, (iii) to weight 
the adverse events cases. The obtained values from the steps were: (i) N(6.58, 2.26); (ii) 14 days; (iii) 17.6 days. We 
added three standard deviations ( 3× 2.26 ) to the mean value (6.58) resulting in approximately 14 days. As 12% of 
patients have adverse events, the maximum reference length of stay lsref  resulted in 17.6 days, considering that 88% 
of total patients would be hospitalized for 14 days and 12% of patients would stay in the ICU for about 44 days.

Then, the maximum reference queue size nqref  was calculated, considering critical arrival rates: N(4, 4), N(6, 4) 
and N(12, 4). The average of these arrival rates means resulted in 7.33 hours, which would correspond to an 
average of 3 patients arriving per day and 1194 patients per year (simulated period) approximately. If a minimum 
number of patients were treated during the year, that is, when each patient length of stay was maximum as refer-
ence (17.6 days), the total number of patients who would go into an ICU with 10 beds would be 207. Thus, the 
maximum reference queue size would be 990 patients approximately.

We define the reference for the maximum reference number of beds nbref  in use as 85% of the total beds. Thus, 
the bed availability is kept within the expected limits for the ICU, according to  McManus16. Since the modeled 
ICU has 10 beds, whenever the mean number of beds in use exceeds 8.5, the expression (6) determines the fourth 
installment numerator of performance metric. This modeling is a way to penalize situations in which the ICU 
is working at its limit.

Table 2 summarizes the calculated values for the variables naref  , lsref  , nqref  and nbref  , which represent maximum 
reference values for the variables na , ls , nq and nb , respectively.

After defining probabilistic distributions and reference values for calculating system performance, we per-
formed the ICU parameters sensitivity study: nbed , nequipment , nstaff  , rae and µarrival , relative to the normal distri-
bution with standard deviation equal to 4 hours.

Case study 1: ICU model sensitivity analysis. The ICU model sensitivity analysis was developed using 
the area method. The base value for number of beds nbed = 10 , percentage of equipment nequipment = 100% , 
percentage of staff nstaff = 105% , adverse event rate rae = 12% and arrival rate mean µarrival = 36h . These values 
were defined empirically, considering the desired operating conditions of the ICU (optimized base case). The 
scenarios are built modifying the parameters nbed (from 1 to 20 beds), nequipment (from 15 to 200% ), nstaff  (from 
15 to 200% ), rae (from 12 to 24% ) and µarrival (from 4 to 72h).

We simulate the ICU operation for a one-year period. Considering the ICU optimized configuration (base 
case), an average of 193.79 patients were admitted to the ICU, who stayed hospitalized for about 8.49 days. The 
queue mean size was 5.69 patients with approximately 8.67 beds utilization during the simulated period. Thus, 
the value of the variables was equal to na = 193.79 , ls = 8.49 , nq = 5.69 and nb = 8.67 . The performance mean 
value calculated using the expression (5) was 74%.

Figure 6 refers to the base case spider diagram, in which the ICU working condition is regular. In Fig. 6, the 
number of beds nbed negative variation (in blue) generated the greater impact on performance. The parameters 

(6)
{

nb if nb < 8.5

nbref − 5 · (nb − nbref ) if nb ≥ 8.5

Table 2.  Reference values for variables na , ls , nq and nb.

Variable Value Description (maximum mean value of...)

naref 360 ...Admissions number

lsref 17.6 ...Length of stay

nqref 990 ...Number of patients in queue

nbref 8.5 ...Number of beds in use
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percentage of equipment nequipment (in orange) and staff percentage nstaff  (in yellow) showed similar behavior, 
with a significant impact for values below the base value. The adverse event rate rae (in purple) was only varied 
from 0% to 100% , since the estimated base value refers to non-preventable events. The base value rae was equal 
to the smallest feasible value for the model in question. The increase in adverse event rate by 100% led to a drop 
in performance greater than 10% . The arrival rate parameter µarrival mean variation (in green) led to lower per-
formance values in both contexts analysis (negative variation and positive variation).

From one-at-a-time measures, visually presented in the spider diagram in Fig. 6, the area method was applied 
to calculate the sensitivity indices. The values obtained were: (i) Sanbed = 0.2556 , (ii) Sanequipment

= 0.1904 , 
(iii) Sanstaff = 0.1757 , (iv) Sarae = 0.1121 , and (v) Saµarrival

= 0.2662 . The most sensitive parameter was µarrival , fol-
lowed by the nbed . The sensitivity index values are used to define system connections relevance values. In this 
way, after completing the sensitivity analysis step, we can calculate the ICU system complexity.

Case study 2: ICU system complexity calculation. The complexity metric application using the expres-
sion (4) depends on the probability P(c) definition and the relevance γc of the system connections. The probabili-
ties of each connection type in the ICU system are presented in Table 3. The queue connection probabilities were 
defined experimentally considering each patient priority. The experimental probability refers to the number of 
patients per priority in the queue at each analyzed instant in regard to the total number of patients in the queue. 
Probability values for resources and adverse events were defined according to the base case configuration.

Considering the ICU configuration with 10 beds, the patient connection probability to the bed is 0.1. Thus, 
each patient requires an average of 0.09 of the total equipment and the total team workload. This value 0.09 refers 
to the uniform distribution U(6, 12) mathematical expectation, used to define the equipment or staff quantity 
required by each patient. As for adverse events, the connection probability refers to its rate, which is 0.12.

The system connections relevance γc was defined based on the parameters sensitivity indices. We check 
which parameters directly influence each connection and thus define the relevance value γc , as shown in Table 4.

The base case complexity was ψ icu(c, γ ) = 20.30 , considering the average obtained after 100 system simulation 
repetitions for a one year period. The obtained complexity value can be understood when compared to complex-
ity values from other scenarios. We modified the arrival rate mean µarrival to analyze overload cases, as shown 
in Table 5. The impact of changing the arrival rate was verified by simulating the scenarios β12h and β24h , since 
the number of resources and adverse event rate were kept equal to the optimized base case β36h . The variables 
that make up the ICU performance measure, expressed by (5), were obtained after simulating each scenario and 
their values are shown in Table 6.
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Figure 6.  Spider-diagram of the ICU system for optimized base case.

Table 3.  Occurrence probabilities of connections in ICU system.

Connection c P (c)

Patient priority 1 – queue 0.06

Patient priority 2 – queue 0.40

Patient priority 3 – queue 0.19

Patient priority 4 – queue 0.29

Patient priority 5 – queue 0.06

Patient – bed 0.10

Patient – equipment 0.09

Patient – staff 0.09

Patient – adverse event 0.12
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Under overload condition, the performance values obtained were inferior to the optimized base case perfor-
mance: 56% relative to β12h and 64% relative to β24h . The Table 6 data indicate a queue size nq increase by more 
than 1000% and ICU occupation above the recommended value ( 85% ), since the ICU had 93.1% beds in use for 
the case β12h and 92.2% for the case β24h . The average number of patients in the queue according to each priority 
is shown in Fig. 7 and in Table 7. As the available resources were insufficient to meet the demand, the number of 
patients in the queue increased significantly (and in a non-linear manner) with the arrival rate mean reduction.

Based on Fig. 7 and Table 7, we verified that the largest number of patients in the queue refers to priority 2 
patients. However, regarding the regularity case, these patients represented 38.01% of the total patients in the 
queue, while in overload cases, priority 2 patients represented more than 60% of the total patients in the queue. 
The lowest values in Table 7 are priority 1 and priority 5 patients. Most of the priority 1 patients occupied ICU 
beds while priority 5 patients were the smallest group with ICU beds demand. Both priority 3 and priority 4 
patients percentages increased as the arrival rate mean also increased.

The calculated complexity values for the scenarios β12h , β24h and β36h are shown in Table 8. The complexity of 
these scenarios was 3 to 7.5× greater than the regularity scenario β36h complexity. The increase in overload cases 
complexity is due to the patient increase in the system. These patients may be waiting for bed in the admission 
queue due to resource unavailability or inside the unit, generating a high resource utilization rate.

Table 4.  Connections relevance of the ICU system.

Connection c γc

Patient – queue Saµarrival

Patient – bed Sanbed

Patient – equipment Sanequipment

Patient – staff Sanstaff

Patient – adverse event Sarae

Table 5.  ICU system overload and regularity cases.

Base case Condition nbed nequipment nstaff rae µarrival

β12h Overload 10 100% 105% 12% 12h

β24h Overload 10 100% 105% 12% 24h

β36h Regularity 10 100% 105% 12% 36h

Table 6.  Simulation data of ICU performance components variables for overload and regularity cases.

Base case Admissions na Length of stay  ls[days] Patients in queue  nq Beds in use      nb Performance  ηicu

β12h 179.64 9.75 244.09 9.31 0.56

β24h 194.80 8.98 58.44 9.22 0.64

β36h 193.79 8.49 5.69 8.67 0.74
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Figure 7.  Number of patients per priority in the ICU queue for base cases β36h , β24h and β12h.
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Discussion
In this work, we built a computational model of an intensive care unit and simulate it. The developed model 
considered internal elements of the system and external aspects, described as input parameters and output vari-
ables. Initially, we verified how sensitive the system was to the variation of the input parameters. Thus, we could 
see that the sensitivity was distributed among all parameters. The calculated sensitivity indices presented values 
between 11 and 27% , that is, the least sensitive parameter is relevant to the system as well as the most sensitive 
parameter. In other systems, it is common to verify sensitivity indices of certain parameters close to zero and 
others, above 50%48,51,54,55.

The sensitivity indices were used in the proposed complexity measure to weight the connections between the 
system elements. The use of the local sensitivity analysis method in the methodology corresponds to a limita-
tion in the metric, especially if the base case is in a instability region. To resolve this limitation, the application 
of the global sensitivity analysis method is recommended as an alternative to the area  method56,57. However, we 
emphasize that if the system is in a stability region, the local sensitivity analysis is indicated, especially when the 
complexity metric is applied to a real system model, dispensing with the computational model.

Considering the ICU system relevance for health recovery, the system as a whole must show reliability 
and robustness. The ICU system shows robust behavior when: (i) the adverse event occurrence is reduced, 
(ii) the patients flow occurs regularly, and (iii) the proper functioning is maintained even in instability situ-
ations, such as unexpected demand increase, lack of human resources or equipment failure. To promote ICU 
system robustness, actions can be adopted, such as functional overlap between health professionals or the use 
of multifunctional critical care  apparatus58–60.

We can investigate aspects related to ICU system robustness by observing the complexity variation. System 
changes, such as idleness or overload, can affect the parameters sensitivity and the connections entropy. The 
robustness analysis associated with the specialists expertise in the critical care area contributes to decision-
making in ICU systems management. These decisions can improve resource allocation and adjust the system’s 
operating rules.

The proposed complexity metric has a potential impact on the practice of intensive care in terms of resource 
management based on demand. The decision-making process based on the complexity of the system can be 
performed by hospital managers or even managers of a nation, in case the government wants to know the possi-
bilities of acting in emergencies, such as a pandemic. The relevance of using this complexity score lies in its ability 
to integrate different system characteristics such as configuration, arrangement, performance, and workload. 
Monitoring the parameters of the ICU system to apply the proposed complexity metric can be a way to avoid 
deaths and financial losses in the context of intensive care.

Using simulation, the ICU system exposure to high demand regimes was important to observe the consider-
able increase in complexity ψ icu(c, γ ) and loss of system efficiency checked through the variables number of 
admissions na , length of stay ls , patients in queue nq , beds in use nb and performance ηicu . Overload situations 
in ICU systems can occur both during their routine operation and in exceptional situations, such as the current 
COVID-19 pandemic. Individuals contaminated with new coronavirus or SARS-CoV-2 can present symptoms 
with varying degrees of severity, from asymptomatic to serious cases, in which the patient develops acute respira-
tory syndrome accompanied or not by other vital systems impairment. In severe cases, the patient’s admission 
to the ICU is  recommended61,62.

The high number of serious COVID-19 cases recorded in several countries in recent years has caused a 
situation of generalized overload in health systems at a global level, especially those aimed at intensive  care63. 
ICU occupation rates above 85% – reaching 100% in numerous cases – have been observed since the pandemic 

Table 7.  Number of patients by priority in ICU queue relative to overload and regularity cases.

Patient priority

Number of patients in 
queue

β12h β24h β36h

1 26.71 0.97 0.38

2 164.72 36.30 2.16

3 24.62 10.28 1.07

4 24.66 9.44 1.80

5 3.36 1.42 0.25

Table 8.  Complexity values to analyzed scenarios.

Scenario ψ icu(c, γ )

β12h 153.42

β24h 62.34

β36h 20.30
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 beginning64. The ICU systems overload is addressed in studies performed in hospitals in  China65 and the United 
States, the main pandemic  epicenters66,67, in Italy, one of the most affected countries by the pandemic in contami-
nated  percentage68,69, in the Netherlands,  Germany69 and around 216 countries analyzed by Rocks and  Idriss70 
and Sen-Crowe et al.63.

From the hierarchical organization of complex systems point of view, the ICU system has subsystems mean-
while is part of a larger system: the hospital system. The ICU complexity increase can affect the entire hospital 
system complexity. The proposed complexity metric can be used to evaluate the subsystem complexity relation-
ship with the system that comprises it. Regarding the internal dynamics, the proposed metric can contribute 
to the complexity evaluation when there are system changes, such as lack of beds, lack or failure of equipment, 
and lack of professionals.

Conclusion
This work proposed a system complexity metric based on weighted connections. We use sensitivity indices to 
weight the connections between system components. Thus, the influence of the external environment could be 
verified through sensitivity analysis. The simulation of the intensive care unit system provided us: (i) average 
number of patients admitted, (ii) average ICU length of stay, (iii) number of patients by priority in the queue, 
and (iv) system resource usage. Using the simulation data, we calculate the system performance, and the ICU 
systems parameters sensitivity and complexity, under regularity and overload conditions. The intensive care unit 
presents complex system characteristics, as the interaction between its components generates functionality (criti-
cal care) that is impossible to obtain by its parts separately. In addition, the ICU system has the self-organizing 
characteristic, observed when professionals need to extend their working hours or when there is a need for 
overlapping functional competencies. The hierarchical organization is also observable, given that the system’s 
functioning and structures can be analyzed at different levels. Based on the results obtained in this work, we list 
some future investigations: (i) sensitivity analysis and complexity study of idleness cases and system overload in 
comparison with the regularity case, (ii) analysis regarding performance measure relations and system complex-
ity, and (iii) metrics development to define regions of system robustness.

Data availability
Some or all data, models, or code that support the findings of this study are available from the corresponding 
author upon request.

Received: 3 September 2021; Accepted: 5 August 2023

References
 1. Page, S. E. Diversity and Complexity (Princeton University Press, 2010).
 2. Kannampallil, T. G., Schauer, G. F., Cohen, T. & Patel, V. L. Considering complexity in healthcare systems. J. Biomed. Inform. 44, 

943–947. https:// doi. org/ 10. 1016/j. jbi. 2011. 06. 006 (2011).
 3. Holland, J. H. Complexity: A Very Short Introduction 1st edn. (Oxford University Press, 2014).
 4. Morin, E. Introducción al Pensamiento Complejo [Introduction to Complex Thinking] 5th edn. (Gedisa, 2001).
 5. Deacon, T. & Koutroufinis, S. Complexity and dynamical depth. Information 5, 404–423. https:// doi. org/ 10. 3390/ info5 030404 

(2014).
 6. Kurths, J. et al. General remarks on complexity. In Inside Versus Outside Vol. 63 (eds Kurths, J. et al.) 219–234 (Springer, 1994). 

https:// doi. org/ 10. 1007/ 978-3- 642- 48647-0_ 13.
 7. Mainzer, K. & Chua, L. The Universe as Automaton: From Simplicity and Symmetry to Complexity 1st edn. (Springer Science & 

Business Media, 2011).
 8. Mitchell, M. Complexity: A Guided Tour 1st edn. (Oxford University Press, 2009).
 9. Bak, P. How Nature Works: The Science of Self-organized Criticality 1st edn. (Copernicus Books, 1996).
 10. Simon, H. A. The architecture of complexity. Proc. Am. Philos. Soc. 106, 467–482. https:// doi. org/ 10. 1007/ 978-1- 4899- 0718-9_ 31 

(1962).
 11. Bar-Yam, Y. General features of complex systems. Encycl. Life Support Syst. (EOLSS) UNESCO 1, 1–10 (2002).
 12. Mobus, G. E. & Kalton, M. C. Principles of Systems Science 1st edn. (Springer, 2015).
 13. Rafter, N. et al. Adverse events in healthcare: learning from mistakes. QJM Int. J. Med. 108, 273–277. https:// doi. org/ 10. 1093/ 

qjmed/ hcu145 (2014).
 14. Rothschild, J. M. et al. The critical care safety study: The incidence and nature of adverse events and serious medical errors in 

intensive care. Crit. Care Med. 33, 1694–1700. https:// doi. org/ 10. 1097/ 01. ccm. 00001 71609. 91035. bd (2005).
 15. Forster, A. J., Kyeremanteng, K., Hooper, J., Shojania, K. G. & van Walraven, C. The impact of adverse events in the intensive care 

unit on hospital mortality and length of stay. BMC Health Serv. Res. 8, 259. https:// doi. org/ 10. 1186/ 1472- 6963-8- 259 (2008).
 16. McManus, M. L. et al. Queuing theory accurately models the need for critical care resources. Anesthesiology 100, 1271–1276. 

https:// doi. org/ 10. 1186/ 1472- 6963-8- 259 (2004).
 17. Guazzini, A. et al. Humans best judge how much to cooperate when facing hard problems in large groups. Sci. Rep. 9, 5497. https:// 

doi. org/ 10. 1038/ s41598- 019- 41773-2 (2019).
 18. Carayon, P. et al. Characterising the complexity of medication safety using a human factors approach: An observational study in 

two intensive care units. BMJ Qual. Saf. 23, 56–65. https:// doi. org/ 10. 1136/ bmjqs- 2013- 001828 (2014).
 19. Bricon-Souf, N., Renard, J.-M. & Beuscart, R. Dynamic workflow model for complex activity in intensive care unit. Int. J. Med. 

Inform. 53, 143–150. https:// doi. org/ 10. 1016/ S1386- 5056(98) 00155-5 (1999).
 20. Bertalanffy, L. V. General System Theory: Foundations, Development, Applications (Braziller, 1968).
 21. Maier, M. W. Architecting principles for systems-of-systems. In INCOSE International Symposium Vol. 6 (ed. Maier, M. W.) 565–573 

(Wiley Online Library, 1996). https:// doi. org/ 10. 1002/j. 2334- 5837. 1996. tb020 54.x.
 22. Rechtin, E. & Maier, M. W. The Art of Systems Architecting (CRC Press, 2010).
 23. Klir, G. J. Facets of Systems Science Vol. 7 (Springer Science & Business Media, 2013).
 24. Wilson, M.P. General system theory: Towards the unification of science. In Proceedings of the 58th Annual Meeting of the ISSS-2014 

United States, Vol. 1 (2015).

https://doi.org/10.1016/j.jbi.2011.06.006
https://doi.org/10.3390/info5030404
https://doi.org/10.1007/978-3-642-48647-0_13
https://doi.org/10.1007/978-1-4899-0718-9_31
https://doi.org/10.1093/qjmed/hcu145
https://doi.org/10.1093/qjmed/hcu145
https://doi.org/10.1097/01.ccm.0000171609.91035.bd
https://doi.org/10.1186/1472-6963-8-259
https://doi.org/10.1186/1472-6963-8-259
https://doi.org/10.1038/s41598-019-41773-2
https://doi.org/10.1038/s41598-019-41773-2
https://doi.org/10.1136/bmjqs-2013-001828
https://doi.org/10.1016/S1386-5056(98)00155-5
https://doi.org/10.1002/j.2334-5837.1996.tb02054.x


12

Vol:.(1234567890)

Scientific Reports |        (2023) 13:14602  | https://doi.org/10.1038/s41598-023-40149-x

www.nature.com/scientificreports/

 25. Tarantola, S. et al. Estimating the approximation error when fixing unessential factors in global sensitivity analysis. Reliab. Eng. 
Syst. Saf. 92, 957–960. https:// doi. org/ 10. 1016/j. ress. 2006. 07. 001 (2007).

 26. Cassandras, C. G. & Lafortune, S. Introduction to Discrete Event Systems 2nd edn. (Springer Science & Business Media, 2009).
 27. Wainer, G. A. Discrete-Event Modeling and Simulation: A Practitioner’s Approach 1st edn. (CRC Press, 2009).
 28. Pegden, C. D., Sadowski, R. P. & Shannon, R. E. Introduction to Simulation using SIMAN (McGraw-Hill Inc., 1995).
 29. Simon, H. A. How complex are complex systems? In PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Associa-

tion (ed. Simon, H. A.) 507–522 (JSTOR, 1976). https:// doi. org/ 10. 1086/ psapr ocbie nmeetp. 1976.2. 192399.
 30. Casti, J. L. Complexity and simplicity, in the eye of the beholder. Complexity 1, 2–3. https:// doi. org/ 10. 1002/ cplx. 61300 10202 

(1995).
 31. Bar-Yam, Y. Dynamics of Complex Systems 1st edn, Vol. 213 (Addison-Wesley, 1997).
 32. Gell-Mann, M. Simplicity and complexity in the description of nature. Eng. Sci. 51, 2–9 (1988).
 33. Gershenson, C. & Fernández, N. Complexity and information: Measuring emergence, self-organization, and homeostasis at multiple 

scales. Complexity 18, 29–44. https:// doi. org/ 10. 1002/ cplx. 21424 (2012).
 34. Gell-Mann, M. The Quark and the Jaguar: Adventures in the Simple and the Complex (Macmillan, 1995).
 35. Lloyd, S. Measures of complexity: A nonexhaustive list. IEEE Control Syst. Mag. 21, 7–8. https:// doi. org/ 10. 1109/ MCS. 2001. 939938 

(2001).
 36. Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27(379–423), 623–656. https:// doi. org/ 10. 1002/j. 

1538- 7305. 1948. tb009 17.x (1948).
 37. Kolmogorov, A. N. Three approaches to the quantitative definition of information. Prob. Inf. Trans. 1, 1–7 (1965).
 38. Zurek, W. H. Thermodynamic cost of computation, algorithmic complexity and the information metric. Nature 341, 119. https:// 

doi. org/ 10. 1038/ 34111 9a0 (1989).
 39. Wolfram, S. Universality and complexity in cellular automata. Phys. D Nonlinear Phenom. 10, 1–35. https:// doi. org/ 10. 1016/ 0167- 

2789(84) 90245-8 (1984).
 40. Lloyd, S. & Pagels, H. Complexity as thermodynamic depth. Ann. Phys. 188, 186–213. https:// doi. org/ 10. 1016/ 0003- 4916(88) 

90094-2 (1988).
 41. Crutchfield, J. P. & Young, K. Inferring statistical complexity. Phys. Rev. Lett. 63, 105. https:// doi. org/ 10. 1103/ PhysR evLett. 63. 105 

(1989).
 42. Theiler, J. Estimating fractal dimension. JOSA A 7, 1055–1073. https:// doi. org/ 10. 1364/ JOSAA.7. 001055 (1990).
 43. Bennett, C. H. Logical depth and physical complexity. Univ. Tur. Mach. Half-Century Surv.https:// doi. org/ 10. 1007/ 978-3- 7091- 

6597-3_8 (1995).
 44. Paiva, J. et al. Metric for calculation of system complexity based on its connections. Trans. Environ. Electr. Eng. 2, 67–73. https:// 

doi. org/ 10. 22149/ teee. v2i1. 80 (2017).
 45. Critchfield, G. C., Willard, K. E. & Connelly, D. P. Probabilistic sensitivity analysis methods for general decision models. Comput. 

Biomed. Res. 19, 254–265. https:// doi. org/ 10. 1016/ 0010- 4809(86) 90020-0 (1986).
 46. Homma, T. & Saltelli, A. Importance measures in global sensitivity analysis of nonlinear models. Reliab. Eng. Syst. Saf. 52, 1–17. 

https:// doi. org/ 10. 1016/ 0951- 8320(96) 00002-6 (1996).
 47. Saltelli, A., Tarantola, S., Campolongo, F. & Ratto, M. Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models (Wiley, 

2004).
 48. Paiva, J. R., Magalhães, A. S., Moraes, P. H., Bulhões, J. S. & Calixto, W. P. Stability metric based on sensitivity analysis applied to 

electrical repowering system. Energies 14, 7824. https:// doi. org/ 10. 3390/ en142 27824 (2021).
 49. Eschenbach, T. G. & McKeague, L. S. Exposition on using graphs for sensitivity analysis. Eng. Econ. 34, 315–333. https:// doi. org/ 

10. 1080/ 00137 91890 89029 96 (1989).
 50. Pannell, D. J. Sensitivity analysis: Strategies, methods, concepts, examples. Agric. Econ. 16, 139–152 (1997).
 51. Gomes, V. M., Paiva, J. R., Reis, M. R., Wainer, G. A. & Calixto, W. P. Mechanism for measuring system complexity applying 

sensitivity analysis. Complexityhttps:// doi. org/ 10. 1155/ 2019/ 13032 41 (2019).
 52. Nates, J. L. et al. Icu admission, discharge, and triage guidelines: A framework to enhance clinical operations, development of 

institutional policies, and further research. Crit. Care Med. 44, 1553–1602. https:// doi. org/ 10. 1097/ CCM. 00000 00000 001856 (2016).
 53. Caldeira, V. M. H. et al. Criteria for patient admission in the intensive care unit and mortality rates. Braz. Med. Assoc. J. 56, 528–34. 

https:// doi. org/ 10. 1590/ S0104- 42302 01000 05000 12 (2010).
 54. Do, N. C. & Razavi, S. Correlation effects? A major but often neglected component in sensitivity and uncertainty analysis. Water 

Resour. Res. 56, e2019WR025436. https:// doi. org/ 10. 1029/ 2019W R0254 36 (2020).
 55. Jung, W. & Taflanidis, A. A. Efficient global sensitivity analysis for high-dimensional outputs combining data-driven probability 

models and dimensionality reduction. Reliab. Eng. Syst. Saf. 231, 108805. https:// doi. org/ 10. 1016/j. ress. 2022. 108805 (2023).
 56. Cao, J., Du, F. & Ding, S. Global sensitivity analysis for dynamic systems with stochastic input processes. Reliab. Eng. Syst. Saf. 118, 

106–117. https:// doi. org/ 10. 1016/j. ress. 2013. 04. 016 (2013).
 57. Wainwright, H. M., Finsterle, S., Jung, Y., Zhou, Q. & Birkholzer, J. T. Making sense of global sensitivity analyses. Comput. Geosci. 

65, 84–94. https:// doi. org/ 10. 1016/j. cageo. 2013. 06. 006 (2014).
 58. Grogan, E. L. et al. The impact of aviation-based teamwork training on the attitudes of health-care professionals. J. Am. Coll. Surg. 

199, 843–848. https:// doi. org/ 10. 1016/j. jamco llsurg. 2004. 08. 021 (2004).
 59. Leming-Lee, S. et al. Crew resource management in perioperative services: navigating the implementation road map. J. Clin. 

Outcomes Manag. JCOM 12, 353–8 (2005).
 60. Véliz, P. L., Berra, E. M. & Jorna, A. R. Definition of specific functions and procedural skills required by Cuban specialists in 

intensive care and emergency medicine. Med. Rev. 17, 18–26 (2015).
 61. Chen, N. et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A 

descriptive study. Lancet 395, 507–513. https:// doi. org/ 10. 1016/ S0140- 6736(20) 30211-7 (2020).
 62. Huang, C. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497–506. https:// 

doi. org/ 10. 1016/ S0140- 6736(20) 30183-5 (2020).
 63. Sen-Crowe, B., Sutherland, M., McKenney, M. & Elkbuli, A. A closer look into global hospital beds capacity and resource shortages 

during the covid-19 pandemic. J. Surg. Res. 260, 56–63. https:// doi. org/ 10. 1016/j. jss. 2020. 11. 062 (2020).
 64. Organization, W.H. Coronavirus disease (covid-19) pandemic. https:// www. who. int/ emerg encies/ disea ses/ novel- coron avirus- 2019 

(Accessed 03 September 2021) (2021).
 65. Shang, Y. et al. Management of critically ill patients with covid-19 in ICU: Statement from front-line intensive care experts in 

Wuhan, China. Ann. Intensive Care 10, 1–24. https:// doi. org/ 10. 1186/ s13613- 020- 00689-1 (2020).
 66. Bravata, D. M. et al. Association of intensive care unit patient load and demand with mortality rates in us department of veterans 

affairs hospitals during the covid-19 pandemic. JAMA Netw. Open 4, e2034266–e2034266. https:// doi. org/ 10. 1001/ jaman etwor 
kopen. 2020. 34266 (2021).

 67. Janke, A. et al. Analysis of hospital resource availability and covid-19 mortality across the united states. J. Hosp. Med. 16, 211–214. 
https:// doi. org/ 10. 12788/ jhm. 3539 (2021).

 68. Catena, R., Dopson, S. & Holweg, M. On the tension between standardized and customized policies in health care: The case of 
length-of-stay reduction. J. Oper. Manag. 66, 135–150. https:// doi. org/ 10. 1002/ joom. 1016 (2020).

https://doi.org/10.1016/j.ress.2006.07.001
https://doi.org/10.1086/psaprocbienmeetp.1976.2.192399
https://doi.org/10.1002/cplx.6130010202
https://doi.org/10.1002/cplx.21424
https://doi.org/10.1109/MCS.2001.939938
https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
https://doi.org/10.1038/341119a0
https://doi.org/10.1038/341119a0
https://doi.org/10.1016/0167-2789(84)90245-8
https://doi.org/10.1016/0167-2789(84)90245-8
https://doi.org/10.1016/0003-4916(88)90094-2
https://doi.org/10.1016/0003-4916(88)90094-2
https://doi.org/10.1103/PhysRevLett.63.105
https://doi.org/10.1364/JOSAA.7.001055
https://doi.org/10.1007/978-3-7091-6597-3_8
https://doi.org/10.1007/978-3-7091-6597-3_8
https://doi.org/10.22149/teee.v2i1.80
https://doi.org/10.22149/teee.v2i1.80
https://doi.org/10.1016/0010-4809(86)90020-0
https://doi.org/10.1016/0951-8320(96)00002-6
https://doi.org/10.3390/en14227824
https://doi.org/10.1080/00137918908902996
https://doi.org/10.1080/00137918908902996
https://doi.org/10.1155/2019/1303241
https://doi.org/10.1097/CCM.0000000000001856
https://doi.org/10.1590/S0104-42302010000500012
https://doi.org/10.1029/2019WR025436
https://doi.org/10.1016/j.ress.2022.108805
https://doi.org/10.1016/j.ress.2013.04.016
https://doi.org/10.1016/j.cageo.2013.06.006
https://doi.org/10.1016/j.jamcollsurg.2004.08.021
https://doi.org/10.1016/S0140-6736(20)30211-7
https://doi.org/10.1016/S0140-6736(20)30183-5
https://doi.org/10.1016/S0140-6736(20)30183-5
https://doi.org/10.1016/j.jss.2020.11.062
https://www.who.int/emergencies/diseases/novel-coronavirus-2019
https://doi.org/10.1186/s13613-020-00689-1
https://doi.org/10.1001/jamanetworkopen.2020.34266
https://doi.org/10.1001/jamanetworkopen.2020.34266
https://doi.org/10.12788/jhm.3539
https://doi.org/10.1002/joom.1016


13

Vol.:(0123456789)

Scientific Reports |        (2023) 13:14602  | https://doi.org/10.1038/s41598-023-40149-x

www.nature.com/scientificreports/

 69. Buijs, P., Catena, R., Holweg, M. & van der Vaart, T. Preventing disproportionate mortality in ICU overload situations: Empirical 
evidence from the first covid-19 wave in Europe. medRxivhttps:// doi. org/ 10. 1101/ 2021. 05. 03. 21255 735 (2021).

 70. Rocks, S. & Idriss, O. Did hospital capacity affect mortality during the pandemic’s first wave? https:// www. health. org. uk/ news- and- 
comme nt/ charts- and- infog raphi cs/ did- hospi tal- capac ity- affect- morta lity- during- the- pande mic (Accessed 03 September 2021) 
(2020).

Acknowledgements
The authors acknowledge Fundação para a Ciência e a Tecnologia (FCT) [grant number UIDP/00048/2020], 
Brazilian Federal Agency for Support and Evaluation of Graduate Education (CAPES) [grant number 
88881.133454/2016-01], Federal Institute of Goias (IFG) [grant numbers: 23378.000781/2017-14 and 
23378.000462/2018-81] and National Council for Scientific and Technological Development (CNPq/Brasil), 
contribution in the form of a Productivity Scholarship in Research, for the financial support to the project.

Author contributions
V.M.G.P., G.A.W., A.P.C. and W.P.C. conceived the sensitivity metric; J.R.B.P., V.M.G.P., G.A.W., F.A.G. and W.P.C. 
conceived the system complexity metric based on connections; J.R.B.P., V.M.G.P., P.S.B., and F.R.A. developed the 
model of the intensive care unit; J.R.B.P. and V.M.G.P. simulated the systems; J.R.B.P., V.M.G.P., G.A.W., F.A.G., 
W.P.C. and A.P.C. analyzed the data. All authors participated effectively in the writing, correction, revision and 
translation process of this paper.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to J.R.B.P. or W.P.C.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2023

https://doi.org/10.1101/2021.05.03.21255735
https://www.health.org.uk/news-and-comment/charts-and-infographics/did-hospital-capacity-affect-mortality-during-the-pandemic
https://www.health.org.uk/news-and-comment/charts-and-infographics/did-hospital-capacity-affect-mortality-during-the-pandemic
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Complexity measure based on sensitivity analysis applied to an intensive care unit system
	Theoretical background
	Systems, models and simulation. 
	System’s complexity metrics. 
	Sensitivity analysis. 

	Methodology
	Proposed complexity metric. 
	Intensive care unit model. 

	Results
	Case study 1: ICU model sensitivity analysis. 
	Case study 2: ICU system complexity calculation. 

	Discussion
	Conclusion
	References
	Acknowledgements


